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1. Higher randomness: the basics



∆1
1 randomness.

In his seminal work on randomness, Martin-Löf did not only define
the notion we now know as Martin-Löf randomness.

Indeed, he also introduced a higher notion of randomness:
∆1

1-randomness, where X is ∆1
1 random if and only if it does not

belong to any ∆1
1 set of measure 0.
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∆1
1-ML-randomness.

Another way to define randomness via ∆1
1 objects would be to mimic

Martin-Löf’s definition for the classical case:

Definition
A ∆1

1-Martin-Löf test is a sequence (Un) of uniformly ∆1
1 open sets

such that µ(Un) ≤ 2−n. A sequence X is ∆1
1-Martin-Löf random if

X /∈
∩

n Un for all ∆1
1-Martin-Löf tests.

As it turns out, these two concepts are equivalent:

Theorem (Sacks)
∆1

1-randomness
and ∆1
1-Martin-Löf
randomness
coincide.
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Π1
1/Σ

1
1 versions of randomness.

Of course we can do the same with Σ1
1 and Π1

1 instead of ∆1
1.

• For Σ1
1, everything collapses (Sacks):

Σ1
1-random = Σ1

1-ML random =∆1
1-random

• The situation is a lot more interesting for Π1
1 randomness...
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Π1
1 randomness.

Definition
X is Π1

1-random if it does not belong to any Π1
1 nullset.

Theorem (Kechris)
There
exists
a Π1

1 nullset
which
contains
all
others.

Thus a sequence X is Π1
1-random iff it avoids this maximal Π1

1-nullset.
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Π1
1 ML-randomness.

Definition
A Π1

1 Martin-Löf test is a sequence (Un) of uniformly Π1
1 open sets

such that µ(Un) ≤ 2−n. A sequence X is Π1
1-Martin-Löf random if

X /∈
∩

n Un for all Π1
1-Martin-Löf tests.

It is easy to see that if (Un) is a Π1
1-ML test, then

∩
n Un is a Π1

1 set.
Thus Π1

1-randomness implies Π1
1-ML randomness.
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A digression.
In higher recursion theory, the analog of the class of c.e. sets of
integers (or strings, or...) is the class of Π1

1 sets of integers. Indeed,
by the Gandy-Spector theorem, one can think of a Π1

1 set of integers
as being given by an enumeration with stages {s | s < ωck

1 }.

Bottom setting Higher analogue
c.e. Π1

1
finite c.e. ∆1

1
computable ∆1

1
∅ ′ O
≤T ???

Thus, Π1
1 ML-randomness really is the analogue of Martin-Löf

randomness in the higher setting.
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A digression.

This is a powerful analogy, and so hereafter we’ll refer to Π1
1 and ∆1

1
sets of integers as c.e. and computable, respectively.

For example, we can state: it is possible to enumerate all
Π1

1-Martin-Löf tests (or Martin-Löf tests!) and thus there exists a
universal one.
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∆1
1-randomness vs Π1

1-ML randomness.

With this correspondence in mind, we see that ∆1
1-randomness is

defined in terms of computable/finite objects, thus it should be
related to computable randomness or Schnorr randomness....

... and indeed it coincides with both.

Using the usual techniques, one can thus show that Π1
1-ML

randomness is strictly stronger than ∆1
1-randomness.
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Π1
1-randomness vs Π1

1-ML randomness.
Π1

1-randomness and Π1
1-Martin-Löf randomness are related by the

following beautiful theorem:

Theorem (Hjorth-Nies / Chong-Nies-Yu)
The
following
are
equivalent:

• X is Π1
1 random

• X is Π1
1-ML random
andωX

1 = ωck
1 .

• X is ∆1
1-ML random
andωX

1 = ωck
1 .

And thus it suffices to separate the first two notions to show that
there exists a Π1

1-ML-random such that ωX
1 > ωck

1 . In fact, Ω is
such a real (although Ω ̸≥T O).
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Summing up.

Π1
1-RAND⇓
Π1

1-MLR⇓
∆1

1-Rand = ∆1
1-MLR = Σ1

1-Rand = Σ1
1-MLR

And the implications are strict.
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weak-2-randomness.

With the same intuition, the analog of weak-2-randomness is the
following

Definition
A weak-2-test is a sequence (Un) of uniformly c.e. open sets such
that µ(Un) → 0. A sequence X is weak-2-random if X /∈

∩
n Un for

all weak-2-tests.

1. Higher randomness: the basics 13/43



weak-2-randomness.

One can easily see: Π1
1-RAND ⇒ weak-2-RAND ⇒ Π1

1-MLR

The second implication is strict, as we will see.

