Higher randomness and triviality

Laurent Bienvenu (LIAFA, CNRS & Université Paris 7) Noam Greenberg (Victoria University of Wellington) Benoît Monin (LIAFA, CNRS & Université Paris 7)

Thematic Semester on Computability and Randomness Buenos Aires 2013

1. Higher randomness: the basics

In his seminal work on randomness, Martin-Löf did not only define the notion we now know as Martin-Löf randomness. In his seminal work on randomness, Martin-Löf did not only define the notion we now know as Martin-Löf randomness.

Indeed, he also introduced a higher notion of randomness: Δ_1^1 -randomness, where *X* is Δ_1^1 random if and only if it does not belong to any Δ_1^1 set of measure 0. Another way to define randomness via Δ_1^1 objects would be to mimic Martin-Löf's definition for the classical case:

Definition

A Δ_1^1 -Martin-Löf test is a sequence (\mathcal{U}_n) of uniformly Δ_1^1 open sets such that $\mu(\mathcal{U}_n) \leq 2^{-n}$. A sequence *X* is Δ_1^1 -Martin-Löf random if $X \notin \bigcap_n \mathcal{U}_n$ for all Δ_1^1 -Martin-Löf tests.

Another way to define randomness via Δ_1^1 objects would be to mimic Martin-Löf's definition for the classical case:

Definition

A Δ_1^1 -Martin-Löf test is a sequence (\mathcal{U}_n) of uniformly Δ_1^1 open sets such that $\mu(\mathcal{U}_n) \leq 2^{-n}$. A sequence *X* is Δ_1^1 -Martin-Löf random if $X \notin \bigcap_n \mathcal{U}_n$ for all Δ_1^1 -Martin-Löf tests.

As it turns out, these two concepts are equivalent:

Theorem (Sacks)

 Δ_1^1 -randomness and Δ_1^1 -Martin-Löf randomness coincide.

Π_1^1 / Σ_1^1 versions of randomness

Of course we can do the same with Σ_1^1 and Π_1^1 instead of Δ_1^1 .

Of course we can do the same with Σ_1^1 and Π_1^1 instead of Δ_1^1 .

• For Σ_1^1 , everything collapses (Sacks):

$$\Sigma_1^1$$
-random = Σ_1^1 -ML random = Δ_1^1 -random

Of course we can do the same with Σ_1^1 and Π_1^1 instead of Δ_1^1 .

• For Σ_1^1 , everything collapses (Sacks):

$$\Sigma_1^1$$
-random = Σ_1^1 -ML random = Δ_1^1 -random

• The situation is a lot more interesting for Π_1^1 randomness...

X is Π_1^1 -random if it does not belong to any Π_1^1 nullset.

X is Π_1^1 -random if it does not belong to any Π_1^1 nullset.

Theorem (Kechris)

There exists a Π_1^1 nullset which contains all others.

X is Π_1^1 -random if it does not belong to any Π_1^1 nullset.

Theorem (Kechris)

There exists a Π_1^1 nullset which contains all others.

Thus a sequence X is Π_1^1 -random iff it avoids this maximal Π_1^1 -nullset.

A Π_1^1 Martin-Löf test is a sequence (\mathcal{U}_n) of uniformly Π_1^1 open sets such that $\mu(\mathcal{U}_n) \leq 2^{-n}$. A sequence *X* is Π_1^1 -Martin-Löf random if $X \notin \bigcap_n \mathcal{U}_n$ for all Π_1^1 -Martin-Löf tests.

A Π_1^1 Martin-Löf test is a sequence (\mathcal{U}_n) of uniformly Π_1^1 open sets such that $\mu(\mathcal{U}_n) \leq 2^{-n}$. A sequence *X* is Π_1^1 -Martin-Löf random if $X \notin \bigcap_n \mathcal{U}_n$ for all Π_1^1 -Martin-Löf tests.

It is easy to see that if (\mathcal{U}_n) is a Π_1^1 -ML test, then $\bigcap_n \mathcal{U}_n$ is a Π_1^1 set. Thus Π_1^1 -randomness implies Π_1^1 -ML randomness.

