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Part 1

Equivalent Definitions of Normality
and Selected Theorems
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This story starts in 1909, when Émile Borel defined normality.
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Notation

A base is an integer b greater than or equal to 2.
A digit in base b is an element in {0, . . . , b− 1},
A block in base b is a finite sequence of digits in base b.

The length of a block w is |w|.
The sublock of w from position i to j, where 1 ≤ i ≤ j ≤ |w|, is w[i..j].
occ(w, u) = #{i : w[i..i+ |u| − 1] = u}.

For each real number ξ in the unit interval and for each base b
we consider the unique expansion of ξ in base b, a1a2a3 . . . such that

ξ =
∞∑
i=1

aib
−i where ai is digit in base b and ai < b− 1 infinitely many times.
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Definition of normality

The expansion in base b of a real ξ is denoted by (ξ)b.

Definition (Borel 1909)

A real number ξ is simply normal to base b if for each digit d in base b

lim
n→∞

occ((ξ)b[1..n], d)/n = 1/b.

ξ is normal to base b if each of ξ, bξ, b2ξ . . . is simply normal to bi, for i ≥ 1.

ξ is absolutely normal if it is normal to every base b.
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Definition of normality

Definition (Borel 1914)

ξ is normal to base b if for every block u in base b of every length

lim
n→∞

occ((ξ)b[1..n], u)/n = 1/b|u|.

ξ is absolutely normal if it is normal to every base b.
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Definition of normality

Definition (Pillai 1940)

ξ is normal to base b if it is simply normal to the bases bi, for every i ≥ 1.

ξ is absolutely normal if it is simply normal to every base.
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The still open question

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

We will prove it by giving a Martin Löf test that covers every non
absolutely normal number.

Problem

Give one example of an absolutely normal number.
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More than 100 years

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.

First constructions by Lebesgue and independently Sierpiński, 1917.
M. Levin 1979 absolutely normal numbers with low discrepancy.
Bugeaud 2002 proved the existence of Liouville absolutely normal numbers.

Theorem (Turing ∼1938)

There is a computable absolutely normal number.

Other computable instances Schmidt 1961/1962; Becher Figueira 2002.

Theorem (Mayordomo 2013; Figueira Nies 2013; Becher Heiber Slaman 2013)

A polynomial time algorithm for absolutely normal numbers.

The respective time complexities are n2 log∗n, n4 and n2f(n) for any
nondecreasing unbounded f .
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Not absolutely normal

Definition

A real number is absolutely abnormal if it is not normal to any base.

Theorem (Martin 2001)

There are absolutely abnormal numbers.

Theorem (particular case Cassels 1959, Schmidt 1960)

There are numbers not simply normal to a given base b but normal to all
other bases multiplicatively independent to b.

Theorem (Schmidt 1961/62)

Let S be any set of bases. There are numbers normal to each base in S and
not normal to each base multiplicatively independent to the elements in S.

Improvement of Schmidt’s theorem denying simple normal Becher Slaman 2013
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Normal to a given base

Theorem (Champernowne 1933)

0, 123456789101112131415161718192021222324 . . . is normal to base ten.
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Normality in five different formulations

1. Combinatorial (Borel’s original definition and equivalent forms)

2. Uniform distribution of sequences modulo one

3. Weyl’s criterion

4. Incompressibility by lossless finite automata

5. Polynomial martingales

Normality and randomness tests?
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Normal numbers and uniform distribution modulo one

Definition

Let N be a positive integer and ξ1, . . . , ξN be reals between 0 and 1.
The discrepancy of the sequence (ξ1, . . . , ξN ) is

D(ξ1, . . . , ξN ) = sup
0≤u<v≤1

∣∣∣#{n : 1 ≤ n ≤ N,u ≤ ξn < v}
N

− (v − u)
∣∣∣.

The fractional part of the real number ξ will be denoted {ξ}.
Let b be a base and consider the sequences

({bjξ} : j ≥ 0)

Theorem (Wall 1949)

Let b be a base. A real number ξ is normal to base b if and only if

lim
N→∞

D({bjξ} : 0 ≤ j < N) = 0.
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Normal numbers and Weyl’s criterion

Theorem (Weyl’s Criterion)

A sequence (ξn : n ≥ 1) is uniformly distributed modulo one if and only if
for every complex-valued 1-periodic continuous function f ,

lim
N→∞

1

N

N∑
j=1

f(ξn) =

∫ 1

0

f(x)dx.

That is, if and only if for every non-zero integer t, lim
N→∞

1

N

N∑
j=1

e2πitξj = 0

Thus, ξ is normal to base b iff for every non-zero t

lim
N→∞

1

N

N−1∑
j=0

e2πitbjξ = 0.
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Effective Weyl criterion

Theorem (LeVeque 1965)

D(ξ1, . . . , ξN ) ≤

(
6

π2

∞∑
t=1

1

t2

∣∣∣ 1

N

N∑
j=1

e2πitξj
∣∣∣2) 1

3

.

Lemma (Becher Slaman 2013)

For any positive real ε there is a finite set of integers T and a positive real δ

such that for any (ξ1, . . . , ξN ), if for all t ∈ T ,
1

N2

∣∣∣ N∑
j=1

e2πitξj
∣∣∣2 < δ then

D(ξ1, . . . , ξN ) < ε. Furthermore, such T and δ can be computed from ε.
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Normal numbers and incompressibility

Definition (Huffman 1959)

A lossless finite-state compressor is an ordinary finite automata augmented
with an output transition function such that the automata input-output
behavior is injective.

Theorem (Schnorr Stimm 1972 + Dai Lathrop Lutz Mayordomo 2004; Becher and Heiber 2013)

A real number is normal to a given integer base if, and only if, its expansion
expressed in that base is incompressible by lossless finite-state compressors.
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Normal numbers and martingales

A martingale for alphabet of b symbols is such that for all blocks w in base b

d(w) = b−1
∑

a∈{0,..,(b−1)}

d(wa).

The martingale d succeeds on a sequence w ∈ bω if lim sup
n→∞

d(w[1..n]) =∞.

Theorem (Schnorr Stimm 1972 + Dai Lathrop Lutz Mayordomo 2004)

ξ is normal to base b if and only if no finite-state martingale succeeds on ξ.

Theorem (Schnorr 1971)

If no quadratic-time martingale succeeds on the expansion of ξ in base 2
then ξ is normal to base 2.

Theorem (Hitchcock Mayordomo 2013; Figuera Nies 2013)

If no polynomial-time martingale succeeds on the expansion of ξ in base 2
then ξ is absolutely normal.
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Normal numbers and randomness tests

Theorem (Turing ∼1938)

Schnorr randomness implies absolute normality.

We give a family of Martin Löf-tests. For each base b and each dyadic
rational ε, (S(ε, b)k)k≥1 is a uniformly c.e. sequence of sets of intervals with
rational endpoints whose measure is computably bounded and goes to zero.

For fixed parameters b, ε, and for each k, S(b, ε)k is the c.e. set of intervals
with b-adic rational endpoints. The initial segment of length k of expansion
in base b of these rational endpoints contains, according to ε, too many or
too few occurrences of some digit.

18/154



Normal numbers and randomness tests

Theorem (Turing ∼1938)

Schnorr randomness implies absolute normality.
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There are only a few bad blocks (the Key Lemma)

Fix a base b and a block u of length `.
The expected number of occurrences of u in any block of length N is N/b`.

Suppose w is a block of length N . If u occurs in w more than N/b` + εN
times, or less than N/b` - εN times, then w is a bad block for u.

Lemma (extends Hardy Wright 1938)

Fix base b, a block u of length ` and a length N such that N > `.
For any real ε such that 6/bN/`c ≤ ε ≤ 1/b`∑

i < N/b
` − εN or

i > N/b
`

+ εN

the number of blocks of length N
with exactly i occurrences of w

≤ 2 bNb2`−2e−b
`ε2N/6`.

Hint: the number of blocks of length N with exactly i occurrences

of a given digit is
(

N
i

)
(b − 1)

k−i.
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Normal numbers and randomness tests

Fix b and ε. Let k0 be the least such that the Key Lemma holds for ` = 1
and ε and b as given.

For each k ≥ k0,

S(b, ε)k =
⋃
N>k

{w ∈ bN : | occ(w, d)−N/b| > εN for some digit d in base b}

µ(S(b, ε)k) ≤
∑
N>k

2 b e−bε
2N/6 ≤

∫ ∞
k

2be−bε
2N/6dN = 12ε−2e−bε

2k/6.

If a real ξ is not absolutely normal then there is some base b and some ε

such that ξ ∈
⋂
k≥k0

S(b, ε)k.
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No Martin-Löf test for absolute normality exactly

Theorem (Ki Linton 1994)

Fix base b. The set of real numbers normal to base b is Π0
3-complete.

Thus, for every Martin-Löf test (Sk)k⋂
k

Sk 6= {ξ ∈ (0, 1) : ξ is not normal to base b}

Theorem (Becher Heiber Slaman 2013)

The set of real numbers that are absolutely normal is Π0
3-complete.

As conjectured by Achim Ditzen,

Theorem (Becher Slaman 2013)

The set of real numbers that are normal to some base is Σ0
4-complete.
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A convenient characterization of normality

Theorem (Bugeaud 2012)

A real ξ is normal to base b if and only if there is a positive constant C
such that, for every length ` and for every block u in base b of length `,

lim sup
N→∞

occ((ξ)b[1..N ], u)

N
≤ C

b`
.
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Champernowne’s number is normal to base ten

We will prove for every length `, every block u in base b of length `

lim sup
N→∞

occ(1...N, u)

N
≤ 2 10

10`
.

We consider the segments

1...9 10...99 100...999 1000...9999 10
i...9i+1...

Define (Si)i≥0 where Si = 10
i...9i+1 and its length is Li = (i+ 1) 9 10i.
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Champernowne’s number is normal to base ten

How many times does the digit 1 occur in Si?

Si
123456789 1
101112131..21...31...41......99 10 +9
100...999 : 100 +9 10 +9 10

10
3..94 : 103 +9 10 +9 10 +9 10

10
i...9i+1 10i +i 9 10

Since ` = 1 this is, 10i+1−` + (i+ 1− `) 9 10i−`
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Champernowne’s number is normal in base ten

For i ≥ 0, Si = 10
i...9i+1 with length Li = (i+ 1) 9 10i

Suppose |u| = `. How many times u occurs in Si = 10
i...9i+1?