A seemingly difficult open question: are weak-2-randomness and
Π1

1-randomness equivalent?
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Kolmogorov complexity.

Just like in the classical setting, one can define Kolmogorov
complexity, denotedK, via a universal prefix-free machine, or via a
universal left-c.e. semimeasure.

The Levin-Schnorr theorem still holds: X is ML random if and only if
K (X ↾ n) ≥ n− O(1).
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2. Higher Turing reductions



Higher reductions.
If we want to investigate the relations between randomness and
Turing degrees, we need to first find the correct analog of Turing
reduction.

What does it mean for X be to be computable in Y?

The most obvious definition: X is ∆1
1 in A, meaning that there is a

Π1
1-set P and a Σ1

1 set S such that

n ∈ X ⇔ (A, n) ∈ P ⇔ (A, n) ∈ S

We also write X ≤h A as by a result of Kleene, this is equivalent for X
to be hyperarithmetic in A (i.e. X ≤T A(γ) for some γ < ωA

1 ).
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Higher reductions.

The problem with this reduction is of topological nature. When
studying the interactions between randomness and Turing degrees,
we make great use of the fact that Turing reductions are continuous,
i.e., that when we have ΦY = X, only a finite prefix of Y is used in the
computation of a given prefix of X.

The solution: in the classical setting, a Turing reduction Φ can be
viewed as a c.e. set of pairs of strings
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Higher reductions.

Definition (BGM)
A Turing reduction Φ is a c.e. set of pairs of strings. We write
ΦY = X if
• (∀ n) (∃k) ⟨Y ↾ k, X ↾ n⟩ ∈ Φ

• (∀ k)
[
(∃τ) ⟨Y ↾ k, τ⟩ ∈ Φ ⇒ τ ⪯ X

]

We do not require the domain of Φ to be closed under prefixes, as
Hjorth and Nies do with the notion of fin-h reducibility.
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Higher reductions.

We (of course) denote higher Turing reducibility by ≤T .

Although this may not be clear from the definition, ≤T is a
refinement of ≤h:

X ≤T Y ⇒ X ≤h Y
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First results... for free!.
With this translation of “computable” to the higher setting, we get
many theorems for free by a direct adaptation of the classical
setting.

Theorem (Kučera-Gács / Hjorth-Nies)
• For
every X, there
exists Y which
is Π1

1-ML random
and X ≤T Y
(and
thus X ≤h Y).

• For
every X ≥T O, there
exists
a Π1
1-ML random Y such
that

X≡T Y

Theorem (Chaitin, adapted)
There
exists
a left-c.e. Π1

1-Martin-Löf
random
real; call
itΩ.
Any
such
real computes O.
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Relativization.

In this context, we can define c.e. operators We and an A-c.e. set S
of integers is any set of the form WA

e .

One can similarly define A-c.e. open set as an open set generated
by a A-c.e. set of strings and thus define A-MLR.

Theorem (van Lambalgen, adapted)
X⊕ Y is Martin-Löf random if
and
only
if X is Martin-Löf random
and Y is
X-Martin-Löf random.
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What does NOT work in the higher case?.

Some classical techniques of the classical case do not translate in
the higher case.

• It is not true any more that for a c.e. open set U and
cylinder [σ], the set [σ] \ U [s] clopen, because U [s] may no
longer be clopen for s ≥ ω.

• “Time tricks” don’t work. There are several theorems in
algorithmic randomness that exploit the length of a string as an
enumeration time (e.g.Kσ

|σ|).

2. Higher Turing reductions 23/43



What does NOT work in the higher case?.

Some classical techniques of the classical case do not translate in
the higher case.

• It is not true any more that for a c.e. open set U and
cylinder [σ], the set [σ] \ U [s] clopen, because U [s] may no
longer be clopen for s ≥ ω.

• “Time tricks” don’t work. There are several theorems in
algorithmic randomness that exploit the length of a string as an
enumeration time (e.g.Kσ

|σ|).

2. Higher Turing reductions 23/43



What does NOT work in the higher case?.

Some classical techniques of the classical case do not translate in
the higher case.

• It is not true any more that for a c.e. open set U and
cylinder [σ], the set [σ] \ U [s] clopen, because U [s] may no
longer be clopen for s ≥ ω.

• “Time tricks” don’t work. There are several theorems in
algorithmic randomness that exploit the length of a string as an
enumeration time (e.g.Kσ

|σ|).

2. Higher Turing reductions 23/43



2-MLR and O-MLR.

