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{f : f is differentiable} is II}-complete.

Kechris and Woodin, 1986

{f : f is differentiable} = U {f:|flew < a},

a<wi

where each constituent of the union is Borel.
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Effectivizations

Mazurkiewicz, 1936

{f : f is differentiable} is II{-complete.

Effective version:
{e: f. is differentiable} is IT{-complete

Kechris and Woodin, 1986

{f : f is differentiable} = U {f:|flgkw < a},

a<wiy

where each constituent of the union is Borel.

Effective version:

{e: f. is differentiable} = U {e:|felgw < a},

a<wa

where each constituent of the union is HYP.
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(a) The set {e: |felgkw < a+ 1} is Hagr1-complete for any constructive
ordinal o > 0.

(b) The set {e: |felkw < A} is Tx-complete for X a constructive limit ordinal.

Remark: This result is expressed in the notation of Ash and Knight (2000).
Here ()“))’ is a ¥,-complete set.

How can we build differentiable functions which by their ranks encode the
answers to arbitrary Ils, questions?
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The Differentiability Rank

Fix f € C[0,1],e > 0. For a closed set P C [0, 1], define

P]’% = {x € P: for every open U > z, there are p,q,r,s € U
such that[p, q] N [r,s] N P # 0,

fp) — fla)  f(r) = f(s)
p—q r—s

and > e}

Iterate this procedure through all the ordinals.

PJ(‘),S = [O’ 1] P;f:l = (P]?fs)},s Pf\,s = ﬁ04<>\I)J(”:ts
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The Differentiability Rank

Theorem (Kechris and Woodin, 1986)

A function f is differentiable if and only if there is an o < wy such that for all
e, P& =0.
) fie

v

Definition (Kechris and Woodin, 1986)

For f € C[0,1], the differentiability rank of f, denoted |f|xw, is the least
a such that for all e, Pf_ = 0.
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Examples

Q |flkw =11if and only if f is continuously differentiable
Q@ 2?sin(1) has rank 2

@ Here is an idealized rank 2 function:
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Examples

4. Building a function with higher rank:

0

mm%\

5. A rank X\ + 1 function, where A is the limit of ay, aq,...
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Y.o-completeness

Spector showed that |a|o = |blo0 = H, =1 Hp. Thus Haa =1 Hos.

Definition (following Ash and Knight, 2000)

A set X is ¥, if X <3 Haa for any a such that |a|o = a. X is ¥,-complete if
X =1 Hs. for such a.

For example, X is ¥,,-complete if and only if X =; (p())".
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Naive Upper Bound

We are proving this:

For any constructive ordinal o > 0, the set {e : |fe|gw < a+ 1} is
M4 +1-complete.

From the preceding definitions,
|fe|KW <a+1l <<= VEP}%E = .

The statement Py, = 0 is naively Yoq.

Core of the theorem

{e: Pf _ =0} is Baq-complete.
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Building Functions From Trees

Definition
If T C N<N is well-founded, define f7 by fr =0 if T = () and

0 1otherwise.

Proposition

| \

For any well-founded T', fr is everywhere differentiable and uniformly
computable from T.
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A Rank on Trees

Now we define a rank on well-founded trees which agrees with the rank of the
functions they generate.

Definition

For T C N<N a well-founded tree, the limsup rank of T, denoted |T|;s, is
defined as
|T|1s = max(sup [Ty |is, [lim sup | T, ;5] + 1),

if T 0, and |T|;s =0 if T = 0.

For all well-founded T, |T|is = | fr|xw -
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o |T|ls =3
9 |T|ls

w—+1




Forget Everything But Trees

To show that Pg. = () is Ygo-complete, it suffices to do the following:

Uniformly in a given Yo, question, produce T whose rank encodes the answer:
o If ¥, then |T|;s < «
o If Iy, then |T|;s = a+1
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A Strategy For Finite a

“Let the children encode the evidence and witnesses.”
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Example: /Ty Case

Given a statement P = Vz3yR(z,y), we want to build T so that

2 if P
|T|ls = . .
<1 if-=P

This is how nice R has to be

If R satisfies the following, then T is as required:
Q@ (Unique witnesses) R(z,y1) A R(z,y2) = y1 = Y2
@ (Stable evidence) JyR(x,y) = Vz < 2JyR(z,y).