Case not divided.

If u does not start with 0 then u occurs

10i+1−` + (i+ 1− `) 9 10i−`

If u starts with 0, it occurs just (i+ 1− `) 9 10i−`.

Case divided.

u occurs at most `− 1 times the number of terms in the segment:

(`− 1) 9 10i
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Champernowne’s number is normal in base ten
For i ≥ 0, Si = 10

i...9i+1 with length Li = (i+ 1) 9 10i.

occ(1..9k, u) ≤ occurrences of u undivided + occurrences of u divided

≤

(
k∑
i=0

10i+1−` + (i+ 1− `) 9 10i−`
)

+

(
k∑
i=0

(`− 1) 9 10i
)

≤

(
10−`

k∑
i=0

Li

)
+

(
10−`(10− 9`)

k∑
i=0

10i
)

+

(
(`− 1) 9

k∑
i=0

10i
)

In case ` = 1, there are no divided occurrences, so (`− 1) is 0

occ(1..9k, u)

|1..9k| =
occ(1..9k, u)∑k

i=0 Li
≤ 10−` + 10−` = 2 10−`

In case ` > 1,(10− 9`) is negative and for each ` there is k0 such that for k ≥ k0

occ(1..9k, u)

|1..9k| =
occ(1..9k, u)∑k

i=0 Li
≤ 10−` +

(`− 1) 9

k + 1
≤ 2 10−`

Thus, for each ` there is k0 such that for all k ≥ k0,
occ(1..9k, u)

|1..9k| ≤ 2 10−`.
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)

In case ` = 1, there are no divided occurrences, so (`− 1) is 0
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|1..9k| =
occ(1..9k, u)∑k

i=0 Li
≤ 10−` + 10−` = 2 10−`

In case ` > 1,(10− 9`) is negative and for each ` there is k0 such that for k ≥ k0
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Champernowne’s number is normal in base ten

Consider an initial segment S∗ of Sk−1 such that the length of S∗ is a
multiple of k.
The last k digits of S∗, mk−1...m0, correspond to the largest element in the
specification of S∗. Note, mk−1 can be any non-zero digit and the other any
digit.

Since S∗ = 10
k−1......mk−1...m0, |S∗| = k

(
(mk−1 − 1)10k−1 +

k−2∑
h=0

mh10h
)

.

Consider a block u of length `.

Case u occurs divided in S∗.

Clearly occ(S∗, u) < (`− 1) mk−1 10k−1.

when k is large enough
(`− 1) mk−1 10k−1

|S∗| < 10−`.

Case u occurs undivided in S∗.

We count the number of blocks having u at fixed position j,
for 1 ≤ j ≤ k − `+ 1
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Champernowne’s number is normal in base ten

Fix some j such that 1 ≤ j ≤ k − `+ 1.

We count how many blocks can have u at position j.

positions 1... . . . . (j − 1) j...... . j + `− 1 j + `...... k

block prefix u1...u` suffix

maximum mk−1...mk−(j−1) mk−j...mk−j−`+1 mk−j−`...m0

The number of possible prefixes is at most

1 + (mk−1 − 1)10j−2 +

k−2∑
h=k−j+1

mh10h+j−k−1.

The number of possible suffixes is at most

10k−j−`+1.
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Champernowne’s number is normal in base ten

We now consider all possible positions j = 1, 2, . . . , k − `+ 1. The number
of undivided occurrences of u in S∗ is at most.

10k−` + 10k−`−1(1 + (mk−1 − 1))+

k−`+1∑
j=3

10k−j−`+1

1 + (mk−1 − 1)10j−2 +

k−2∑
h=k−j+1

mh10h+j−k−1


≤ 10−`

(
(1 + 10−1)10k + (mk−1 − 1)10k−1

)
+

10−`
(

(k − `)(mk−1 − 1)10k−1 +

k−2∑
h=`

(h− `+ 1)mh10h.

)

Recall S∗ = 10
k−1...mk−1...m0 |S∗| = k

(
(mk−1 − 1)10k−1 +

k−2∑
h=0

mh10h
)

.

Hence, the ratio of the number of undivided occurrences of u in S∗ by the
length of S∗ is less than 10 10−` + 10−`.

29/154



Champernowne’s number is normal in base ten

Now, suppose that S is an initial segment of the Champernowne sequence.
We view S as the concatenation of S0, S1, . . . , Sk−2, S∗, and a possible
final sequence of length less than k.

occ(S, u) ≤
k−1∑
i=0

occ(Si, u) + occ(S∗, u) + k

occ(S, u)

|S| ≤ 2 10−` + (10 10−` + 10−` + 10−`) + 10−` ≤ 20 10−`.
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Proof of the limsup theorem

Theorem (Bugeaud 2012)

A real ξ is normal to base b if and only if there is a positive constant C
such that for every block length ` and for every block u in base b of length `,

lim sup
N→∞

occ((ξ)b[1..N ], u)

N
≤ C

b`
.

The implication left to right is direct from the definition of normality.

We prove the implication from right to left.

Fix b, ξ and C, and assume the hypothesis. To show that ξ is normal to
base b it suffices to prove that ξ is simply normal to base br, for each r ≥ 1.
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Proof of the limsup theorem

Fix exponent r and a digit d in base br.
We give an upper bound of occ((ξ)br [1..N ], d).

By hypothesis, for N sufficiently large,

given a block ur of length r in base b, occ((ξ)b[1..N ], ur) < 2CN/br

given a block urk of length rk in base b, occ((ξ)b[1..N ], urk) < 2CN/brk

given a block ûk of length k in base br, occ((ξ)br [1..N ], uk) < 2CNr/(br)k.
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Proof of the limsup theorem

Let block size k = brn, where n will be determined at the end of the proof.

The number of blocks of length k in the first N digits of ξ in base br is N/k
(we consider non-overlapping blocks because we consider a single digit d).

We classify them in good blocks for d and bad blocks for d, for ε = k−1/3.
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Proof of the limsup theorem
occ((ξ)br [1..N ], d) is at most
#bad blocks for d × max occurrences of each bad block × block size

+
all blocks × the expected number of occurrences per block + ε block size

occ((ξ)br [1..N ], d) ≤ (#bad blocks for d)
2CNr

(br)k
k +

N

k

(
k

br
+ εk

)
≤ 2(br)ke−b

rε2k/6 2CNr

(br)k
k +

N

br
(1 + ε)

= 4Cr k e−(br)4/3n1/3/6 N +
N

br
(1 + ε)

where the last equality uses k = brn and ε = k−1/3.

Let n be such that 4Cr k e−(br)4/3n1/3/6N < ε
N

br
.

Then, occ((ξ)br [1..N ], d) <
N

br
(1 + 2ε).

Hence, lim sup
N→∞

occ((ξ)br [1..N ], d)

N
≤ b−r.

This holds for every digit d in base br and

br−1∑
d=0

occ((ξ)br [1..N ], d) = N .

Hence, ξ is simply normal to base br.
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Bonus Track: Turing’s effective null set
We define first a Martin Löf test, uniformly in the parameter k.

Sk =
⋃
n≥0

Sk,n

Sk,0 = ∅
Sk,n+1 add to Sk,n the points that are not candidates to be normal, due to
an initial segment of their expansions in some base.

Sk,n =
⋃

2≤b≤B

⋃
1≤`≤L

⋃
u∈`∗

{w ∈ N∗ : | occ(w, u)−N/b`| > εN}

Using the Key Lemma, µ(Sk,n) ≤ 2L B3L−1e−ε
2N/3L ≤ 1

k
− 1

k + n
.

where
N initial segment size . . . . . . . linear in n N = k + n+ 1

L block length . . . . . . . . . . . . . sublogarithmic in n L =
√

log(k + n+ 1)/4
B base . . . . . . . . . . . . . . . . . . . . . . sublinear in n B = eL

ε frequency discrepancy . . . . goes to 0 ε = B−L

Since Sk =
⋃
n≥0

Sk,n, then µ(Sk) ≤ 1

k
.

To obtain a Schnorr test adapt Sk,n to have exactly measure
1

k
− 1

k + n
.
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We define first a Martin Löf test, uniformly in the parameter k.

Sk =
⋃
n≥0

Sk,n

Sk,0 = ∅
Sk,n+1 add to Sk,n the points that are not candidates to be normal, due to
an initial segment of their expansions in some base.

Sk,n =
⋃

2≤b≤B

⋃
1≤`≤L

⋃
u∈`∗

{w ∈ N∗ : | occ(w, u)−N/b`| > εN}

Using the Key Lemma, µ(Sk,n) ≤ 2L B3L−1e−ε
2N/3L ≤ 1

k
− 1

k + n
.

where
N initial segment size . . . . . . . linear in n N = k + n+ 1

L block length . . . . . . . . . . . . . sublogarithmic in n L =
√

log(k + n+ 1)/4
B base . . . . . . . . . . . . . . . . . . . . . . sublinear in n B = eL

ε frequency discrepancy . . . . goes to 0 ε = B−L

Since Sk =
⋃
n≥0

Sk,n, then µ(Sk) ≤ 1

k
.

To obtain a Schnorr test adapt Sk,n to have exactly measure
1

k
− 1

k + n
.

35/154



Part 2

Normality and Incompressibility by
Finite Automata
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Fixation

Fix a base b.

digits = digits in base b = D = {0, . . . , b− 1}
blocks = finitely many digits = b∗

sequences = infinitely many digits = bω

bω ⊃ {(ξ)b : ξ ∈ [0, 1)}
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Definition of normality

Definition

The block occurrences of a block u inside a block w are

blocc(w, u) = |{i : w[i|u|..(i+ 1)|u| − 1] = u}|.

Definition

X ∈ bω is normal if and only if for every block u

lim
n→∞

blocc(X[1..n|u|], u)

n
= b−|u|.

X = (ξ)b ⇒ blocc(X[1..n|u|], u) = occ((ξ)b|u| [1..n], “u”)
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Target acquired

Non-randomness can be characterized as compressibility:

lim inf
n→∞

KU (X[1..n])− n = −∞ Π0
2

What should we use to do the same for normality?
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Entropy

lim
n→∞

blocc(X[1..n|u|], u)

n
= b−|u|

frequency of u equal to b−|u| looks familiar...