A digression

In higher recursion theory, the analog of the class of c.e. sets of integers (or strings, or...) is the class of Π_1^1 sets of integers. Indeed, by the Gandy-Spector theorem, one can think of a Π_1^1 set of integers as being given by an enumeration with stages $\{s \mid s < \omega_1^{ck}\}$.

A digression

In higher recursion theory, the analog of the class of c.e. sets of integers (or strings, or...) is the class of Π_1^1 sets of integers. Indeed, by the Gandy-Spector theorem, one can think of a Π_1^1 set of integers as being given by an enumeration with stages $\{s \mid s < \omega_1^{ck}\}$.

Bottom setting	Higher analogue
c.e.	Π_1^1
finite c.e.	Δ_1^1
computable	Δ_1^1
Ø′	O
\leq_{τ}	???

Thus, Π_1^1 ML-randomness really is the analogue of Martin-Löf randomness in the higher setting.

This is a powerful analogy, and so hereafter we'll refer to Π_1^1 and Δ_1^1 sets of integers as **c.e.** and **computable**, respectively.

This is a powerful analogy, and so hereafter we'll refer to Π_1^1 and Δ_1^1 sets of integers as **c.e.** and **computable**, respectively.

For example, we can state: it is possible to **enumerate** all Π_1^1 -Martin-Löf tests (or **Martin-Löf tests!**) and thus there exists a universal one.

With this correspondence in mind, we see that Δ_1^1 -randomness is defined in terms of **computable/finite** objects, thus it should be related to **computable** randomness or **Schnorr** randomness....

With this correspondence in mind, we see that Δ_1^1 -randomness is defined in terms of **computable/finite** objects, thus it should be related to **computable** randomness or **Schnorr** randomness....

... and indeed it coincides with both.

With this correspondence in mind, we see that Δ_1^1 -randomness is defined in terms of **computable/finite** objects, thus it should be related to **computable** randomness or **Schnorr** randomness....

... and indeed it coincides with both.

Using the usual techniques, one can thus show that Π_1^1 -ML randomness is strictly stronger than Δ_1^1 -randomness.

 Π_1^1 -randomness and Π_1^1 -Martin-Löf randomness are related by the following beautiful theorem:

Theorem (Hjorth-Nies / Chong-Nies-Yu)

The following are equivalent:

 Π_1^1 -randomness and Π_1^1 -Martin-Löf randomness are related by the following beautiful theorem:

Theorem (Hjorth-Nies / Chong-Nies-Yu)

The following are equivalent:

- X is Π_1^1 random
- X is Π_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.
- X is Δ_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.

 Π_1^1 -randomness and Π_1^1 -Martin-Löf randomness are related by the following beautiful theorem:

Theorem (Hjorth-Nies / Chong-Nies-Yu)

The following are equivalent:

- X is Π_1^1 random
- X is Π_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.
- X is Δ_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.

And thus it suffices to separate the first two notions to show that there exists a Π_1^1 -ML-random such that $\omega_1^{\chi} > \omega_1^{ck}$.

 Π_1^1 -randomness and Π_1^1 -Martin-Löf randomness are related by the following beautiful theorem:

Theorem (Hjorth-Nies / Chong-Nies-Yu)

The following are equivalent:

- X is Π_1^1 random
- X is Π_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.
- X is Δ_1^1 -ML random and $\omega_1^X = \omega_1^{ck}$.

And thus it suffices to separate the first two notions to show that there exists a Π_1^1 -ML-random such that $\omega_1^X > \omega_1^{ck}$. In fact, Ω is such a real (although $\Omega \geq_T \mathcal{O}$).

Summing up

And the implications are strict.

With the same intuition, the analog of weak-2-randomness is the following

Definition

A weak-2-test is a sequence (\mathcal{U}_n) of uniformly c.e. open sets such that $\mu(\mathcal{U}_n) \to 0$. A sequence *X* is weak-2-random if $X \notin \bigcap_n \mathcal{U}_n$ for all weak-2-tests.

