# A Lightface Analysis of the Differentiability Rank 

Linda Brown Westrick

University of California, Berkeley
Buenos Aires Semester
Computability, Complexity and Randomness
April 25, 2013

## History

## Mazurkiewicz, 1936

$\{f: f$ is differentiable $\}$ is $\Pi_{1}^{1}$-complete.

## Kechris and Woodin, 1986

$$
\{f: f \text { is differentiable }\}=\bigcup_{\alpha<\omega_{1}}\left\{f:|f|_{K W}<\alpha\right\},
$$

where each constituent of the union is Borel.

## Effectivizations

## Mazurkiewicz, 1936

$\{f: f$ is differentiable $\}$ is $\Pi_{1}^{1}$-complete.

## Effective version:

$\left\{e: f_{e}\right.$ is differentiable $\}$ is $\Pi_{1}^{1}$-complete

## Kechris and Woodin, 1986

$$
\{f: f \text { is differentiable }\}=\bigcup_{\alpha<\omega_{1}}\left\{f:|f|_{K W}<\alpha\right\},
$$

where each constituent of the union is Borel.

## Effective version:

$$
\left\{e: f_{e} \text { is differentiable }\right\}=\bigcup_{\alpha<\omega_{1}^{C K}}\left\{e:\left|f_{e}\right|_{K W}<\alpha\right\},
$$

where each constituent of the union is HYP.

## Our Goal

## Theorem (W)

(a) The set $\left\{e:\left|f_{e}\right|_{K W}<\alpha+1\right\}$ is $\Pi_{2 \alpha+1}$-complete for any constructive ordinal $\alpha>0$.
(b) The set $\left\{e:\left|f_{e}\right|_{K W}<\lambda\right\}$ is $\Sigma_{\lambda}$-complete for $\lambda$ a constructive limit ordinal.

Remark: This result is expressed in the notation of Ash and Knight (2000). Here $\left(\emptyset^{(\omega)}\right)^{\prime}$ is a $\Sigma_{\omega}$-complete set.

## The Problem

How can we build differentiable functions which by their ranks encode the answers to arbitrary $\Pi_{2 \alpha}$ questions?

## The Differentiability Rank

## Definition

Fix $f \in C[0,1], \varepsilon>0$. For a closed set $P \subseteq[0,1]$, define

$$
\begin{aligned}
& P_{f, \varepsilon}^{\prime}=\{x \in P: \text { for every open } U \ni x, \text { there are } p, q, r, s \in U \\
& \text { such that }[p, q] \cap[r, s] \cap P \neq \emptyset \\
& \left.\quad \text { and }\left|\frac{f(p)-f(q)}{p-q}-\frac{f(r)-f(s)}{r-s}\right|>\varepsilon\right\}
\end{aligned}
$$

Iterate this procedure through all the ordinals.

## Definition

$$
P_{f, \varepsilon}^{0}=[0,1] \quad P_{f, \varepsilon}^{\alpha+1}=\left(P_{f, \varepsilon}^{\alpha}\right)_{f, \varepsilon}^{\prime} \quad P_{f, \varepsilon}^{\lambda}=\cap_{\alpha<\lambda} P_{f, \varepsilon}^{\alpha}
$$

## The Differentiability Rank

## Theorem (Kechris and Woodin, 1986)

A function $f$ is differentiable if and only if there is an $\alpha<\omega_{1}$ such that for all $\varepsilon, P_{f, \varepsilon}^{\alpha}=\emptyset$.

## Definition (Kechris and Woodin, 1986)

For $f \in C[0,1]$, the differentiability rank of $f$, denoted $|f|_{K W}$, is the least $\alpha$ such that for all $\varepsilon, P_{f, \varepsilon}^{\alpha}=\emptyset$.

## Examples

(1) $|f|_{K W}=1$ if and only if $f$ is continuously differentiable
(c) $x^{2} \sin \left(\frac{1}{x}\right)$ has rank 2
( Here is an idealized rank 2 function:


## Examples

4. Building a function with higher rank:

5. A rank $\lambda+1$ function, where $\lambda$ is the limit of $\alpha_{1}, \alpha_{2}, \ldots$


## $\Sigma_{\alpha}$-completeness

Spector showed that $|a|_{\mathcal{O}}=|b|_{\mathcal{O}} \Longrightarrow H_{a} \equiv_{T} H_{b}$. Thus $H_{2^{a}} \equiv_{1} H_{2^{b}}$.