Shannon (1948):

I frequency of u other than b−|u| implies non-maximum entropy

I non-maximum entropy implies compressibility

Huffman (1952):

I simple greedy implementation of Shannon’s general idea

I such implementation can be coded into a Finite State Transducer
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Definition of transducers

Definition

A finite state transducer is a tuple T = 〈Q, δ, o, q0〉, where

I Q is a finite set of states,

I δ : Q×D → Q is the transition function,

I o : Q×D → b∗ is the output function and

I q0 ∈ Q is the starting state.

T processes sequences of digits in base b: if at state q digit d is processed, T
moves to δ(q, d) and outputs o(q, d).

transducer = finite state transducer

δ∗(q, λ) = q o∗(q, λ) = λ
δ∗(q, du) = δ∗(δ(q, d), u) o∗(q, du) = o(q, d)o∗(δ(q, d), u)

T (u) = o∗(q0, u) T (X) = lim
n→∞

T (X[1..n])
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Losses control

Definition

A transducer T = 〈Q, δ, o, q0〉 is lossless if and only if u 7→ 〈δ∗(q0, u), T (u)〉
is injective.

Definition

A transducer T = 〈Q, δ, o, q0〉 is almost-everywhere-bounded-to-one (aebt1)
if and only if there is a measure one set X such that X 7→ T (X) is bounded
to one in X , i.e., Y 7→ |{X ∈ X : T (X) = Y }| is bounded.

Lossless does not generalize well, but aebt1 does.
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Definition of compressibility

Definition

An infinite sequence X is compressible by finite automata if and only if
there is a bounded-to-one transducer T such that

lim inf
n→∞

|T (X[1..n])|
n

< 1

compressible = compressible by finite automata

Theorem (Schnorr and Stimm)

X is compressible by T if and only if

lim inf
n→∞

|T (X[1..n])| − n = −∞
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Non-normal in base b vs non-random

Theorem (Schnorr and Stimm)

X is compressible by T if and only if

lim inf
n→∞

|T (X[1..n])| − n = −∞

∃T lim inf
n→∞

|T (X[1..n])| − n = −∞ Σ0
3

lim inf
n→∞

KU (X[1..n])− n = −∞ Π0
2

Theorem (Ki and Linton)

Normality in base b is Π0
3 complete.
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Not normal implies compressible

Theorem (too many people)

If X is not normal then it is compressible.

Proof steps:

1. Fix the blocks and positions with non-maximum entropy

2. Codify the compression scheme for those blocks

3. Group blocks to minimize rounding problems

4. Profit
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Normal implies not compressible

Theorem (too many people)

If X is normal then it is not compressible.

Proof steps:

1. Build a set of blocks with large contribution to the output

2. Show those are most of the blocks

3. Consider only the output of those blocks

4. Profit
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Who are those many people?

I Schnorr and Stimm
abnormality ⇔ finite-state martingale success

I Dai, Lathrop, Lutz and Mayordomo
compressibility ⇔ martingale success
normality ⇒ no martingale success

I Bourke, Hitchcock and Vinodchandran
non-normality ⇒ martingale success

I Becher and Heiber
abnormality ⇔ compressibility (direct)

I Becher, Carton and Heiber
generalized to bounded-to-one
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Meet in the middle

Normal incompressible by Finite-State Automata

...

?
...

Normal compressible by Turing Machines
(Champernowne)
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Meet in the middle

Normal incompressible by Finite-State Automata

...

non-determinism non-real-time memory models

...

Normal compressible by Turing Machines
(Champernowne)
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k unary stacks automata

Definition

A k-var transducer is a tuple T = 〈Q, δ, σ1, . . . , σk, o, q0〉, where

I Q is a finite set of states,

I δ : Q×D × {0, 1}k → Q is the transition function,

I σi : Q×D × {0, 1}k → {−k, . . . , 0, . . . , k} is the i-th variable function,

I o : Q×D × {0, 1}k → b∗ is the output function and

I q0 ∈ Q is the starting state, with all empty stacks.

T begins at state q0 with k integer variables with value 0. It then processes
digits in base b: if at state q digit d is processed and (ei)i∈1,...,k are bits
representing if variable i is 0, T moves to state δ(q, d, e1, . . . , ek), outputs
o(q, d, e1, . . . , ek) and adds σi(q, d, e1, . . . , ek)) to variable i, capping to 0 if
necessary.

lossless would require revisiting, but aebt1 works as is
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Normal implies not compressible (with k unary stacks)

Theorem (Becher, Carton, Heiber)

If X is normal then it is not compressible by k-var transducer.

Proof steps:

1. Build a set of blocks with large contribution to the output

2. Show those are most of the blocks

3. Consider only the output of those blocks

4. Profit
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Non-deterministic automata

Definition

A non-deterministic transducer is a tuple T = 〈Q, δ,Qa, q0〉, where

I Q is a finite set of states,

I δ : Q×D → P(Q× b∗) is the non-deterministic transition and output
function,

I Qa ⊆ Q is the set of accepting states and

I q0 ∈ Q is the starting state.

T processes sequences of digits in base b: if at state q digit d is processed, T
may move to any state q′ and output any block u′ such that
〈q′, u′〉 ∈ δ(q, d). A computation is accepted if and only if it goes through
an accepting state infinitely often.

lossless would require revisiting, but aebt1 works “as is”

Definition

A non-deterministic transducer T = 〈Q, δ, q0〉 is aebt1 if and only if there is
a measure one set X such that X 7→ T (X) is bounded to one in X , i.e.,
Y 7→ |{X ∈ X : T (X) 3 Y }| is bounded.
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Normal implies not compressible (with
non-deterministic)

Theorem (Becher, Carton, Heiber)

If X is normal then it is not compressible by non-deterministic transducer.

Proof steps:

1. Build a set of blocks with large contribution to the output

2. Show those are most of the blocks

3. Consider only the output of those blocks

4. Profit
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A small lemma

Lemma (adapted from Schnorr and Stimm)

The set of sequences that goes infinitely often through every state of a
reachable strongly connected component of an automata has positive
measure.

Proof steps:

1. Fix a connected component and the path u that leads to it

2. Build accumulated paths ui,j from each state to a given one

3. Consider the subset of [u] that contains u1,ju2,j . . . un,j an infinite
number of times

4. Profit
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Non-deterministic stack automata

Definition

A non-deterministic k-ary stack transducer is a tuple T = 〈Q, δ,Qa, q0〉,
where

I Q is a finite set of states,

I δ : Q×D × {0, . . . , k − 1,�} → P(Q× {0, . . . , k − 1}∗ × b∗) is the
non-deterministic transition and output function and

I Qa ⊆ Q is the set of accepting states and

I q0 ∈ Q is the starting state.

T processes sequences of digits in base b: if at state q digit d is processed
and c is on top of the stack, T pops c from the stack and may move to any
state q′, push any k-sequence c′ and output any block u′ such that
〈q′, c′, u′〉 ∈ δ(q, d, c). A computation is accepted if and only if it goes
through an accepting state infinitely often.

lossless would require revisiting, but aebt1 works as is
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Normal does not imply not compressible (with
non-deterministic and stack)

Theorem (Becher, Carton and Heiber on an idea of Boasson)

There is a non-deterministic k-ary stack transducer that compresses a
normal sequence.

Proof steps:

1. Build a palindromic version of Champernowne

2. Show it is normal

3. Build a compressor of palindromes

4. Profit
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Bonus track: Selectors

Definition

A finite state selector is a tuple T = 〈Q, δ, q0,Qs〉, where

I Q is a finite set of states,

I δ : Q×D → Q is the transition function,

I Qs ⊆ Q is the selecting set and

I q0 ∈ Q is the starting state.

T processes sequences of digits in base b: if at state q digit d is processed, T
moves to δ(q, d) and outputs d if q ∈ Qs and nothing otherwise.

Theorem (Agafonov; Becher and Heiber)

Finite-state selectors preserve normality.
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Other selection rules

Theorem (Agafonov; Becher and Heiber)

Finite-state selectors preserve normality.

Theorem (Merkle and Reimann)

Finite-state 1-var selectors do not preserve normality.

Theorem (Becher, Carton and Heiber)

Non-deterministic selectors do not preserve normality.

Selection to the left:
select X[i] based on X[1..i− 1] being in a certain language.

Selection to the right:
select X[i] based on X[i+ 1..] being in a certain language.
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Other selection rules (cont.)

Theorem (Merkle and Reimann)

Selection to the left belonging to a linear language does not preserve
normality.

Theorem (Becher, Carton and Heiber)

Selection to the right suffix belonging to a set of infinite sequences
recognizable by non-deterministic automata preserves normality.

And finally, selection to the left and right simultaneously does not work:

Theorem (Becher, Carton and Heiber)

Selection of digits in between two zeros does not preserve normality.
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Part 3

Absolute Normality and Normality
in Different Bases
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Today’s topic: Constructions

1. An algorithm to compute absolutely normal numbers efficiently.

2. Constructions to exhibit different behavior relative to different bases.
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Absolutely normal numbers in just above quadratic time

Theorem (Becher Heiber Slaman 2013)

Suppose f is a computable non-decreasing unbounded function. There is an
algorithm to compute an absolutely normal number ξ such that, for any
base b, the algorithm outputs the first i digits in (ξ)b after O(f(i) i2)
elementary operations.

Lutz and Mayordomo, and Figueira and Nies have other constructions,
based on polynomial-time martingales.
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The output of our algorithm in base 10
Programmed by Martin Epszteyn

0, 4031290542003809132371428380827059102765116777624189775110896366...

First 250000 digits output by the algorithm First 250000 digits of Champernowne

Plotted in 500x500 pixeles, 10 colors Plotted in 500x500 pixeles, 10 colors

Algorithm with parameters ti = (3 ∗ log(i)) + 3; εi = 1/ti Initial values t1 = 3; ε1 = 1.

First extension in base 2 is of length k = 405. Then k increases only when necessary.
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The output of our algorithm in each base

Left: Discrepancy for powers of 2, normalized by expected frequency.
Right: Discrepancy for prime digits, normalized by expected frequency.
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Combinatorial discrepancy

Notation: L(b, k) is the set of blocks in base b of length k.

Definition

The combinatorial discrepancy of w ∈ L(b, k) for blocks of length ` is

Dc(`, w, b) = max

{∣∣∣∣occ(w, u)

k
− 1

b`

∣∣∣∣ : u ∈ L(b, `)

}
.