One can easily see: Π_1^1 -RAND \Rightarrow weak-2-RAND \Rightarrow Π_1^1 -MLR

One can easily see: Π_1^1 -RAND \Rightarrow weak-2-RAND \Rightarrow Π_1^1 -MLR

The second implication is strict, as we will see.

One can easily see: Π_1^1 -RAND \Rightarrow weak-2-RAND \Rightarrow Π_1^1 -MLR

The second implication is strict, as we will see.

A seemingly difficult open question: are **weak-2-randomness** and Π_1^1 -randomness equivalent?

Just like in the classical setting, one can define Kolmogorov complexity, denoted K, via a universal prefix-free machine, or via a universal left-c.e. semimeasure.

Just like in the classical setting, one can define Kolmogorov complexity, denoted K, via a universal prefix-free machine, or via a universal left-c.e. semimeasure.

The Levin-Schnorr theorem still holds: *X* is **ML random** if and only if **K** ($X \upharpoonright n$) $\ge n - O(1)$.

2. Higher Turing reductions

Higher reductions

If we want to investigate the relations between randomness and Turing degrees, we need to first find the correct analog of Turing reduction. If we want to investigate the relations between randomness and Turing degrees, we need to first find the correct analog of Turing reduction.

What does it mean for X be to be **computable in** Y?

If we want to investigate the relations between randomness and Turing degrees, we need to first find the correct analog of Turing reduction.

What does it mean for X be to be **computable in** Y?

The most obvious definition: *X* is Δ_1^1 in *A*, meaning that there is a Π_1^1 -set *P* and a Σ_1^1 set *S* such that

$$n \in X \Leftrightarrow (A,n) \in P \Leftrightarrow (A,n) \in S$$

If we want to investigate the relations between randomness and Turing degrees, we need to first find the correct analog of Turing reduction.

What does it mean for X be to be **computable in** Y?

The most obvious definition: *X* is Δ_1^1 in *A*, meaning that there is a Π_1^1 -set *P* and a Σ_1^1 set *S* such that

$$n \in X \Leftrightarrow (A, n) \in P \Leftrightarrow (A, n) \in S$$

We also write $X \leq_h A$ as by a result of Kleene, this is equivalent for X to be hyperarithmetic in A (i.e. $X \leq_T A^{(\gamma)}$ for some $\gamma < \omega_1^A$).

The problem with this reduction is of topological nature. When studying the interactions between randomness and Turing degrees, we make great use of the fact that Turing reductions are continuous, i.e., that when we have $\Phi^{\gamma} = X$, only a finite prefix of *Y* is used in the computation of a given prefix of *X*.

The problem with this reduction is of topological nature. When studying the interactions between randomness and Turing degrees, we make great use of the fact that Turing reductions are continuous, i.e., that when we have $\Phi^{\gamma} = X$, only a finite prefix of *Y* is used in the computation of a given prefix of *X*.

The solution: in the classical setting, a Turing reduction Φ can be viewed as a c.e. set of pairs of strings

Definition (BGM)

A Turing reduction Φ is a c.e. set of pairs of strings. We write $\Phi^{\rm Y}={\rm X}$ if

•
$$(\forall n) (\exists k) \langle Y \upharpoonright k, X \upharpoonright n \rangle \in \Phi$$

• $(\forall k) [(\exists \tau) \langle Y \upharpoonright k, \tau \rangle \in \Phi \Rightarrow \tau \preceq X]$

Definition (BGM)

A Turing reduction Φ is a c.e. set of pairs of strings. We write $\Phi^{\rm Y}={\rm X}$ if

•
$$(\forall n) (\exists k) \langle Y \upharpoonright k, X \upharpoonright n \rangle \in \Phi$$

• $(\forall k) [(\exists \tau) \langle Y \upharpoonright k, \tau \rangle \in \Phi \Rightarrow \tau \preceq X]$

We **do not** require the domain of Φ to be closed under prefixes, as Hjorth and Nies do with the notion of fin-h reducibility.

We (of course) denote higher Turing reducibility by \leq_{T} .

We (of course) denote higher Turing reducibility by \leq_{T} .