## Definition (following Ash and Knight, 2000)

A set X is $\Sigma_{\alpha}$ if $X \leq_{1} H_{2^{a}}$ for any $a$ such that $|a|_{\mathcal{O}}=\alpha$. $X$ is $\Sigma_{\alpha}$-complete if $X \equiv{ }_{1} H_{2^{a}}$ for such $a$.

For example, $X$ is $\Sigma_{\omega}$-complete if and only if $X \equiv_{1}\left(\emptyset^{(\omega)}\right)^{\prime}$.

## Naive Upper Bound

We are proving this:

## Theorem (W)

For any constructive ordinal $\alpha>0$, the set $\left\{e:\left|f_{e}\right|_{K W}<\alpha+1\right\}$ is $\Pi_{2 \alpha+1}$-complete.

From the preceding definitions,

$$
\left|f_{e}\right|_{K W}<\alpha+1 \Longleftrightarrow \forall \varepsilon P_{f, \varepsilon}^{\alpha}=\emptyset
$$

The statement $P_{f, \varepsilon}^{\alpha}=0$ is naively $\Sigma_{2 \alpha}$.

## Core of the theorem

$\left\{e: P_{f_{e}, \varepsilon}^{\alpha}=\emptyset\right\}$ is $\Sigma_{2 \alpha}$-complete.

## Building Functions From Trees

## Definition

If $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is well-founded, define $f_{T}$ by $f_{T} \equiv 0$ if $T=\emptyset$ and


## Proposition

For any well-founded $T, f_{T}$ is everywhere differentiable and uniformly computable from $T$.

## A Rank on Trees

Now we define a rank on well-founded trees which agrees with the rank of the functions they generate.

## Definition

For $T \subseteq \mathbb{N}^{<\mathbb{N}}$ a well-founded tree, the limsup rank of $T$, denoted $|T|_{l_{s}}$, is defined as

$$
|T|_{l s}=\max \left(\sup _{n}\left|T_{n}\right|_{l_{s}},\left[\limsup _{n}\left|T_{n}\right|_{l_{s}}\right]+1\right),
$$

if $T \neq \emptyset$, and $|T|_{l s}=0$ if $T=\emptyset$.

## Proposition

For all well-founded $T,|T|_{l s}=\left|f_{T}\right|_{K W}$.

## Examples

(1) $|T|_{l s}=3$
(2) $|T|_{l_{s}}=\omega+1$

## Forget Everything But Trees

To show that $P_{f, \varepsilon}^{\alpha}=\emptyset$ is $\Sigma_{2 \alpha}$-complete, it suffices to do the following:

## Combinatorial Task

Uniformly in a given $\Sigma_{2 \alpha}$ question, produce $T$ whose rank encodes the answer:

- If $\Sigma_{2 \alpha}$, then $|T|_{l_{s}} \leq \alpha$
- If $\Pi_{2 \alpha}$, then $|T|_{l s}=\alpha+1$


## A Strategy For Finite $\alpha$

"Let the children encode the evidence and witnesses."

## Example: $\Sigma_{2} / \Pi_{2}$ Case

Given a statement $P=\forall x \exists y R(x, y)$, we want to build $T$ so that
$|T|_{l_{s}}=\left\{\begin{array}{ll}2 & \text { if } P \\ \leq 1 & \text { if } \neg P\end{array}\right.$.

## This idea works if $R$ is nice

Let $T=\{\emptyset\} \cup\{\langle x, y\rangle: R(x, y)\}$

## This is how nice $R$ has to be

If $R$ satisfies the following, then $T$ is as required:
(1) (Unique witnesses) $R\left(x, y_{1}\right) \wedge R\left(x, y_{2}\right) \Longrightarrow y_{1}=y_{2}$
(2) (Stable evidence) $\exists y R(x, y) \Longrightarrow \forall z<x \exists y R(z, y)$.