For example, for b = 2 and k = 4

w Dc(1, w, b) Dc(2, w, b)

0000 1 − 1/2 = 1/2 3/4− 1/4 = 1/2
0001 3/4− 1/2 = 1/4 1/4
0010 3/4− 1/2 = 1/4 1/4
0011 0 1/4

...
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Absolute normality

Recall, a real number ξ is simply normal to base b if each digit d in base b

lim
n→∞

occ((ξ)b[1..n], d)/n = 1/b.

Theorem (Pillai 1940)

ξ is absolutely normal if and only if it is simply normal to every base.

With the notation of combinatorial discrepancy, Pillai’s Theorem reads:

A real number ξ is absolutely normal if and only if for every base b,

lim
n→∞

Dc(1, (ξ)b[1 . . . n], b) = 0.
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Almost all real numbers are normal

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue
measure one.

Effective version, based on Hardy and Wright’s Key Lemma.

Lemma

Let ε and δ be positive reals and b be a base. There is a k0 such that for
every k ≥ k0,

#

{
w ∈ L(b, k) : Dc(1, w, b) > ε

}
< δbk.

Further, the value of k0 is uniformly computable, written K(ε, δ, b).
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Notation

A rational number ξ in the unit interval is b-adic with precision n when

ξ =

n∑
j=1

djb
−j for digits dj in {0, . . . , b− 1}.

Thus, ξ is b-adic with precision n if ξ = a/bn, for an integer a such that
0 ≤ a ≤ bn.

A b-adic semi-open interval is an interval of the form [a/bn, (a+ 1)/bn),
for 0 ≤ a < bn.

We use 〈k; b〉 to denote dk/ log be.
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General construction of a computable real number

Consider a computable sequence (I)i≥1 of b-adic semi-open intervals Ii such

that for all i ≥ 1, Ii+1 ⊂ Ii, lim
i→∞

µ(Ii) = 0 and ξ =
⋂
i≥1

Ii.

This yields a computation of ξ by specification of its infinite expansion in
base b, from left to right. The real number ξ = lim

i→∞
ξi where ξi+1 is

obtained at step i+ 1 by concatenating the expansion of ξi with a new
block of digits.
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Concatenation in a given base

We write ∗ to denote concatenation of sequences.

Lemma

Let x and u be blocks in base b and ε a real between 0 and 1.

1. If Dc(1, x, b) < ε and Dc(1, u, b) < ε then

Dc(1, x ∗ u, b) < ε.

2. If Dc(1, x, b) < ε and |u|/|x| < ε then for every ` such that 1 ≤ ` ≤ |u|,

Dc(1, (x ∗ u)[1, . . . , |x|+ `]), b
)
< 2ε.
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Concatenation does not translate well for base change

If ξ, η are b-adic rationals with precision n and ν is a b-adic rational less
than b−n and with precision m then

(ξ + ν)b[n+ 1 . . . (n+m)] = (η + ν)b[n+ 1 . . . (n+m)].

However,

for a base a that is not a power of b, in general,

(ξ + ν)a[〈n; a〉 . . . 〈n+m; a〉] 6= (η + ν)a[〈n; a〉 . . . 〈n+m; a〉].

For instance, for b = 10 and a = 3, ξ = 25/100, η = 50/100, ν = 17/10000

(0.25)3 = 0.020202020202... (0.50)3 = 0.110111200011...
(0.2517)3 = 0.020210111012... (0.5017)3 = 0.111112201221...
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Definition of t-sequences

Lemma

For any interval I and any base b, there is a b-adic subinterval Ib such that
µ(Ib) ≥ µ(I) /(2b), where µ(I) is the Lebesgue measure of I.

Definition

A t-sequence is a sequence of intervals,
−→
I = (I2, . . . , It), such that

I Ib is b-adic, for 2 ≤ b ≤ t
I Ib+1 ⊆ Ib, for 2 ≤ b < t

I µ(Ib+1) ≥ µ(Ib) /2(b+ 1), for 2 ≤ b < t.
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About t-sequences

Lemma

Let
−→
I = (I2, . . . , It) be a t-sequence. Then, µ(It) ≥ µ(I2) /(2t t!).

Notation: Let m(t) = 1/(2t t!).

Lemma (Lower bound for t-sequences)

Let
−→
I be a t-sequence. Let L be the largest dyadic subinterval of It.

For any positive integer k consider the canonical partition of L in 2k

subintervals L(h), h = 0, . . . 2k − 1. For each such h, let
−→
J (h) be a

(t+ 1)-sequence where J
(h)
2 = L(h). Then,

µ

 ⋃
0≤h<2k

J
(h)
t+1

 ≥ m(t) m(t+ 1) µ(I2) /4.
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t-sequences good-for-k-and-ε

Definition

A t-sequence
−→
I is good-for-k-and-ε if for each base b such that 2 ≤ b < t,

Dc(1, u, b) ≤ ε,

where Ib = [.w, .w + b−|w|) and u is the final block of w of length 〈k; b〉.

Lemma (Upper bound for the not good)

Let ε and δ be real numbers between 0 and 1, t be a base,
−→
I be a t-sequence,

and L be the largest dyadic subinterval of It. For k = K(ε, δ, t)dlog te,
consider the canonical partition of L in 2k subintervals L(h), h = 0, .., 2k−1.

For each such h, let
−→
J (h) be a (t+ 1)-sequence where J

(h)
2 = L(h). Then,

µ

 ⋃
0≤h<2k

J
(h)
t+1such that

−→
J (h) is not good-for-k-and-ε

 < tiδµ(I2) .
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Algorithm

Let (εi)i≥1 computable non-increasing rationals that go to 0, ε1 = 1.
Let (ti)i≥1 computable non-decreasing unbounded sequence of bases, t1 = 2.

The algorithm defines (
−→
I i)i≥1 of ti-sequences

−→
I i = (Ii,2, . . . Ii,ti).

The constructed real ξ is the unique point in
⋂
i≥1

Ii,2.
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Algorithm

Initial step. I1,2 = [0, 1).

Recursion step i+ 1. We have a ti-sequence
−→
I i from the previous stage.

1. Compute ti+1 and εi+1.

Let δ = 1/(2 ti) m(ti) m(ti+1)/4 (controls the length of extension)

Let k = K(εi+1, δ, ti+1)dlog ti+1e (length of extension for base 2)

2. Let L be the largest dyadic subinterval of Ii,ti .

3. Partition L in the 2k canonical subintervals L(h), for h = 0, . . . 2k − 1.

4. Find the leftmost ti+1-sequence
−→
J (h) such that J

(h)
2 = L(h), and

J(h) is good-for-k-and-εi+1, for h = 0, . . . , 2k − 1.

Let
−→
I i+1 be such ti+1-sequence.
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Correctness the algorithm

The real ξ is well-defined. At step i+ 1 the algorithm sets
δ = (1/2ti)m(ti) m(ti+1)/4 and k = K(εi+1, δ, ti+1)dlog ti+1e.
By the lower bound for the t-sequences,

µ

 ⋃
0≤h<2k

J
(h)
ti+1

 ≥ 2tiδµ(Ii,2) .

By the upper bound for the not good t-sequences,

µ

 ⋃
0≤h<2k

J
(h)
ti+1

such that
−→
J (h) is not good-for-k-and-εi+1

 < tiδµ(Ii,2) .

So there is a ti+1-sequence good-for-k-and-εi+1. The leftmost will be
−→
I i+1.

The real ξ is absolutely normal. The construction iteratively adds short
blocks of monotonically decreasing combinatorial discrepancy in each base.
The bases go to infinity.
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The algorithm runs in polynomial time

At step i the algorithm searches over i different candidate sequences.
The criteria for selection can be evaluated in polynomial time.
Base change can be done in quadratic time.
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The algorithm runs in polynomial time

Assume (εi)i≥1 and (ti)i≥1.

Recursion step i+ 1. We have a ti-sequence
−→
I i from the previous stage.

1. Compute ti+1 and εi+1.

Let δ = 1/(2 ti) m(ti) m(ti+1).

Let k = K(εi+1, δ, ti+1)dlog ti+1e
Incremental computation

2. Let L be the largest dyadic subinterval of Ii,ti .

Base change

3. Partition L in the 2k canonical subintervals L(h), for h = 0, . . . 2k − 1.

4. Find the leftmost ti+1-sequence
−→
J (h) such that J

(h)
2 = L(h) and

J(h) is good-for-k-and-εi+1, for h = 0, . . . , 2k − 1.

At most (tiδ)2
k (ti+1 base change + test good-for-k-and-εi+1)

Let
−→
I i+1 be such ti+1-sequence.

Each test of good-for-k-and-εi+1 runs in time linear in k. If ti is sublinear
in i and 2k is linear in i then the algorithm runs in polynomial time.
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Trading discrepancy for speed

Our algorithm achieves speed of computation at the cost of slowness of
convergence to normality.

There are limits on the rate that discrepancy of a sequence of real numbers
can converge to zero (Schmidt 1972) and there are absolutely normal
numbers whose discrepancy are nearly optimal (M. L. Levin 1979).

Question

Is there an absolutely normal number computable in polynomial time whose
discrepancy converges to zero at a nearly optimal rate?
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A logical consequence of the method

Theorem (Becher, Heiber and Slaman 2013)

1. The set of indices for computable real numbers which are absolutely
normal is Π0

3-complete.

2. The set of real numbers that are absolutely normal is Π0
3-complete.

We give an algorithm uniformly on the Π0
3 sentence. If the Π0

3 sentence is
true then real number constructed by the algorithm is absolutely normal.
Else it is absolutely abnormal.
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Different bases

Now, we look at the issue of whether normality in one base is related to
normality in another. We will see that except for one obvious condition,
there is no dependence whatsoever.
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Multiplicative dependence

Definition

For natural numbers s1 and s2 greater than 0, we say that s1 and s2 are
multiplicatively dependent if each is a rational power of the other.

Theorem (Maxfield 1953)

If s1 and s2 are multiplicatively dependent bases, then, for any real ξ, ξ is
normal to base s1 if and only if it is normal to base s2.

Hence, ξ is absolutely normal if and only if it is normal to some
representative of each multiplicative dependence equivalence class.
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Multiplicative independence

Let M be the set of minimal representatives of the multiplicative
dependence equivalence classes.

Theorem (Schmidt 1961/62)

Let R be a subset of M . There is a real ξ such that ξ is normal to every
base in R and not normal to any base in M \R.

