
Martin-Löf Random Brownian Motion

Kelty Allen

University of California, Berkeley

Work is joint with Laurent Bienvenu and Ted Slaman

16 May 2013
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Figure: Image from “Brownian Motion” by Mörters and Peres
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Why Martin-Löf random Brownian Motion?

Interesting random object

More insight into “almost surely” results in classical theory of
Brownian motion

More insight into power of algorithmic randomness

Recursion theoretic proofs of classical results
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Introduction

Asarin and Prokovsky (1986): Complex Oscillations

Willem Fouché (2000’s): Strong foundations; proved Complex
Oscillations are the Martin-Löf random sample paths of Brownian
motion

Laurent Bienvenu (2012): Use layerwise computability framework to
do further work
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Technical Background
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Classical Probability Theory

Definition (Classical Brownian Motion)

A collection of functions indexed by time (“real-valued stochastic
process”), {B(t) : t ∈ I}, is called standard Brownian motion iff:

Initial Value: B(0) = 0,

Distribution: For all t ≥ 0 and h > 0, the increments B(t + h)−B(t)
are normally distributed with expectation 0 and variance h,

Independent Increments: For all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the
increments B(tn)− B(tn−1),B(tn−1)− B(tn−2), . . .B(t2)− B(t1) are
independent random variables,

Continuity: Almost surely, the function t 7→ B(t) is continuous.

These requirements induce a measure on a function space, called Wiener
Measure. We will talk about Martin-Löf randomness with respect to
Wiener Measure on C [0, 1].
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A little more technical detail

In particular, if A1, ...,An are Borel sets in R, then the probability of the
finitary event [B(tj) ∈ Aj for 1 ≤ j ≤ n] is given by

P[B(tj) ∈ Aj for 1 ≤ j ≤ n] =∫
A1

...

∫
An

∏ 1√
2π(tj − tj−1)

e
−(yj−yj−1)

2

2(tj−tj−1) dyn...dy1
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Franklin-Wiener Series Construction of Brownian Motion

We can construct Brownian motion from elements of Cantor space in the
following way:
Each function will be represented by an infinite series of the form

B(t) = ξ0∆0(t) + ξ1∆1(t) +
∑
i

∑
j<2i

ξi ,j∆i ,j(t)

where the ξi ,j are real-number weights and the ∆i ,j(t) are sawtooth
functions.
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Franklin-Wiener Series Construction

Using one binary real α, we split into infinitely many binary reals
β0, β1, {βi ,j}i∈ω, j<2i

We use a Gaussian distribution to map 2ω → [−∞,∞] and let
ξi ,j = g(βi ,j)

β =
1√
2π

∫ g(β)

−∞
e−t

2/2dt

See picture: Sawtooth functions ∆0,∆1,∆i ,j
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Franklin-Wiener Series Construction

B(t) = ξ0∆0(t) + ξ1∆1(t) +
∑
i

∑
j<2i

ξi ,j∆i ,j(t)

Theorem (Classical Probability Theory - due to Kahane?)

The Franklin-Wiener series representation converges almost surely to a
continuous function in C [0, 1], and the resulting class of functions is
Brownian Motion.

Theorem (Fouché)

The Franklin-Wiener series representation converges to a continuous
function for every α ∈ 2ω that is Martin-Löf random.
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Layerwise computability

Definition (Layerwise Computable)

For Un a universal Martin-Löf test on a space (X , µ), let Kn := X\Un. A
function T : (X , µ)→ Y is layerwise computable if it is computable on
every Kn, uniformly on n.

Theorem (Hoyrup, Rojas)

If T : (X , µ)→ Y is a layerwise computable map from a computable
probability space to a computable metric space, then:

The push-forward measure ν := µ ◦ T−1 ∈M(Y ) is computable.

T preserves Martin-Löf randomness; i.e. T (MLµ) ⊂ MLν . Moreover,
there is a constant c (computable from a description of T ) such that
T (Kn) ⊂ K ′n+c for all n, where K ′n+c is the canonical layering of
(Y , ν).
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Layerwise computability and MLR Brownian motion

Theorem (Fouché)

The Martin-Löf random paths of Brownian Motion are the image of
Martin-Löf random reals in Cantor space under the Franklin-Wiener
construction of Brownian Motion.

Theorem (Fouché)

Let B(t) be the Martin-Löf random Brownian motion constructed via the
Franklin-Wiener series from a Martin-Löf random real α. There is a
piecewise linear function pm, constructed from the first m bits of α, such
that

||B − pm|| <
log m√

m

for all m > Mα. Moreover, Mα is layerwise computable from α
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Useful Properties of Brownian Motion
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Classical Modulus of Continuity Results

Theorem (Levy)

For every constant c <
√

2, almost surely, for every ε > 0 there exist
0 < h < ε and t ∈ [0, 1− h] with

|B(t + h)− B(t)| ≥ c
√

h log(1/h)

Theorem (Levy)

For every constant C >
√

2, almost surely, for every sufficiently small
h > 0 and all 0 < t < 1− h,

|B(t + h)− B(t)| ≤ C
√

h log(1/h)
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Modulus of Continuity of MLR Brownian motion

Theorem (Sharpening a result of Fouché)

Let B(t) be a Martin-Löf random Brownian motion. Then for all c <
√

2,
for all h0, there exists h < h0 such that for all t,

|B(t + h)− B(t)| ≥ c
√

h log(1/h)

Theorem (Sharpening a result of Fouché)

Let B(t) be a Martin-Löf random Brownian motion. Then for all C >
√

2,
there is an h0, such that for all h < h0 and all t,

|B(t + h)− B(t)| ≤ C
√

h log(1/h)

and moreover, h0 is layerwise computable from B.
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Zeros of Brownian Motion
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Zeros of Brownian motion

Definition

For a path B(t) of one-dimensional Brownian motion, define
ZB = {t ≥ 0 : B(t) = 0} to be the zero set of B

Theorem (Classical Probability Theory)

Almost surely, ZB is a closed set with no isolated points.