A well-known theorem of Miller/Nies-Stephan-Terwijn: 2-MLR reals
are characterized by the condition:

C(X ↾ n) ≥ n− c for some c and infinitely many n (⋄)

The proof of (⋄)⇒ 2-MLR involves a time trick. This does not
translate...

and indeed, the condition

C(X ↾ n) ≥ n− c for some c and infinitely many n (⋄⋄)

is not equivalent to being O-MLR; it is somewhere between MLR
and Π1

1-random [A recent result of Greenberg and Slaman: O-ML
randomness implies (strictly) Π1

1-randomness].
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Returning to the class W2R.

Another result which does not (directly) translate:

Theorem (Hirschfeldt-Miller)
A real
is
weakly-2-random
if
and
only
if
it
is
Martin-Löf
random
and
forms
a
minimal
pair
with ∅ ′.

It is not the case that a set is weakly-2-random iff it forms a (Turing)
minimal pair with O [indeed, by the Gandy basis theorem, there
exists an O-computable Π1

1-random, hence weakly-2-random].

2. Higher Turing reductions 25/43



Returning to the class W2R.

Another result which does not (directly) translate:

Theorem (Hirschfeldt-Miller)
A real
is
weakly-2-random
if
and
only
if
it
is
Martin-Löf
random
and
forms
a
minimal
pair
with ∅ ′.

It is not the case that a set is weakly-2-random iff it forms a (Turing)
minimal pair with O [indeed, by the Gandy basis theorem, there
exists an O-computable Π1

1-random, hence weakly-2-random].

2. Higher Turing reductions 25/43



Returning to the class W2R.

Another result which does not (directly) translate:

Theorem (Hirschfeldt-Miller)
A real
is
weakly-2-random
if
and
only
if
it
is
Martin-Löf
random
and
forms
a
minimal
pair
with ∅ ′.

It is not the case that a set is weakly-2-random iff it forms a (Turing)
minimal pair with O [indeed, by the Gandy basis theorem, there
exists an O-computable Π1

1-random, hence weakly-2-random].
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W2R and Π1
1-RAND: separation attempts.

Π1
1-randoms are Martin-Löf randoms X such that ωX

1 = ωck
1 . This

is equivalent to X ̸≥h O.

So asking whether weak-2-randomness equals Π1
1-randomness

amounts to asking whether there is a weak-2-random X such that
X ≥h O.

An weaker question: is there a weak-2-random X such that
X ≥T O?

Proposition (BGM)
No weak-2-random X is
such
that X ≥T O.
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W2R and Π1
1-RAND: separation attempts.

Ω is ML-random. Can we get more?

Theorem (Yu)
Ω is
not weak-2-random.

Maybe the halves of Ω?

Theorem (BGM)
Ω0 is
not weak-2-random. In
fact, no X ≤tt O is.
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A conjecture.

One way to separate weak-2-randomness from Π1
1-randomness

would be to evaluate the Borel rank of the class of Π1
1-randomness.

The Borel rank of the set of weak-2-randoms is Π0
3. The set of

Π1
1-randoms must have much higher rank, but we don’t know how to

prove this.

2. Higher Turing reductions 28/43



A conjecture.

One way to separate weak-2-randomness from Π1
1-randomness

would be to evaluate the Borel rank of the class of Π1
1-randomness.

The Borel rank of the set of weak-2-randoms is Π0
3. The set of

Π1
1-randoms must have much higher rank, but we don’t know how to

prove this.

2. Higher Turing reductions 28/43



3. Higher lowness and triviality



Complexity and semi-measures.

Recall that a (discrete) semimeasure is a function m : ω → R+ such
that ∑

i

m(i) ≤ 1

we say that it is (left-)c.e. if its lower graph is c.e.

Proposition
There
exists
a
universal
c.e. semimeasure, i.e. a
c.e. semimeasure m̃
such
that
for
any
other
c.e. semimeasure µ one
has

m̃ >× µ
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Levin’s coding theorem.

Theorem (Levin)
Given
a
left-c.e. semimeasure m, one
can
uniformly
build
a
prefix-free
machine M such
thatKM = − logm± 1.

To prove Levin’s theorem, one can assume that m is dyadic and
whenever a new amount 2−k is added to some i, a new description
of i is issued in M. The new description is carefully chosen to allow
(potentially short) future descriptions. This is done by keeping track
of the binary expansion of

∑
i m(i)[s] at each stage s.
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Levin’s coding theorem.

In the higher setting, a bit more care is needed as the binary
expansion of

∑
i m(i)[s] can now be an infinite object, but it turns

out that the only case where this could cause an issue is when the
binary expansion is of the form

0. ∗ ∗ ∗ ∗011111111111111 . . .

which is equal

0. ∗ ∗ ∗ ∗100000000000000 . . .

and thus is finite.
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Levin’s coding theorem.