Theorem (Becher and Slaman 2013)

Let R be a Π0
3 subset of M . There is a real ξ such that ξ is normal to every

base in R and not normal to any base in M \R. Furthermore, ξ is
uniformly computable in the Π0

3 formula which defines R.
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Logical consequences

Confirming a conjecture of Ditzen (1994):

Theorem (Becher and Slaman 2013)

1. The set of indices for computable real numbers which are normal some
base is Σ0

4-complete.

2. The set of real numbers that are normal to some base is Σ0
4-complete.

Theorem (Becher and Slaman 2013)

For any Π0
3 formula ϕ there is a computable real ξ such that for any base

r ∈M , ξ is normal to base r if and only if ϕ(ξ, r) is true.
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Uniform distributions
characterizing normality

Let {rnξ} denote the fractional part of rnξ.

Definition

A real number ξ is normal to base r iff the sequence ({rnξ} : 0 ≤ n <∞) is
uniformly distributed in [0, 1]: for every 0 ≤ u < v ≤ 1,

lim
n→∞

#{n : 1 ≤ n ≤ N,u ≤ {rnξ} < v}
N

= (v − u).
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Discrepancy

Definition

Let N be a positive integer. Let ξ1, . . . , ξN be real numbers in [0, 1]. The
(metric) discrepancy of ξ1, . . . , ξN is

D(ξ1, . . . , ξN ) = sup
0≤u<v≤1

∣∣∣#{n : 1 ≤ n ≤ N,u ≤ ξn < v}
N

− (v − u)
∣∣∣.

Definition

Let r be a base. A real number ξ is normal to base r if and only if
lim
N→∞

D({rjξ} : 0 ≤ j ≤ N) = 0.
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Convergence to normal

Are there dependencies between the discrepancy functions for different
bases?

Theorem (Becher and Slaman 2013)

Fix a base s. There is a computable function f : N→ Q monotonically
decreasing to 0 such that for any function g : N→ Q monotonically
decreasing to 0 there is an absolutely normal real number ξ whose
discrepancy for base s eventually dominates g and whose discrepancy for
each base multiplicatively independent to s is eventually dominated by f .
Furthermore, ξ is computable from g.
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Simple normality

Sharpening Schmidt’s theorem and addressing the issue raised by Brown,
Moran and Pearce (1985):

Theorem (Becher and Slaman 2013)

Let R be a subset of N which is closed under multiplicative dependence.
There is a real ξ such that ξ is normal to every base in R and not simply
normal to any base in N \R. Furthermore, such a real can be obtained
computably from R.
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Proofs

We turn to the ingredients needed to establish these results, which will
come from the related but diverse sources that have been brought to bear
on normality.

To put the above sentence in context, we recall an exchange between
characters in The Matrix, 1999:

Neo: What does that mean?

Cypher: It means, buckle your seat belt Dorothy, ’cause Kansas is
going bye-bye.
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Ingredients

Languages for Normality:

I Distributions of sequences modulo one

I Complex analysis and analytic number theory

I Combinatorics and counting occurrences of blocks of digits

Computable constructions:

I Give finitary versions of asymptotic estimates provided by these tools.

I Use the finitary bounds in modules for constructions.

– The typical module lowers discrepancy in bases r from a finite set
R and increases discrepancy in a multiplicatively independent
base s.
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Distributions of sequences

Effective version of D(ξ1, . . . , ξN ):

Definition

Let x1, . . . , xN be real numbers in [0, 1]. Let F be a family of semi-open
intervals [a, b) ⊂ [0, 1].

D(F, x1, . . . , xN ) = sup
I∈F

∣∣∣#{n : xn ∈ I}
N

− µ(I)
∣∣∣

Lemma

Suppose that ε is a real number strictly between 0 and 1. Let n = d3/εe and
let Fε be the family of semi-open intervals Ba = [a/n, (a+ 1)/n), where

0 ≤ a < n. For any sequence
−→
ξ and any N ,

D(Fε,
−→
ξ ) < (ε/3)2 =⇒ D(

−→
ξ ) < ε.
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The analytic perspective

Recall from Talk 1:

Theorem (Weyl’s Criterion)

A sequence (ξn : n ≥ 1) of real numbers is uniformly distributed modulo one
if and only if for every complex-valued, 1-periodic continuous function f we
have

lim
N→∞

1

N

N∑
j=1

f(ξn) =

∫ 1

0

f(x)dx

that is, if and only if for every non-zero integer t

lim
N→∞

1

N

N∑
j=1

e2πitξn = 0.
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The analytic perspective

Effective version, uses LeVeque’s Inequality:

Lemma

For any positive real ε there are a finite set of integers T and a positive real

δ such that for any
−→
ξ = (ξ1, . . . , ξN ), if for all t ∈ T

1

N2

∣∣∣ N∑
j=1

e2πi tξj
∣∣∣2 < δ

then D(
−→
ξ ) < ε. Furthermore, such T and δ can be computed from ε.
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Combinatorial discrepancy

Definition

Fix a base s. The combinatorial discrepancy of w ∈ L(s,N) (a base s word
of length N) for a block of size ` is

Dc(`, w, s) = max

{∣∣∣∣occ(w, u)

N
− 1

s`

∣∣∣∣ : u ∈ L(s, `)

}
.

Lemma

For any ε > 0, if ` is sufficiently large and N is sufficiently large relative to
`, then for all w ∈ L(s,N),

Dc(`, w, s) < ε =⇒ D({sjηw} : 0 ≤ j < N) <
√

18ε,

where ηw is the rational w as the digits in its base s expansion and the
sufficient conditions on ` and N are computable from ε.
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A version of the Cantor set

Definition

For s an integer greater than 2, let s̃ denote s− 1 if s is odd and s− 2 if s is
even.

Theorem (Schmidt 1960)

Consider the fractal subset of [0, 1) represented by L(s̃,N) in base s with its
uniform measure. Almost every element of this set is normal to every base
multiplicatively independent to s (and not normal to base s).
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A discrepancy floor

A real number in an s̃-fractal omits the last digit(s) in its base s expansion
and so is not be simply normal to base s.

Effective version:

Lemma

Let m be a positive integer and I an interval. Suppose that
−→
ξ is a sequence

of real numbers of length n ≥ d2m/µ(I)e and that for all m ≤ j ≤ n, ξj 6∈ I.

Then, D(I,
−→
ξ ) ≥ µ(I)/2.
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Conjoining finite random pieces

We have just observed that a random real from an s̃-fractal has prescribed
normality and non-normality properties.

I Previously, we constructed absolutely normal numbers by conjoining
longer and longer random finite strings.

I Here, we will do the same with random strings from s̃-fractals.

We will need translation invariant bounds on the lengths of the strings
needed to capture lowered discrepancy.

97/154



An analytic ceiling

Let 〈b; r〉 denote db/ log re (normalizing a base r exponent). We systematize
the sums in the effective Weyl Criterion:

Definition

Let ξ be a real number, R be a finite set of bases, T be a finite set of
non-zero integers, a be a non-negative integer, and u be a positive integer.

A(ξ,R, T, a, u) =
∑
t∈T

∑
r∈R

∣∣∣ 〈a+u;r〉∑
j=〈a;r〉+1

e2πi t rjξ
∣∣∣2.
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An analytic ceiling

Lemma (in the style of Schmidt)

Let R be a finite set of bases, T be a finite set of non-zero integers and s be
a base multiplicatively independent to R. There is a function c(R, s) with
positive values and a length u0 such that for all u ≥ u0 the following holds.
Suppose that η is s-adic with precision 〈a; s〉, and for v ∈ L(s̃, N) let ηv

denote the rational number η + s−〈a;s〉
N∑
j=1

vjs
−j.

#{ηv : A(ηv, R, T, s, a, u) ≤ u 2−c(R,s)} ≥ 1

2
s̃〈a+u;s〉−〈a;s〉.

Further, the function c and the length u0 are uniformly computable from R,
T and s.

That is, for large precision in base s, more than half of the s-adic rationals
in [η, η + s〈a;s〉) which omit the last digit(s) in their base s expansions yield
sub-quadratic values of A, which bounds their discrepancy in base r by the
effective Weyl Criterion.
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A combinatorial ceiling

Lemma

Let ε be a positive real, let s be a base and let ` be positive integer. There is
a k0 such that for every k ≥ k0 there is an N0 such that for all N ≥ N0,

#

{
w ∈ L(s̃k, N) : Dc(`, w, s) < ε

}
>

1

2
s̃k
N
,

With the natural identification of w as a sequence in base s. Further, the
values of k0 and N0 are uniformly computable.

Take k0 to be large enough so that almost all elements of sk0 have
combinatorial discrepancy less than ε for the appropriate block size. Then,
take N to be large enough so that almost all length N0 sequences from s̃k

are within ε of simply normal.
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Constructions

We construct ξ by rational approximation.

I At stage m+ 1, we are given ξm of the form

〈bm;sm〉∑
j=1

vj(s
km
m )−j , for

some v ∈ L(〈bm; skmm 〉, skmm ), with the intention that

ξ ∈ [ξm, ξm + (skmm )−〈bm;skmm 〉).

I We get ξm+1 ∈ [ξm, ξm + (skmm )−〈bm;skmm 〉) in the
∼

s
km+1
m+1 -fractal:

– For all r in a finite set Rm+1, the discrepancy of
({rnξ} : 〈bm; r〉 < n ≤ 〈bm+1; r〉) is small, i.e. below the analytic
ceiling appropriate for stage m+ 1.

– The discrepancy of ({snm+1ξ} : 〈bm; s
km+1
m+1 〉 < n ≤ 〈bm+1; s

km+1
m+1 〉)

is between the combinatorial ceiling and floor appropriate for
sm+1 and km+1.
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The Π0
3 theorem

Theorem (Becher and Slaman 2013)

Let R be a Π0
3 subset of M . There is a real ξ such that ξ is normal to every

base in R and not normal to any base in M \R. Furthermore, ξ is
uniformly computable in the Π0

3 formula which defines R.

I Consider each base s infinitely often.

I For s, let n be the previous stage when we considered s, take x to be
minimal such that there is a y less than ∀z < nϕ(x, y, z) and
∃z < c¬ϕ(x, y, z).

– Analytically lower the discrepancy ceiling for every base
multiplicatively independent to s which has already appeared in
the construction.

– Combinatorially raise the discrepancy floor for s to level εx and
keep the discrepancy ceiling below εx−1.
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Descriptive set theory

Theorem (Becher and Slaman 2013)

1. The set of indices for computable real numbers which are normal some
base is Σ0

4-complete.