Although this may not be clear from the definition, \leq_{τ} is a refinement of \leq_{h} :

 $X \leq_{\mathsf{T}} Y \Rightarrow X \leq_h Y$

First results... for free!

With this translation of "computable" to the higher setting, we get many theorems for free by a **direct** adaptation of the classical setting.

First results... for free!

With this translation of "computable" to the higher setting, we get many theorems for free by a **direct** adaptation of the classical setting.

Theorem (Kučera-Gács / Hjorth-Nies)

- For every X, there exists Y which is \prod_{1}^{1} -ML random and $X \leq_{T} Y$ (and thus $X \leq_{h} Y$).
- For every $X \ge_T \mathcal{O}$, there exists a \prod_1^1 -ML random Y such that $X \equiv_T Y$

First results... for free!

With this translation of "computable" to the higher setting, we get many theorems for free by a **direct** adaptation of the classical setting.

Theorem (Kučera-Gács / Hjorth-Nies)

- For every X, there exists Y which is \prod_{1}^{1} -ML random and $X \leq_{T} Y$ (and thus $X \leq_{h} Y$).
- For every $X \ge_T \mathcal{O}$, there exists a \prod_1^1 -ML random Y such that $X \equiv_T Y$

Theorem (Chaitin, adapted)

There exists a **left-c.e.** Π_1^1 -Martin-Löf random real; call it Ω . Any such real **computes** \mathcal{O} . In this context, we can define c.e. operators W_e and an *A*-c.e. set *S* of integers is any set of the form W_e^A .

In this context, we can define c.e. operators W_e and an *A*-c.e. set *S* of integers is any set of the form W_e^A .

One can similarly define *A*-**c.e.** open set as an open set generated by a A-**c.e.** set of strings and thus define *A*-**MLR**.

In this context, we can define c.e. operators W_e and an *A*-c.e. set *S* of integers is any set of the form W_e^A .

One can similarly define *A*-**c.e.** open set as an open set generated by a A-**c.e.** set of strings and thus define *A*-**MLR**.

Theorem (van Lambalgen, adapted)

 $X \oplus Y$ is **Martin-Löf random** if and only if X is **Martin-Löf random** and Y is X-**Martin-Löf random**.

What does NOT work in the higher case?

Some classical techniques of the classical case do not translate in the higher case.

What does NOT work in the higher case?

Some classical techniques of the classical case do not translate in the higher case.

It is not true any more that for a c.e. open set U and cylinder [σ], the set [σ] \ U[s] clopen, because U[s] may no longer be clopen for s ≥ ω.

Some classical techniques of the classical case do not translate in the higher case.

- It is not true any more that for a c.e. open set U and cylinder [σ], the set [σ] \ U[s] clopen, because U[s] may no longer be clopen for s ≥ ω.
- "Time tricks" don't work. There are several theorems in algorithmic randomness that exploit the length of a string as an enumeration time (e.g. $K^{\sigma}_{[\sigma]}$).

A well-known theorem of Miller/Nies-Stephan-Terwijn: 2-MLR reals are characterized by the condition:

 $C(X \upharpoonright n) \ge n - c$ for some *c* and infinitely many *n* (\diamond)

The proof of ($\diamond)$ \Rightarrow 2-MLR involves a time trick. This does not translate...

A well-known theorem of Miller/Nies-Stephan-Terwijn: 2-MLR reals are characterized by the condition:

 $C(X \upharpoonright n) \ge n - c$ for some *c* and infinitely many *n* (\diamond)

The proof of (\diamond) \Rightarrow 2-MLR involves a time trick. This does not translate... and indeed, the condition

 $C(X \upharpoonright n) \ge n - c$ for some *c* and infinitely many *n* ($\diamond \diamond$)

is **not** equivalent to being \mathcal{O} -**MLR**; it is somewhere between **MLR** and Π_1^1 -random [A recent result of Greenberg and Slaman: \mathcal{O} -**ML randomness** implies (strictly) Π_1^1 -randomness]. Another result which does not (directly) translate:

Another result which does not (directly) translate:

Theorem (Hirschfeldt-Miller)

A real is weakly-2-random if and only if it is Martin-Löf random and forms a minimal pair with \emptyset' .