Proof. Suppose P holds. Then infinitely many (x,y,) € T, so |T|;s = 2.
Suppose =P holds, in particular =3y R(xo,y). Then by stable evidence,

(z,y) ¢ T for all z> xy. And by unique witnesses, T" has at most zo-many
children of the form (z,y) for z < zg. So T is finite. O

Linda Brown Westrick ( University of CA Lightface Anal >f the Differentiabi April 25, 2013 16 / 25



A Construction for Finite o

“Let the children encode the evidence and witnesses.”

Lemma
From any a2 statement VxIyR(z,y) one may uniformly produce a sz,

formula R such that
Q VaIyR(z,y) < VzIyR(z,y)
Q R has unique witnesses
@ R has stable evidence

y

Counstruction

Given a Iy, statement P = Va3yR(x,y), define

T(P) ={0} U{{z,y)"0 : 0 € T(R(z,y))}-

n+1 ifP
<n if =P’

Then |T|ls = {

Proof: By induction on T

>f the Differentiabi April 25, 2013 17 / 25
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Recall:

Uniformly in a given Yo, question, produce T whose rank encodes the answer:
o If ¥, then |T|;s < «
o If Iy, then |T|;s = a+1

We have sketched how to do this for the case o < w.
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A Strategy for Infinite o

“Let the children evaluate multiple questions”
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Example: ¥, /11, case

w+1 P,
<w if =P,

Uniformly we can decompose P,, as P, = /\fil P;, where each P; is Ily;.

Given a II,, statement P,, we want to build T" so that |T|;s =

This will work once we make P — T'(P) better

Let T={0}u{n"o:0eT(N, P)}

Unfortunately, this 7" has rank w + 1 regardless of what P is.
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In order to make the preceding construction work, we need

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P, ..., P, where each P; is Ila,,,
produce a tree T(Py,..., P;) such that

AT max; «; + 1 if all statements hold
s < oy for each ¢ such that P; fails

Assuming the stronger combinatorial task when the «; are finite, we can
encode P, = /\;’i1 P; from the previous slide:

T={0tu{n"oc:0eT(P,...,P,)}

w+1 if P,

One may check that |T);s = . .
(the least n such that —=P,)+1 if =P,
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We have “reduced” the entire problem to this:

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P, ..., Py, where each P; is Ily,,,
produce a tree T'(P, ..., Px) such that

(Tl = max; «; + 1 if all statements hold
b < oy for each 7 such that P; fails

We sketch the proof for the special case when a; < w for all i.
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Construction

Given Py, ..., Py, with complexity Il,,, ..., I,,, construct T(Py,..., P;) by
recursion as follows:
@ Renumber all the formulas so that aq > --- > ay,
@ Rewrite all the formulas in the form P; = Va3yR;(z,y), where R; has
unique witnesses and stable evidence. Also ensure that
Ri(z,y) = z<uy.
Q@ PutdinT
@ For each n = (my,...,mg), define T, (the nth subtree):
@ n ¢ T unless mo <my < -+ < myg
@ If for any i, a; = 1 and R;(m;—1,m;) fails, n ¢ T

@ Otherwise, define T;, recursively as the tree obtained from the following
statements:

e R;(mi—1,m;) for each ¢ with a; > 1
o VzIyR;(z,y) for each ¢ with a; < aq.
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Verification

Case 1. Suppose each statement holds.
For each natural number my, define (m) recursively by letting m, be the
unique y such that R;(m;_1,m;) holds.
Then Tz was built from formulas:
o Ri (mifl, mi)7 which hold
e VzIyR;(x,y), which hold

Out of the above formulas, the most complex is (4, —1). Therefore, by
induction, [Tz |1s = (a1 — 1) + 1 = ;. There are infinitely many such
subtrees. So |T|;s = a1 + 1.
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Verification

Case 2. Let r be largest such that Va3yR,.(x,y) fails.

Claims:
@ For each n, |Tylis < .
@ For each choice of myg, ..., m,_1, there is at most one choice of
My, ..., my which makes [Tz |1s = .

@ Let z be such that -3yR,(z,y). THere are only finitely many ways to put
mo <mp < -+ <Mp_q1 < 2.

Q If m,_1 > 2z, then |Tim)[i1s < @, — 1, because R,.(m,_1,m,) does not hold.
Therefore, sup,, |Tn|1s < o (Claim 1) and limsup,, |75, |15 < o, — 1 (Claims
2-4).

Thus |T|;s < a. O
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