This observation was made by Nies and Hjorth, who thus obtained:

Theorem (Nies-Hjorth)
Given
a c.e. semimeasure m, one
can
uniformly
build
a
prefix-free
machine M such
thatKM = − logm± 1.
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K-triviality.
One of the big advances of recent years’s research in algorithmic
randomness is the discovery of the (properties of) the class of
K-trivial reals.

Definition
A real X is K-trivial if

K(A ↾ n) ≤+ K(n)

These are the reals that are as far as random as possible from the
point of view ofK. Computable reals are K-trivial but Solovay was
able to construct a non-computable c.e. K-trivial.
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K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial
• A is
low
for
MLR: MLRA = MLR
• A is
low
forK: KA =+ K (or m̃A =× m̃)
• A is
a
base
for
ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial
• A is
low
for
MLR: MLRA = MLR
• A is
low
forK: KA =+ K (or m̃A =× m̃)
• A is
a
base
for
ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial

• A is
low
for
MLR: MLRA = MLR
• A is
low
forK: KA =+ K (or m̃A =× m̃)
• A is
a
base
for
ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial
• A is
low
for
MLR: MLRA = MLR

• A is
low
forK: KA =+ K (or m̃A =× m̃)
• A is
a
base
for
ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial
• A is
low
for
MLR: MLRA = MLR
• A is
low
forK: KA =+ K (or m̃A =× m̃)

• A is
a
base
for
ML randomness: there
exists
an A-ML random
real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



K-triviality.

A remarkable series of results (many authors with Nies as the least
common denominator):

Theorem
The
following
are
equivalent:

• A is
K-trivial
• A is
low
for
MLR: MLRA = MLR
• A is
low
forK: KA =+ K (or m̃A =× m̃)
• A is
a
base
for
ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

3. Higher lowness and triviality 35/43



Relativizing Kolmogorov complexity.
We would like to adapt this in the higher setting. It looks like
everything should work out the same way, except for one tiny
detail....

In the classical setting, m̃A is defined in terms of a uniformly
universal c.e. semimeasure. By this, we mean a function

m̃2 : 2<ω × 2ω → R+

• m̃2(., .) is left-c.e. in both arguments, i.e. m̃2(x, A) > q is a
Σ0

1-statement
• For all A,

∑
i m̃2(x, A) ≤ 1

• For all A and every A-c.e. semimeasure µ, m̃2(., A) >× µ
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Relativizing Kolmogorov complexity.

This is heavily used in the classical theory. Unfortunately(?), this
does not hold any more in the higher setting.

Theorem (BGM)
There
is
no
uniformly
universal c.e. semimeasure
(although
there
is
an
optimal
element
among
uniform
semimeasures).

Actually the situation is even worse.

Theorem (BGM)
There
exists
an A such
that
there
is
no A-c.e. universal
semimeasure.
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Relativizing Kolmogorov complexity.

So it does not make sense in general to talk aboutKA for a
given A.

[Note: we showed that it does make sense in some particular cases:
when A is ML random, when A ≤tt O, when A is 1-generic....]

So one more quantifier is needed:

Definition
A is low forK if for every A-c.e. semimeasure µ one has m̃ >× µ.
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K-trivials are well behaved.

Theorem
The
following
are
equivalent:

• A is K-trivial
• A is low for MLR: MLRA = MLR
• A is low forK
• A is
a base for ML randomness: there
exists
an A-ML random

real X such
that X ≥T A.

[and there are some non-computable ones: Solovay’s construction
still works]
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K-trivials are well behaved.

PROOF

• K-trivial implies low forK by the decanter method (there is no
obstacle to translation to higher setting).

• low forK implies low for MLR: if X is not A-MLR, it can be
compressed by some A-machine, even though this machine
may not be optimal.

• low for MLR implies base for ML randomness: this is a direct
consequence of the higher Kučera-Gács theorem.

• Base for ML randomness implies K-trivial: this is done via the
hungry sets constructions, with some careful adaptations.
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Caveat.

Caveat: in Nies’ book, it is claimed that

X base for Π1
1-ML-randomness ⇔ X is ∆1

1.

This is not a mistake. This is because Nies means something
different: he calls A-Martin-Löf random a real which passes all the
Martin-Löf tests which are Π1

1[A] (equivalently, Σ1-definable in
LωA

1
[A]).
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K-trivials are well behaved - bis.

Many of the characteristic features of the K-trivials translate to the
higher setting.

• K-trivials form a Turing-ideal.
• They are all ≤tt O.
• Every K-trivial is Turing below a c.e. K-trivial.
• K-trivials are jump traceable.
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Open questions.

Is there an universal A-Martin-Löf test for all A?

Separate weak-2-randomness from Π1
1-randomness.

Characterize the set of reals X such that C(X ↾ n) > n− c i.o.
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