Another result which does not (directly) translate:

Theorem (Hirschfeldt-Miller)

A real is weakly-2-random if and only if it is Martin-Löf random and forms a minimal pair with \emptyset' .

It is **not** the case that a set is **weakly-2-random** iff it forms a (**Turing**) minimal pair with \mathcal{O} [indeed, by the Gandy basis theorem, there exists an \mathcal{O} -computable Π_1^1 -random, hence **weakly-2-random**].

 Π_1^1 -randoms are **Martin-Löf randoms** *X* such that $\omega_1^X = \omega_1^{ck}$. This is equivalent to $X \succeq_h \mathcal{O}$.

 Π_1^1 -randoms are **Martin-Löf randoms** *X* such that $\omega_1^X = \omega_1^{ck}$. This is equivalent to $X \succeq_h \mathcal{O}$.

So asking whether **weak-2-randomness** equals Π_1^1 -randomness amounts to asking whether there is a **weak-2-random** *X* such that $X \ge_h \mathcal{O}$.

 Π_1^1 -randoms are **Martin-Löf randoms** *X* such that $\omega_1^X = \omega_1^{ck}$. This is equivalent to $X \geq_h \mathcal{O}$.

So asking whether **weak-2-randomness** equals \prod_{1}^{1} -randomness amounts to asking whether there is a **weak-2-random** *X* such that $X \ge_h \mathcal{O}$.

An weaker question: is there a **weak-2-random** *X* such that $X \ge_T \mathcal{O}$?

 Π_1^1 -randoms are **Martin-Löf randoms** *X* such that $\omega_1^X = \omega_1^{ck}$. This is equivalent to $X \succeq_h \mathcal{O}$.

So asking whether **weak-2-randomness** equals \prod_{1}^{1} -randomness amounts to asking whether there is a **weak-2-random** *X* such that $X \ge_h \mathcal{O}$.

An weaker question: is there a **weak-2-random** *X* such that $X \ge_T \mathcal{O}$?

Proposition (BGM)

No **weak-2-random** X is such that $X \geq_T \mathcal{O}$.

 Ω is **ML-random**. Can we get more?

 Ω is **ML-random**. Can we get more?

Theorem (Yu) Ω is not weak-2-random.

 Ω is **ML-random**. Can we get more?

Theorem (Yu) Ω is not weak-2-random.

Maybe the halves of Ω ?

 Ω is **ML-random**. Can we get more?

Theorem (Yu) Ω is not weak-2-random.

Maybe the halves of Ω ?

Theorem (BGM) Ω_0 is not weak-2-random. In fact, no $X \leq_{tt} \mathcal{O}$ is. One way to separate **weak-2-randomness** from Π_1^1 -randomness would be to evaluate the Borel rank of the class of Π_1^1 -randomness.

One way to separate **weak-2-randomness** from Π_1^1 -randomness would be to evaluate the Borel rank of the class of Π_1^1 -randomness.

The Borel rank of the set of **weak-2-randoms** is Π_3^0 . The set of Π_1^1 -randoms must have much higher rank, but we don't know how to prove this.

3. Higher lowness and triviality

Complexity and semi-measures

Recall that a (discrete) semimeasure is a function $m:\omega \to \mathbb{R}^+$ such that

$$\sum_{i} m(i) \leq 1$$

we say that it is (left-)c.e. if its lower graph is c.e.

Proposition

There exists a universal c.e. semimeasure, i.e. a c.e. semimeasure \tilde{m} such that for any other c.e. semimeasure μ one has

$$\tilde{m} >^{\times} \mu$$

Complexity and semi-measures

Recall that a (discrete) semimeasure is a function $m:\omega \to \mathbb{R}^+$ such that

$$\sum_{i} m(i) \leq 1$$

we say that it is (left-)c.e. if its lower graph is c.e.

Proposition

There exists a universal **c.e.** semimeasure, i.e. a **c.e.** semimeasure \tilde{m} such that for any other **c.e.** semimeasure μ one has

$$\tilde{m} >^{\times} \mu$$

Theorem (Levin)

Given a left-c.e. semimeasure m, one can uniformly build a prefix-free machine M such that $K_M = -\log m \pm 1$.