Theorem

For B(t) a one-dimensional Martin-Löf random Brownian motion, ZB is a
closed set with no isolated points.
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Characterize zeros of Martin-Löf Brownian motion

Necessary:

Theorem

If α ∈ (0, 1] has effective Hausdorff dimension < 1/2, α 6∈ ZB for any
Martin-Löf random Brownian motion B.

Sufficient:

Theorem

If α ∈ (0, 1] has effective Hausdorff dimension > 1/2, then there exists a
Martin-Löf random Brownian motion B such that α ∈ ZB .

Some points with effective dimension 1/2 are zeros, and some are not.
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Theorem

For B a Martin-Löf random Brownian path, the first zero of B after any
given computable real q is layerwise computable in B.

Proof:

Lemma (1)

It is layerwise computable in B(t) to see that there is a zero in a given
interval [l , r ] with computable endpoints.

Lemma (2)

It is layerwise computable in B(t) to see that there is not a zero in a given
interval [l , r ] with computable endpoints.

Kelty Allen (Berkeley) Martin-Löf Random Brownian Motion 16 May 2013 19 / 30



Proof of Lemma 1 - Demonstrating existence of a zero

Main Idea: We can see, layerwise computably in B, positive and
negative values in [l , r ].

(Fouché): The local minima (and maxima) of Martin-Löf random
Brownian motion have non-recursive values.

Thus 0 is never a local minimum or maximum

So if a zero exists in [l , r ] it is accompanied by intervals, arbitrarily
close on either side, where B(t) > 0 and B(t) < 0.
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Proof of Lemma 1 - Demonstrating existence of a zero

How do we determine, layerwise computably, if B(s) > 0 or B(s) < 0
for s computable?

Recall (Fouché): From the first m bits of α ∈ 2ω, we can compute a
piecewise linear function pm(t) such that

‖B(t)− pm(t)‖ ≤ log m√
m

for all m > Mα

For a fixed s, we compute pm(s) until ‖pm(s)‖ ≥ logm√
m

and m > Mα,

which must eventually happen as B(s) 6= 0 and logm√
m
→ 0

By running this computation on any dense set of computable reals,
we must eventually observe positive and negative values for pm(s)
which are far enough from 0 that we know B(t) has crossed 0 in [l , r ].
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Proof of Lemma 2 - Seeing that there is not a zero

Main Idea: We want to show, layerwise computably, that B(t) is
bounded away from 0 on [l , r ]

Recall: ∀c >
√

2 ∃h0 (layerwise computable in B) s.t. ∀h < h0

‖B(t + h)− B(t)‖ < c
√

h log 1/h

So by sampling B(t) at intervals of size 1/2ni , ni increasing and
1/2n0 < h0, we eventually must find h∗ = 1/2ni such that

B(t) > 2
√

h∗ log 1/h∗

for all t ∈ {l + k/2n}k<2n in [l , r ].
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Completion of the proof

Find the first zero of a Brownian path B(t) after a given computable
real q

Divide interval [q, 1] into intervals of size 1/2n0 for a suitable n0

Run algorithms from lemmas to find the closest interval [l0, r0] to q
that contains a zero.

Divide [l0, r0] into intervals of size 1/2n1 and repeat

Layerwise computably in B, we find sequences {li} and {ri} which
converge to the first zero after q from the left and from the right.

Note: We could run a similar argument for crossing any computable
real value after a computable time.
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An application to the Dirichlet Problem
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Brownian motion in other spaces

Brownian motion can be defined on C [0,∞), and can be constructed in a
similar way by “gluing together” Brownian motion paths defined on [0, 1]

Definition

B(t) = (B1(t),B2(t), ...,Bd(t)), t ≥ 0, is d-dimensional (standard)
Brownian motion if B1, ...,Bd(t) are independent standard 1-dimensional
Brownian motions.

Theorem (Fouché)

B(t) = (B1(t),B2(t), ...,Bd(t)), t ≥ 0, is d-dimensional
Martin-Löf random Brownian motion if B1, ...,Bd(t) are mutually
Martin-Löf random 1-dimensional Brownian motions.
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Dirichlet Problem

Definition (Dirichlet Problem)

Given a function φ that has values everywhere on the boundary of a region
in Rd , is there a unique continuous function u twice continuously
differentiable in the interior and continuous on the boundary such that u is
harmonic in the interior and u = φ on the boundary?
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Dirichlet Problem

Theorem (Kakutani)

Suppose U ⊂ Rd is a bounded domain such that every boundary point
satisfies the Poincaré cone condition, and suppose φ is a continuous
function on the boundary ∂U. Let τ(∂U) = inf{t > 0 : B(t) ∈ ∂U},
which is an almost surely finite stopping time. Then the function
u : U → R given by

u(x) = Ex [φ(B(τ(∂U)))] , for x ∈ U,

is the unique continuous function harmonic on U with u(x) = φ(x) for all
x ∈ ∂U.
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Computable Dirichlet Problem

Strong Conjecture

Let U be a bounded domain with computable boundary ∂U. Let φ be a
computable continuous function on ∂U. Then there is a unique,
continuous, computable function u : U → R harmonic on U such that
u(x) = φ(x) for all x ∈ ∂U.
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Further Directions

Other types of randomness for Wiener measure

Many “almost surely” results in classical theory
I How much randomness do they require?
I Do they characterize familiar notions of randomness?

Can this more constructive approach be used to solve open problems
in the classical theory?
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Thank You!
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