Proof. Suppose $P$ holds. Then infinitely many $\left\langle x, y_{x}\right\rangle \in T$, so $|T|_{l s}=2$. Suppose $\neg P$ holds, in particular $\neg \exists y R\left(x_{0}, y\right)$. Then by stable evidence, $\langle z, y\rangle \notin T$ for all $z \geq x_{0}$. And by unique witnesses, $T$ has at most $x_{0}$-many children of the form $\langle z, y\rangle$ for $z<x_{0}$. So $T$ is finite.

## A Construction for Finite $\alpha$

"Let the children encode the evidence and witnesses."

## Lemma

From any $\Pi_{2 n+2}$ statement $\forall x \exists y R(x, y)$ one may uniformly produce a $\Pi_{2 n}$ formula $\tilde{R}$ such that
(1) $\forall x \exists y R(x, y) \Longleftrightarrow \forall x \exists y \tilde{R}(x, y)$
(2) $\tilde{R}$ has unique witnesses
(3) $\tilde{R}$ has stable evidence

## Construction

Given a $\Pi_{2 n}$ statement $P \equiv \forall x \exists y R(x, y)$, define

$$
T(P)=\{\emptyset\} \cup\{\langle x, y\rangle \wedge \sigma: \sigma \in T(\tilde{R}(x, y))\} .
$$

Then $|T|_{l s}=\left\{\begin{array}{ll}n+1 & \text { if } P \\ \leq n & \text { if } \neg P\end{array}\right.$.
Proof: By induction on $T$.

## Recap

Recall:

## Combinatorial Task

Uniformly in a given $\Sigma_{2 \alpha}$ question, produce $T$ whose rank encodes the answer:

- If $\Sigma_{2 \alpha}$, then $|T|_{l s} \leq \alpha$
- If $\Pi_{2 \alpha}$, then $|T|_{l s}=\alpha+1$

We have sketched how to do this for the case $\alpha<\omega$.

## A Strategy for Infinite $\alpha$

"Let the children evaluate multiple questions"

## Example: $\Sigma_{\omega} / \Pi_{\omega}$ case

Given a $\Pi_{\omega}$ statement $P_{\omega}$ we want to build $T$ so that $|T|_{l_{s}}=\left\{\begin{array}{ll}\omega+1 & \text { if } P_{\omega} \\ <\omega & \text { if } \neg P_{\omega}\end{array}\right.$. Uniformly we can decompose $P_{\omega}$ as $P_{\omega} \equiv \bigwedge_{i=1}^{\infty} P_{i}$, where each $P_{i}$ is $\Pi_{2 i}$.

## This will work once we make $P \mapsto T(P)$ better

Let $T=\{\emptyset\} \cup\left\{n \wedge \sigma: \sigma \in T\left(\bigwedge_{i=1}^{n} P_{i}\right)\right\}$
Unfortunately, this $T$ has rank $\omega+1$ regardless of what $P$ is.

## The Core

In order to make the preceding construction work, we need

## Stronger Combinatorial Task

Uniformly in a finite sequence of statements $P_{1}, \ldots, P_{k}$, where each $P_{i}$ is $\Pi_{2 \alpha_{i}}$, produce a tree $T\left(P_{1}, \ldots, P_{k}\right)$ such that

$$
|T|_{l s}= \begin{cases}\max _{i} \alpha_{i}+1 & \text { if all statements hold } \\ \leq \alpha_{i} & \text { for each } i \text { such that } P_{i} \text { fails }\end{cases}
$$

Assuming the stronger combinatorial task when the $\alpha_{i}$ are finite, we can encode $P_{\omega} \equiv \bigwedge_{i=1}^{\infty} P_{i}$ from the previous slide:

$$
T=\{\emptyset\} \cup\left\{n^{\wedge} \sigma: \sigma \in T\left(P_{1}, \ldots, P_{n}\right)\right\}
$$

One may check that $|T|_{l_{s}}=\left\{\begin{array}{ll}\omega+1 & \text { if } P_{\omega} \\ \left.\text { (the least } n \text { such that } \neg P_{n}\right)+1 & \text { if } \neg P_{\omega}\end{array}\right.$.