Theorem (Levin)

Given a left-c.e. semimeasure *m*, one can uniformly build a prefix-free machine *M* such that $K_M = -\log m \pm 1$.

To prove Levin's theorem, one can assume that *m* is dyadic and whenever a new amount 2^{-k} is added to some *i*, a new description of *i* is issued in *M*. The new description is carefully chosen to allow (potentially short) future descriptions. This is done by keeping track of the binary expansion of $\sum_{i} m(i)[s]$ at each stage *s*.

In the higher setting, a bit more care is needed as the binary expansion of $\sum_{i} m(i)[s]$ can now be an infinite object, but it turns out that the only case where this could cause an issue is when the binary expansion is of the form

0. * * * *0111111111111111...

which is equal

0. * * * *1000000000000...

and thus is finite.

This observation was made by Nies and Hjorth, who thus obtained:

Theorem (Nies-Hjorth)

Given a **c.e.** semimeasure *m*, one can uniformly build a prefix-free **machine** *M* such that $K_M = -\log m \pm 1$.

One of the big advances of recent years's research in algorithmic randomness is the discovery of the (properties of) the class of **K-trivial** reals.

One of the big advances of recent years's research in algorithmic randomness is the discovery of the (properties of) the class of **K-trivial** reals.

Definition A real X is K-trivial if

 $\mathrm{K}(\mathsf{A} \upharpoonright \mathsf{n}) \leq^+ \mathrm{K}(\mathsf{n})$

These are the reals that are as far as random as possible from the point of view of K. Computable reals are K-trivial but Solovay was able to construct a non-computable c.e. K-trivial.

A remarkable series of results (many authors with Nies as the least common denominator):

A remarkable series of results (many authors with Nies as the least common denominator):

Theorem

A remarkable series of results (many authors with Nies as the least common denominator):

Theorem

The following are equivalent:

• A is K-trivial

A remarkable series of results (many authors with Nies as the least common denominator):

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$

A remarkable series of results (many authors with Nies as the least common denominator):

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$
- A is low for K: $K^{A} =^{+} K$ (or $\tilde{m}^{A} =^{\times} \tilde{m}$)

A remarkable series of results (many authors with Nies as the least common denominator):

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$
- A is low for K: $K^{A} =^{+} K$ (or $\tilde{m}^{A} =^{\times} \tilde{m}$)
- A is a base for ML randomness: there exists an A-ML random real X such that X ≥_T A.

We would like to adapt this in the higher setting. It looks like everything should work out the same way, except for one tiny detail....

We would like to adapt this in the higher setting. It looks like everything should work out the same way, except for one tiny detail....

In the classical setting, \tilde{m}^A is defined in terms of a **uniformly universal c.e. semimeasure**. By this, we mean a function

$$\tilde{m}_2: 2^{<\omega} \times 2^{\omega} \to \mathbb{R}^+$$

- *m*₂(.,.) is left-c.e. in both arguments, i.e. *m*₂(*x*, *A*) > *q* is a Σ⁰₁-statement
- For all A, $\sum_{i} \tilde{m}_{2}(x, A) \leq 1$
- For all A and every A-c.e. semimeasure μ , $\tilde{m}_2(.,A) >^{\times} \mu$

This is heavily used in the classical theory. Unfortunately(?), this does not hold any more in the higher setting.

This is heavily used in the classical theory. Unfortunately(?), this does not hold any more in the higher setting.

Theorem (BGM)

There is no uniformly universal **c.e.** semimeasure (although there is an optimal element among uniform semimeasures).

This is heavily used in the classical theory. Unfortunately(?), this does not hold any more in the higher setting.

Theorem (BGM)

There is no uniformly universal **c.e.** semimeasure (although there is an optimal element among uniform semimeasures).

Actually the situation is even worse.

This is heavily used in the classical theory. Unfortunately(?), this does not hold any more in the higher setting.

Theorem (BGM)

There is no uniformly universal **c.e.** semimeasure (although there is an optimal element among uniform semimeasures).