2. The set of real numbers that are normal to some base is Σ0
4-complete.

I For (1), we exhibit a computable f , such that ∃xϕ is true iff the
computable real number named by f(∃wϕ) is normal to at least one
base.

– This follows from the Π0
3 theorem: f maps ∃wϕ to the index for

the computable ξ such that for all sw ∈M , ξ is normal to base sw
if and only if ϕ(w) is true.

I (2) follows by relativization.

Similarly, the set of real numbers that are normal to infinitely many
multiplicatively independent bases is Π0

5-complete
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A fixed point

Theorem (Becher and Slaman 2013)

For any Π0
3 formula ϕ there is a computable real ξ such that for any base

r ∈M , ξ is normal to base r if and only if ϕ(ξ, r) is true.

Let ϕ(X,x) be a Π0
3 formula.

I There is a computable f such that for every e, for all r ∈M ,

Ψe is total and ϕ(Ψe, r)⇐⇒ Ψf(e) is normal to base r.

Furthermore, for every e, Ψf(e) is total.

I By the Kleene Fixed Point Theorem, there is an e such that Ψe is
equal to Ψf(e). For this e, for all r ∈M ,
ϕ(Ψe, r) if and only if Ψe is normal to base r.

Then, ξ = Ψe satisfies the condition of the Theorem.
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Part 4

Normality and Polynomial Time
Martingales
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Base invariance of randomness notions

Algorithmic randomness notions are usually defined not for real numbers,
but for their digit representations with respect to a fixed base.

A randomness notion R is base invariant when

if X and Y are infinite sequences over different alphabets that
denote the same real, then X satisfies R iff Y satisfies R.
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Proofs of base invariance

I Martin-Löf randomness is base invariant

– Calude and Jürgensen (1994): using Martin-Löf tests
– Staiger (1999): using prefix Kolmogorov Complexity
– Hertling and Weihrauch (1998): topological approach

I Computable randomness is base invariant

– Brattka, Miller and Nies (2011): using a correspondence between
martingales and nondecreasing functions
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Polynomial time randomness is base invariant

Polynomial time randomness and normality
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Why polynomial time randomness?

I Applied side

– Cryptography rely on pseudo-random generators
– The quality of such pseudo-random sequences is measured by

comparing them to benchmark “truly random” sequences
– It suffices to take polynomial time random sequences.
– The same for most practical applications.

I Mathematical side

– an informal notion of randomness for sequences of bits has been
used in an essential way in the recent work of Green and Tao
showing that the set of primes has arbitrarily long arithmetic
progressions

– polynomial time randomness suffices
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Notation

I A rational in base r is a rational number with finite representation in
base r, i.e. a rational of the form z · r−n, for some z ∈ Z and n ∈ N.

– Ratr is the set of rationals in base r

I Σr = {0, . . . , r − 1}
I We represent q ∈ Ratr with the pair 〈σ, τ〉, where σ and τ are strings

in Σ∗r representing the integer and fractional part of q, respectively. If
p, q ∈ Ratr have both length n then

– 〈p, q〉 7→ p+ q ∈ DTIME(n)
– 〈p, q〉 7→ p · q ∈ DTIME(n · log2 n).

I The function t will be a time bound such that t(n) ≥ n.
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Martingales and randomness

Definition

Let r ∈ N, r > 1.

I A martingale in base r is a function M : Σ∗r → R≥0 such that

(∀σ ∈ Σ∗r) r ·M(σ) =
∑
b∈Σr

M(σab)

I M is a t(n)-martingale in base r if M is Rat
≥0
r -valued and

M ∈ DTIME(t(n)).

I We say that M succeeds on Z ∈ Σ∞r iff lim sup
n

M(Z �n) =∞.

I A sequence Z ∈ Σ∞r is t(n)-random in base r if no t(n)-martingale in
base r succeeds on Z. Z is polynomial time random in base r if Z is
nc-random for all c ≥ 1.
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Computable approximation of a real function

Definition

Let M : Σ∗r → R≥0. A computable function M̂ : Σ∗r × N→ Rat
≥0
r such that

|M̂(σ, i)−M(σ)| ≤ r−i is called a computable approximation of M .

I The complexity of M̂ on argument (σ, i) is measured in |σ|+ i.

I A t(n)-computable approximation is a computable approximation in
DTIME(t(n)).
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Real-valued to rational-valued martingales

Lemma

If M is a martingale in base r with a t(n)-computable approximation then
there is an n · t(n)-martingale N in base r such that N ≥M .
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Savings property
If M is a martingale in base r then

M(σ) ≤M(∅) · r|σ|.

We say that a martingale M in base r has the savings property if there is
c > 0 such that for all τ, σ ∈ Σ∗r ,

τ � σ ⇒M(σ)−M(τ) ≤ c.

Proposition

Suppose M is a martingale in base r with the savings property via c. Then

(∀σ ∈ Σ∗r) M(σ) ≤ (r − 1) · c · |σ|+M(∅).

Lemma (Time bounded savings property)

For each t(n)-martingale L in base r there is an n · t(n)-martingale M in
base r such that

I M has the savings property and

I M succeeds on all the sequences that L succeeds on.
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Savings property
Given a t(n)-martingale L in base r, let M = G+ E, where

I G(σ) is the balance of the savings account at σ

I E(σ) is the balance of the checking account at σ

Example

r = 3

2

1

E

X �n

G

X �n
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Savings property
Wlog, assume L(∅) ≤ 1.
Let E(∅) = L(∅), G(∅) = 0. For each b ∈ Σr and σ ∈ Σ∗r , let

αb(σ) = L(σab) · E(σ)/L(σ)

E(σab) =

{
αb(σ)/r if αb(σ) > r

αb(σ) otherwise

G(σab) =

{
G(σ) + αb(σ) · (r − 1)/r if αb(σ) > r

G(σ) otherwise

Define M = E +G.

I E and G are Rat
≥0
r -valued, so M is Rat

≥0
r -valued

I M(σab) = E(σab) +G(σab) = αb(σ) +G(σ)

I L is a martingale ⇒M is a martingale

I τ � σ ⇒ G(τ) ≥ G(σ)

I τ � σ ⇒M(σ)−M(τ) ≤ E(σ)− E(τ) ≤ E(σ) ≤ r
I lim sup

n
L(X �n) =∞⇒ lim

n
G(X �n) =∞
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Savings property

For σ ∈ Σnr , let Iσ be the maximal sequence

−1 = i0 < i1 < · · · < ikσ < ikσ+1 = n

such that

(∀p = 1, . . . , kσ) L(σ �ip+1) > rp

(∀p ∈ {0, . . . , kσ})(∀m ∈ {ip + 2, . . . ip+1}) L(σ �m) ≤ rp.

Fact

E(σ) = L(σ)/rkσ and G(σ) = (r − 1) ·
kσ∑
p=1

L(σ �ip+1)/rp.

I Iσ ∈ DTIME(n · t(n))

I E(σ), G(σ) ∈ DTIME(n · t(n))

I M is an n · t(n)-martingale in base r.
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More notation

I If σ ∈ Σ∗r then 〈0.σ〉r represents the rational in [0, 1] whose
representation in base r is 0.σ, i.e.

〈0.σ〉r =

|σ|−1∑
i=0

σ(i) · r−i−1.

I If Z ∈ Σ∞r , then 〈0.Z〉r represents the real in [0, 1] whose expansion in
base r is Z, i.e.

〈0.Z〉r =
∑
i∈N

Z(i) · r−i−1.
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Base conversion

We want a functional Γ : Σ∞r × N→ Σs which converts from base r to
base s:

for all X ∈ Σ∞r , Y ∈ Σ∞s

ΓX is total and ΓX = Y ⇒ 〈0.X〉r = 〈0.Y 〉s

Example

r = 2 0 1r = 2 0.0 0.1 1.0

0.0

r = 2 0.00 0.01 0.10 0.11 1.00

0.0

r = 2 0.00 0.01 0.10 0.11 1.00

0.01

r = 2 0.000 0.001 0.010 0.011 0.100 0.101 0.110 0.111 1.000

0.010

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.0

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.02

r = 3 0 1

0.021
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Base conversion

We want a functional Γ : Σ∞r × N→ Σs which converts from base r to
base s:

for all X ∈ Σ∞r , Y ∈ Σ∞s

ΓX is total and ΓX = Y ⇒ 〈0.X〉r = 〈0.Y 〉s
Example
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Base conversion is not honest!

Example

X = . . . Y = . . .

r = 2 0.0 0.1 1.0

r = 3 0 1r = 3 0.0 0.1 0.2 1.0

0.1

r = 3 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 1.22 1.00

0.11

r = 3 0 1

0.111

r = 3 0 1

0.1111

So there is no such Γ.
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Base conversion with small error

For τ ∈ Σ∗s and i ∈ N, let

I bc−s to r(τ, i) be the string σ in Σ∗r of minimal length such that

0 ≤ 〈0.τ〉s − 〈0.σ〉r < r−i,

I bc+
s to r(τ, i) be the string σ in Σ∗r of minimal length such that

0 ≤ 〈0.σ〉r − 〈0.τ〉s < r−i,

Example

s = 3 0.0 0.1 0.2 1.0

〈0.τ〉s

r = 2 0 10.10.01 0.11

01 = bc−s to r(τ, i)

0.001 0.011 0.101 0.111

bc+
s to r(τ, i) = 011

<r
−i
<r
−i
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Base conversion with small error

Approximation of a rational in base s with a rational in base r

input : τ ∈ Σ∗s and i ∈ N
output: σ ∈ Σ∗r , σ = bc−s to r(τ, i)

σ := ∅
while 〈0.τ〉s − 〈0.σ〉r > r−i do

Find the largest x ∈ Σr such that 〈0.σax〉r ≤ 〈0.τ〉s
σ := σax

The time complexity of bc+
s to r or bc−s to r on argument (τ, i) is measured in

n = |τ |+ i.

Theorem

bc−s to r(τ, i), bc
+
s to r(τ, i) ∈ DTIME(n2).
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Martingales and analysis - Brattka, Miller, Nies 2011

Each martingale M in base r induces a measure µM on the algebra of
clopen sets defined by

µM ([σ]) =
M(σ)

r|σ|
, for σ ∈ Σ∗r .