## The Core

We have "reduced" the entire problem to this:

## Stronger Combinatorial Task

Uniformly in a finite sequence of statements $P_{1}, \ldots, P_{k}$, where each $P_{i}$ is $\Pi_{2 \alpha_{i}}$, produce a tree $T\left(P_{1}, \ldots, P_{k}\right)$ such that

$$
|T|_{l_{s}}= \begin{cases}\max _{i} \alpha_{i}+1 & \text { if all statements hold } \\ \leq \alpha_{i} & \text { for each } i \text { such that } P_{i} \text { fails }\end{cases}
$$

We sketch the proof for the special case when $\alpha_{i}<\omega$ for all $i$.

## Construction

Given $P_{1}, \ldots, P_{k}$, with complexity $\Pi_{\alpha_{1}}, \ldots, \Pi_{\alpha_{k}}$, construct $T\left(P_{1}, \ldots, P_{k}\right)$ by recursion as follows:
(1) Renumber all the formulas so that $\alpha_{1} \geq \cdots \geq \alpha_{k}$
(2) Rewrite all the formulas in the form $P_{i} \equiv \forall x \exists y R_{i}(x, y)$, where $R_{i}$ has unique witnesses and stable evidence. Also ensure that

$$
R_{i}(x, y) \Longrightarrow x<y
$$

(3) Put $\emptyset$ in $T$
(1) For each $n=\left\langle m_{0}, \ldots, m_{k}\right\rangle$, define $T_{n}$ (the $n$th subtree):
(- $n \notin T$ unless $m_{0}<m_{1}<\cdots<m_{k}$
(2) If for any $i, \alpha_{i}=1$ and $R_{i}\left(m_{i-1}, m_{i}\right)$ fails, $n \notin T$

- Otherwise, define $T_{n}$ recursively as the tree obtained from the following statements:
- $R_{i}\left(m_{i-1}, m_{i}\right)$ for each $i$ with $\alpha_{i}>1$
- $\forall x \exists y R_{i}(x, y)$ for each $i$ with $\alpha_{i}<\alpha_{1}$.


## Verification

Case 1. Suppose each statement holds.
For each natural number $m_{0}$, define $\langle\bar{m}\rangle$ recursively by letting $m_{i}$ be the unique $y$ such that $R_{i}\left(m_{i-1}, m_{i}\right)$ holds.
Then $T_{\langle\bar{m}\rangle}$ was built from formulas:

- $R_{i}\left(m_{i-1}, m_{i}\right)$, which hold
- $\forall x \exists y R_{i}(x, y)$, which hold

Out of the above formulas, the most complex is $\Pi_{2\left(\alpha_{1}-1\right)}$. Therefore, by induction, $\left|T_{\langle\bar{m}\rangle}\right|_{l s}=\left(\alpha_{1}-1\right)+1=\alpha_{1}$. There are infinitely many such subtrees. So $|T|_{l s}=\alpha_{1}+1$.

## Verification

Case 2. Let $r$ be largest such that $\forall x \exists y R_{r}(x, y)$ fails.
Claims:
(1) For each $n,\left|T_{n}\right|_{l s} \leq \alpha_{r}$.
(2) For each choice of $m_{0}, \ldots, m_{r-1}$, there is at most one choice of $m_{r}, \ldots, m_{k}$ which makes $\left|T_{\langle\bar{m}\rangle}\right|_{l s}=\alpha_{r}$.
(3) Let $z$ be such that $\neg \exists y R_{r}(z, y)$. THere are only finitely many ways to put $m_{0}<m_{1}<\cdots<m_{r-1}<z$.
(1) If $m_{r-1} \geq z$, then $\left|T_{\langle\bar{m}\rangle}\right|_{l s} \leq \alpha_{r}-1$, because $R_{r}\left(m_{r-1}, m_{r}\right)$ does not hold.

Therefore, $\sup _{n}\left|T_{n}\right|_{l s} \leq \alpha_{r}$ (Claim 1) and $\lim \sup _{n}\left|T_{n}\right|_{l s} \leq \alpha_{r}-1$ (Claims 2-4).
Thus $|T|_{l s} \leq \alpha_{r}$.