Actually the situation is even worse.

Theorem (BGM)

There exists an A such that there is no A-c.e. universal semimeasure.

So it does not make sense in general to talk about $K^{\!\!\!A}$ for a given A.

So it does not make sense in general to talk about K^{A} for a given *A*.

[Note: we showed that it does make sense in some particular cases: when *A* is **ML random**, when $A \leq_{tt} O$, when *A* is **1-generic**....]

So it does not make sense in general to talk about K^{A} for a given *A*.

[Note: we showed that it does make sense in some particular cases: when *A* is **ML random**, when $A \leq_{tt} O$, when *A* is **1-generic**....]

So one more quantifier is needed:

Definition A is low for K if for every A-c.e. semimeasure μ one has $\tilde{m} >^{\times} \mu$.

Theorem The following are equivalent:

Theorem

The following are equivalent:

• A is K-trivial

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$
- $\bullet \ \ \text{A is } \textit{low for } K$

Theorem

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$
- $\bullet~\mbox{\it A}$ is low for K
- A is a base for ML randomness: there exists an A-ML random real X such that X ≥_T A.

Theorem

The following are equivalent:

- A is K-trivial
- A is low for MLR: $MLR^A = MLR$
- $\bullet~\mbox{\it A}$ is low for K
- A is a **base for ML randomness**: there exists an A-**ML random** real X such that $X \ge_T A$.

[and there are some **non-computable** ones: Solovay's construction still works]

PROOF

• K-trivial implies low for K by the decanter method (there is no obstacle to translation to higher setting).

- K-trivial implies low for K by the decanter method (there is no obstacle to translation to higher setting).
- **low for** K implies **low for MLR**: if X is not A-MLR, it can be compressed by **some** A-**machine**, even though this machine may not be optimal.

- K-trivial implies low for K by the decanter method (there is no obstacle to translation to higher setting).
- **low for** K implies **low for MLR**: if *X* is not *A*-**MLR**, it can be compressed by **some** *A*-**machine**, even though this machine may not be optimal.
- low for MLR implies base for ML randomness: this is a direct consequence of the higher Kučera-Gács theorem.

- K-trivial implies low for K by the decanter method (there is no obstacle to translation to higher setting).
- low for K implies low for MLR: if X is not A-MLR, it can be compressed by **some** A-machine, even though this machine may not be optimal.
- low for MLR implies base for ML randomness: this is a direct consequence of the higher Kučera-Gács theorem.
- Base for ML randomness implies K-trivial: this is done via the hungry sets constructions, with some careful adaptations.

Caveat: in Nies' book, it is claimed that

```
X base for \Pi_1^1-ML-randomness \Leftrightarrow X is \Delta_1^1.
```

Caveat: in Nies' book, it is claimed that

```
X base for \Pi_1^1-ML-randomness \Leftrightarrow X is \Delta_1^1.
```

This is not a mistake. This is because Nies means something different: he calls *A*-<u>Martin-Löf random</u> a real which passes all the Martin-Löf tests which are $\Pi_1^1[A]$ (equivalently, Σ_1 -definable in $\mathbb{L}_{\omega_1^A}[A]$).

• K-trivials form a Turing-ideal.

- K-trivials form a Turing-ideal.
- They are all $\leq_{tt} \mathcal{O}$.

- K-trivials form a Turing-ideal.
- They are all $\leq_{tt} \mathcal{O}$.
- Every K-trivial is Turing below a c.e. K-trivial.

- K-trivials form a Turing-ideal.
- They are all $\leq_{tt} \mathcal{O}$.
- Every K-trivial is Turing below a c.e. K-trivial.
- K-trivials are jump traceable.

Open questions

Is there an universal A-Martin-Löf test for all A?

Is there an universal A-Martin-Löf test for all A?

Separate **weak-2-randomness** from Π_1^1 -randomness.

Is there an universal A-Martin-Löf test for all A?

Separate **weak-2-randomness** from Π_1^1 -randomness.

Characterize the set of reals *X* such that $C(X \upharpoonright n) > n - c$ i.o.