Via Carathéodory’s extension theorem this measure can be extended to a
Borel measure on Cantor space, and if µM is atomless, we can also think of
it as a Borel measure on [0, 1]: µM is determined by

µM (Irσ) =
M(σ)

r|σ|
,

where for any σ ∈ Σ∗r we define

Irσ =
[
〈0.σ〉r, 〈0.σ〉r + r−|σ|

]
.
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Martingales and analysis - Brattka, Miller, Nies 2011

We say that a martingale is atomless if µM is atomless.

Fact

If M has the savings property then M is atomless.

The cumulative distribution function associated with µM , notated
cdfM (x) : [0, 1]→ [0, 1], is defined by:

cdfM (x) = µM ([0, x)).

Fact

If M is atomless then cdfM is nondecreasing and continuous.
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Martingales and analysis - Brattka, Miller, Nies 2011

If f is a nondecreasing function with domain containing [0, 1] ∩Q and s is a
base then martsf : Σ∗s → R is defined as follows:

martsf (τ) =
f(〈0.τ〉s + s−|τ |)− f(〈0.τ〉s)

s−|τ |
.

Proposition (BMN 2011)

martsf is a martingale in base s.
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Martingales and analysis - Brattka, Miller, Nies 2011

They established a correspondence between atomless martingales and
nondecreasing continuous functions.

Proposition (BMN 2011)

Let s be a base and let f be a nondecreasing continuous function on [0, 1]
such that f(0) = 0. Then cdfmarts

f
= f .

Theorem (BMN 2011)

Suppose M is a martingale in base r with the savings property, and z ∈ [0, 1]
is not a rational in base r. Then M succeeds on the r-ary expansion of z iff

lim inf
h→0

cdfM (z + h)− cdfM (z)

h
=∞.
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Martingales and analysis - Brattka, Miller, Nies 2011

Lemma (BMN 2011)

Suppose M is a martingale in base r with the savings property. Let
N : Σ∗s → R≥0 be the following martingale in base s:

N(τ) = martscdfM (τ) =
cdfM (〈0.τ〉s + s−|τ |)− cdfM (〈0.τ〉s)

s−|τ |
.

Suppose X ∈ Σ∞r and Y ∈ Σ∞s are such that 〈0.X〉r /∈ Ratr, 〈0.Y 〉s /∈ Rats
and 〈0.X〉r = 〈0.Y 〉s. If M succeeds on X then N succeeds on Y .

Theorem (BMN 2011)

Computable randomness is base invariant.
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An ‘almost Lipschitz’ condition
Proposition

Let M be a martingale in base r with the savings property. Then there are
constants k, ε > 0 such that for every x, y ∈ [0, 1], if y − x ≤ ε then

cdfM (y)− cdfM (x) ≤ −k · (y − x) · log(y − x).

Proof.

I Let n ∈ N be the least such that r−n < y − x
I Let p be the least of the form i · r−n such that x ≤ p+ r−n

I Let q be the minimum between 1 and (i+ r + 1) · r−n

I y ≤ q, and hence [x, y] ⊆ [p, q]

cdfM (y)− cdfM (x) ≤ cdfM (q)− cdfM (p)

= µM [p, q]

=

min (r,rn−i−1)∑
j=0

µM ([(i+ j) · r−n, (i+ j + 1) · r−n])

≤ (r + 1) · r−n · (c · n+M(∅)).

I r−(n−1) ≥ y − x⇒ n ≤ 1− logr(y − x)

133/154



An ‘almost Lipschitz’ condition
Proposition

Let M be a martingale in base r with the savings property. Then there are
constants k, ε > 0 such that for every x, y ∈ [0, 1], if y − x ≤ ε then

cdfM (y)− cdfM (x) ≤ −k · (y − x) · log(y − x).

Proof.

I Let n ∈ N be the least such that r−n < y − x
I Let p be the least of the form i · r−n such that x ≤ p+ r−n

I Let q be the minimum between 1 and (i+ r + 1) · r−n

I y ≤ q, and hence [x, y] ⊆ [p, q]

cdfM (y)− cdfM (x) ≤ cdfM (q)− cdfM (p)

= µM [p, q]

=

min (r,rn−i−1)∑
j=0

µM ([(i+ j) · r−n, (i+ j + 1) · r−n])

≤ (r + 1) · r−n · (c · n+M(∅)).

I r−(n−1) ≥ y − x⇒ n ≤ 1− logr(y − x)
133/154



Computing cdfM
Lemma

Let M be a t(n)-martingale in base r with the savings property. Then cdfM
restricted to rationals in base r is a rational in base r. Also, for σ ∈ Σnr ,
cdfM (〈0.σ〉r) ∈ DTIME(n · t(n)) (output represented in base r).

Proof.

Greedy computation of cdfM (〈0.σ〉r):

cdfM (〈0.σ〉r) = µM ([0, 〈0.σ〉r])

=

n−1∑
i=0

σ(i)−1∑
b=0

µM (Ir(σ�i)ab)

=

n−1∑
i=0

σ(i)−1∑
b=0

M((σ �i)ab)
ri+1

cdfM is computable in time O(n · t(n)).

Example. σ = 212, r = 3

∅

2

21

212211210

2
20

1
10

2

M(0)

r

M(1)

r

M(20)

r2

M(210)

r3

M(211)

r3
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Polynomial time randomness is base invariant

For M a martingale in base r and N a martingale in base s, we say that N
is an r to s base conversion of M in case the following holds: if M succeeds
on X ∈ Σ∞r , and Y ∈ Σ∞s is such that 〈0.X〉r = 〈0.Y 〉s, then N succeeds
on Y .

Lemma (Figueira, Nies 2013)

For any t(n)-martingale M in base r with the savings property there is a
(real-valued) martingale N in base s such that:

I N is an r to s base conversion of M , and

I N has an n · t(n)-computable approximation.
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Polynomial time randomness is base invariant

Theorem (Figueira, Nies 2013)

Let k ≥ 1. If Y ∈ Σ∞s is nk+3-random in base s and X ∈ Σ∞r is such that
〈0.X〉r = 〈0.Y 〉s then X is nk-random in base r. In particular, polynomial
time randomness is base invariant.

Proof.

I Suppose that X ∈ Σ∞r is not nk-random in base r

I Let M be an nk-martingale in base r which succeeds on X

I There is a nk+1-martingale M̃ in base r with the savings property such
that M̃ succeeds on X

I By the lemma there is a (real-valued) martingale N in base s with an

nk+2-computable approximation, which is a base conversion of M̃

– In particular N succeeds on Y .

I There is an nk+3-martingale Ñ ≥ N in base s
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136/154



Polynomial time randomness is base invariant

Theorem (Figueira, Nies 2013)

Let k ≥ 1. If Y ∈ Σ∞s is nk+3-random in base s and X ∈ Σ∞r is such that
〈0.X〉r = 〈0.Y 〉s then X is nk-random in base r. In particular, polynomial
time randomness is base invariant.

Proof.

I Suppose that X ∈ Σ∞r is not nk-random in base r

I Let M be an nk-martingale in base r which succeeds on X

I There is a nk+1-martingale M̃ in base r with the savings property such
that M̃ succeeds on X

I By the lemma there is a (real-valued) martingale N in base s with an

nk+2-computable approximation, which is a base conversion of M̃

– In particular N succeeds on Y .

I There is an nk+3-martingale Ñ ≥ N in base s
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Proof of the lemma
Restatement. Given M an nk-martingale with the savings property in base r.
Get an nk+1-martingale N in base s such that

M succeeds on a real ⇒ N succeeds on it

Define N(τ) =
cdfM (q)− cdfM (p)

s−|τ |
, p = 〈0.τ〉s, q = 〈0.τ〉s + s−|τ |

Approximate p, q ∈ Rats with p̃, q̃ ∈ Ratr resp.
Approximate cdfM (q)− cdfM (p) with cdfM (q̃)− cdfM (p̃)

∈ Ratr

cdfM (x)

s = 3 0.0 0.1 0.2 1.0

τ

p q

R

R

r = 2 0.000 0.001 0.010 0.011 0.100 0.101 0.110 0.111 1.000

p̃ q̃

Ratr

Ratr

small small

small

small

almost Lipschitz
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Proof of the lemma

Given an nk-martingale M in base r with the savings property, construct a
computable approximation of

N(τ) =
cdfM (q)− cdfM (p)

s−|τ |
, p = 〈0.τ〉s, q = 〈0.τ〉s + s−|τ |

Computable approximation of N (idea)

Step 1. Approximate p with p̃ and q with q̃ O(n2)

Step 2. Compute cdfM (q̃)− cdfM (p̃) O(nk+1)

Step 3. Approximate cdfM (q̃)− cdfM (p̃) with
rationals in base s

O(n2)

In total, the computable approximation for N is O(nk+1)
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Outline

Notation and definitions

Resource bounded versions of known results about martingales

Base conversion

Summary of Brattka, Miller, Nies 2011

Polynomial time randomness is base invariant

Polynomial time randomness and normality
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How much randomness is needed to be normal?

Schnorr (1971) showed that if Z ∈ Σ∞2 is n2-random in base 2 then Z is
simply normal in base 2. Then he concluded that n2-randomness implies
normality in base 2.

We adapt Wang’s (1996) version of Schnorr’s proof that all n2-random
sequences in base 2 are simply normal in base 2

I normality instead of simply normality

I any base

I better complexity

Theorem (Figueira, Nies 2013)

If Z is n · log2 n-random in base r then Z is normal in base r.

140/154



How much randomness is needed to be normal?

Schnorr (1971) showed that if Z ∈ Σ∞2 is n2-random in base 2 then Z is
simply normal in base 2. Then he concluded that n2-randomness implies
normality in base 2.
We adapt Wang’s (1996) version of Schnorr’s proof that all n2-random
sequences in base 2 are simply normal in base 2

I normality instead of simply normality

I any base

I better complexity

Theorem (Figueira, Nies 2013)

If Z is n · log2 n-random in base r then Z is normal in base r.

140/154



n · log2 n-randomness implies normality
Choose the minimal string αac that violates normality, and choose a small δ

Suppose Z is not normal in base r.
Let c ∈ Σr and α ∈ Σ∗r such that αac is a string of minimal length for
which it is not the case that lim

n→∞
occαac(Z �n)/n = r−|α|−1. Define

occαac̄(σ) =
∑

d∈Σr\{c}

occαad(σ).

By the choice of α, there is ε > 0 such that one of the following is true:

(∃∞n)
occαac(Z �n)

n
> r−|α|−1 + ε (1)

(∃∞n)
occαac(Z �n)

n
< r−|α|−1 − rε. (2)

Wlog we assume (1) holds. Let δ be so that δ/(r − 1) ∈ Rat
≥0
r and

lim sup
n

occαac(Z �n)

n
>

1 + δ

r|α|+1
.
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n · log2 n-randomness implies normality
Define the martingale L in terms of δ and αac

Let

p = 1 + δ and q = 1− δ

r − 1

Note that p, q ∈ Rat
≥0
r . Define L : Σ∗r → Rat

≥0
r as follows:

L(λ) = 1

L(σab) =


L(σ) if α is not a suffix of σ

p · L(σ) if α is a suffix of σ, and b = c

q · L(σ) if α is a suffix of σ, and b 6= c

For all σ ∈ Σ∗r :
L(σ) = poccαac

(σ) · qoccαa c̄
(σ).

Fact

L is a Rat
≥0
r -valued martingale in base r.
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n · log2 n-randomness implies normality
L succeeds

Fact

L succeeds on Z.

Proof.

Since occαac̄(σ) ≤ occα(σ)− occαac(σ) and log q is negative,

log L(Z �n) ≥ occαac(Z �n) · log p+
[
occα(Z �n)− occαac(Z �n)

]
· log q

= occα(Z �n) · log q + occαac(Z �n) · (log p− log q).

By taking the lim sup we obtain lim sup
n

log L(Z �n)

n
≥

lim sup
n

occα(Z �n)

n
· log q +

occαac(Z �n)

n
· (log p− log q)

=
log q

r|α|
+ (log p− log q) · lim sup

n

occαac(Z �n)

n
(minimality of αac)

>
log q

r|α|
+ (log p− log q) ·

1 + δ

r|α|+1
(by the choice of δ)

=
1

r|α|+1
·
(

(1 + δ) · log(1 + δ) + (r − 1− δ) · log(1−
δ

r − 1
)

)
= `

> 0

Fact: (∀ε ∈ (0, 1))(∀x ≥ 1) (1 + ε) · log(1 + ε) + (x− ε) · log(1− ε/x) > 0.
(∃∞n) log L(Z �n)/n > `, and so (∃∞n) L(Z �n) > 2`·n.
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n · log2 n-randomness implies normality
Complexity of L

Exponentiation by repeated squaring

Fix x ∈ Ratr. Compute m 7→ xm.

xm =

{
(x2)

m
2 if m is even

x · (x2)
m−1

2 if m is odd

O(logn) recursive calls. In each call, a fixed number of + and ·
m 7→ xm ∈ DTIME(m · log2 m).

Fact

L is computable in time O(n · log2 n).

Proof.

I Recall L(σ) = poccαac
(σ) · qoccαa c̄

(σ). Let σ of length n.

I occαac(σ) and occαc̄(σ) can be computed in linear time

I poccαac
(σ) and qoccαa c̄

(σ) can be computed in time n · log2 n

I The size of poccαac
(σ) and qoccαa c̄

(σ) are O(n)

I Multiplying poccαac
(σ) and qoccαa c̄

(σ) can be done in O(n · logn2)
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O(logn) recursive calls. In each call, a fixed number of + and ·
m 7→ xm ∈ DTIME(m · log2 m).

Fact

L is computable in time O(n · log2 n).

Proof.

I Recall L(σ) = poccαac
(σ) · qoccαa c̄

(σ). Let σ of length n.

I occαac(σ) and occαc̄(σ) can be computed in linear time

I poccαac
(σ) and qoccαa c̄

(σ) can be computed in time n · log2 n

I The size of poccαac
(σ) and qoccαa c̄

(σ) are O(n)

I Multiplying poccαac
(σ) and qoccαa c̄

(σ) can be done in O(n · logn2) 144/154



Supermartingales

Definition

A supermartingale in base r is a function M : Σ∗r → R≥0 such that

(∀σ ∈ Σ∗r) r ·M(σ) ≥
∑
b∈Σr

M(σab)

Lemma

If M is a martingale in base r with a t(n)-computable approximation then
there is a t(n)-supermartingale N in base r such that N ≥M .

Lemma

For every t(n)-supermartingale M in base r there is an n · t(n)-martingale
N in base r such that N ≥M .
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How much randomness is needed to be abs. normal?
Proposition (Figueira, Nies 2013)

If Z ∈ Σ∞r is not normal in base r then there is an n2-martingale with the
savings property that succeeds on Z.

Corollary

Suppose Z ∈ Σ∞r is such that no n3-supermartingale in base r succeeds on
Z. Then z = 〈0.Z〉r is absolutely normal. In particular, if Z is n4-random
in base r then z is absolutely normal.

Proof.

I Suppose Y ∈ Σ∞s s.t. z = 〈0.Y 〉s and Y is not normal in base s

I There is an n2-martingale M in base s with the savings property that
succeeds on Y

I There is a martingale in base r with an n3-computable approximation
which succeeds on Z

I There is an n3-supermartingale in base r which succeeds on Z

I There is an n4-martingale in base r which succeeds on Z
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How to construct a t(n)-random sequence Z in 3 steps
1. Enumerate in (Gi)i∈N all t(n)-supermartingales in base r with initial capital 1

We may view Φi as a partial function Σ∗r → Rat
≥0
r .

Fix a time constructible nondecreasing and unbounded function h.
Let

Φ̃i(σ) =

{
Φi(σ)[h(|i|) · t(|σ|)] if Φi(σ)[h(|i|) · t(|σ|)] ↓
0 otherwise

Define G : N× Σ∗r → Rat
≥0
r as follows:

G(i, σ) =


1 if σ = ∅
Φ̃i(σ) if σ = τab for b ∈ Σr, and

∑
j∈Σr

Φ̃i(τ
aj) ≤ r ·G(i, τ)

0 otherwise

Let Gi(σ) = G(i, σ), and p(x) = x · log x.

Fact

I Gi is a Rat
≥
r -valued supermartingale in base r with Gi(∅) = 1

I G(i, σ) is computed in time O(|σ| · p(t′(|σ|)), for t′ ≈ t
I Suppose F is a t(n)-supermartingale such that F (∅) = 1. Then there is
e such that F = Ge.
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How to construct a t(n)-random sequence Z in 3 steps
2. Define a Ratr-valued supermartingale H as a combination of all (Gi)i∈N

Define Ĝi : Σ∗r → R≥0 by

Ĝi(σ) =

{
r−i − r−(i+1) if |σ| ≤ ri

r−2ri ·Gi(σ) otherwise

Fact

Ĝi is a supermartingale in base r.

Define
H(σ) =

∑
i

Ĝi(σ).

If |σ| ≤ r0 then H(σ) = 1, and if rj < |σ| ≤ rj+1 then

H(σ) = r−(j+1) +
∑
i≤j

r−2ri ·Gi(σ). (3)

Fact

I H is a supermartingale, and by (3), it is Rat
≥0
r -valued.

I If σ ∈ Σnr then H(σ) ∈ DTIME(n · logn · p(t′(n)).

I if F is a t(n)-supermartingale in base r then there are c, d > 0 such
that c+ d · F ≤ H.

148/154



How to construct a t(n)-random sequence Z in 3 steps
2. Define a Ratr-valued supermartingale H as a combination of all (Gi)i∈N
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How to construct a t(n)-random sequence Z in 3 steps
3. Compute the leftmost non-ascending path given by H

If Z ∈ Σ∞r is such that lim sup
n

H(Z �n) <∞ then no t(n)-supermartingale

in base r succeeds on Z.

Z =
⋂
n

[ζn] = Leftmost non-ascending path given by H

input : n ∈ N
output: ζn ∈ Σnr

ζn := ∅
for i = 1 to n do

Find least b ∈ Σr such that H(ζn) ≥ H(ζn
ab)

ζn := ζn
ab

The complexity on input n is measured in n.

Fact

n 7→ Z �n∈ DTIME(n2 · logn · p(t′(n)).
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An absolutely normal real in polynomial time
Proposition

There is Z ∈ Σ∞r computable in time O(nk+2 · log3 n) such that no
nk-supermartingale in base r succeeds on Z. In particular Z is nk-random.

Proof.

The construction we have just seen with t(n) = nk and h(n) = n.

Corollary

There is Z ∈ Σ∞r which is computable in time O(n5 · log3 n) such that
〈0.Z〉r is absolutely normal.

Proof.

I There is Z ∈ Σ∞r which is computable in time O(n5 · log3 n) for which
no n3-supermartingale in base r succeeds on.

I If no n3-supermartingale in base r succeeds on it then it is absolutely
normal.
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Open questions
For many of our results it may be possibly to improve time bounds.

We showed a method for approximating rationals in a given base with
rationals in another.

Question

Is it possible to compute bc−s,r(σ) in less than quadratic time?

We showed that nk+3-randomness in a given base implies nk-randomness in
another base.

Question

Can we lower the ‘+3’, or even show that nk-randomness is base invariant
(for large enough k)?

We showed that n · log2 n-randomness implies normality.

Question

Does linear-randomness in base r imply simple normality in base r, or even
normality in base r?
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Open questions

A sequence (yj)j∈N of reals in [0, 1] is uniformly distributed if for each
interval [u, v] ⊆ [0, 1], the proportion of i < N with yj ∈ [u, v] tends to v− u
as N →∞, that is:

lim
N→∞

|{j < N | yj ∈ [u, v]}|
N

= v − u.

Definition

Let r be a rational > 1. We say that x ∈ [0, 1] is normal in base r if the
sequence ({x · rn})n∈N is uniformly distributed in [0, 1].

For every r the set of reals normal for r has measure 1.
A real x is absolutely normal if it is normal in all integer bases > 1.

Definition

x is rationally normal if it is normal in all rational bases > 1.
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Open questions

Proposition (Special case of Brown, Moran and Pearce 1986)

Rationally normal is stronger than absolutely normal.

Sets A,B ⊆ (1,∞) are called multiplicatively independent (m.i.) if

¬(∃a ∈ A, b ∈ B, r, s ∈ N) ar = bs

For instance, A = N \ {0, 1} and B = {3/2} are m.i. BMP 1986:

Given m.i. sets of algebraic numbers, every real is the sum of four
numbers that are normal for all bases in A, but none in B.

In particular, there are uncountably many reals that are absolutely normal,
but not normal for the base 3/2.

Conjecture

Every polynomial time random real is rationally normal.

In fact for some k, nk-random should imply rationally normal.

Question

What is the smallest such k?
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Fin

Coloŕın colorado, este cuento se ha
acabado
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