A Lightface Analysis of the Differentiability Rank

Linda Brown Westrick

University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness

April 25, 2013

Linda Brown Westrick (University of CA Lightface Analysis of the Differentiabi

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mazurkiewicz, 1936

 $\{f:f \text{ is differentiable}\}$ is $\mathbf{\Pi_1^1}\text{-complete}.$

Kechris and Woodin, 1986

$$\{f: f \text{ is differentiable}\} = \bigcup_{\alpha < \omega_1} \{f: |f|_{KW} < \alpha\},\$$

where each constituent of the union is Borel.

・ロト ・日ト ・ヨト・

Mazurkiewicz, 1936

 $\{f:f \text{ is differentiable}\}$ is $\mathbf{\Pi_1^1}\text{-complete}.$

Effective version:

 $\{e: f_e \text{ is differentiable}\}$ is Π_1^1 -complete

Kechris and Woodin, 1986

$$\{f: f \text{ is differentiable}\} = \bigcup_{\alpha < \omega_1} \{f: |f|_{KW} < \alpha\},\$$

where each constituent of the union is Borel.

Effective version:

$$\{e: f_e \text{ is differentiable}\} = \bigcup_{\alpha < \omega_i^{CK}} \{e: |f_e|_{KW} < \alpha\},\$$

where each constituent of the union is HYP.

Theorem (W)

- (a) The set $\{e : |f_e|_{KW} < \alpha + 1\}$ is $\prod_{2\alpha+1}$ -complete for any constructive ordinal $\alpha > 0$.
- (b) The set $\{e : |f_e|_{KW} < \lambda\}$ is Σ_{λ} -complete for λ a constructive limit ordinal.

Remark: This result is expressed in the notation of Ash and Knight (2000). Here $(\emptyset^{(\omega)})'$ is a Σ_{ω} -complete set.

The Problem

How can we build differentiable functions which by their ranks encode the answers to arbitrary $\Pi_{2\alpha}$ questions?

・ロト ・日ト ・ヨト ・ヨト

Definition

Fix $f \in C[0,1], \varepsilon > 0$. For a closed set $P \subseteq [0,1]$, define

$$\begin{split} P_{f,\varepsilon}' &= \{x \in P: \text{ for every open } U \ni x, \text{there are } p,q,r,s \in U \\ &\qquad \text{ such that}[p,q] \cap [r,s] \cap P \neq \emptyset, \\ &\qquad \text{ and } \left| \frac{f(p) - f(q)}{p - q} - \frac{f(r) - f(s)}{r - s} \right| > \varepsilon \} \end{split}$$

Iterate this procedure through all the ordinals.

$$\begin{array}{l} \text{Definition} \\ P^0_{f,\varepsilon} = [0,1] \\ P^{\alpha+1}_{f,\varepsilon} = (P^{\alpha}_{f,\varepsilon})'_{f,\varepsilon} \\ P^{\lambda}_{f,\varepsilon} = \cap_{\alpha < \lambda} P^{\alpha}_{f,\varepsilon} \end{array}$$

・ コ ト ・ 日 ト ・ 目 ト ・

Theorem (Kechris and Woodin, 1986)

A function f is differentiable if and only if there is an $\alpha < \omega_1$ such that for all ε , $P_{f,\varepsilon}^{\alpha} = \emptyset$.

Definition (Kechris and Woodin, 1986)

For $f \in C[0, 1]$, the **differentiability rank** of f, denoted $|f|_{KW}$, is the least α such that for all ε , $P_{f,\varepsilon}^{\alpha} = \emptyset$.

・ロト ・日下・ ・日下・

Examples

- $\ \, {\bf 0} \ \, |f|_{KW} = 1 \ \, {\rm if \ and \ only \ if \ } f \ \, {\rm is \ continuously \ differentiable }$
- 2 $x^2 \sin(\frac{1}{x})$ has rank 2
- Here is an idealized rank 2 function:

・ロト ・日下・ ・日下

Examples

4. Building a function with higher rank:

5. A rank $\lambda + 1$ function, where λ is the limit of $\alpha_1, \alpha_2, \dots$

Spector showed that $|a|_{\mathcal{O}} = |b|_{\mathcal{O}} \implies H_a \equiv_T H_b$. Thus $H_{2^a} \equiv_1 H_{2^b}$.

Definition (following Ash and Knight, 2000)

A set X is Σ_{α} if $X \leq_1 H_{2^a}$ for any *a* such that $|a|_{\mathcal{O}} = \alpha$. X is Σ_{α} -complete if $X \equiv_1 H_{2^a}$ for such *a*.

For example, X is Σ_{ω} -complete if and only if $X \equiv_1 (\emptyset^{(\omega)})'$.

We are proving this:

Theorem (W)

For any constructive ordinal $\alpha > 0$, the set $\{e : |f_e|_{KW} < \alpha + 1\}$ is $\prod_{2\alpha+1}$ -complete.

From the preceding definitions,

$$|f_e|_{KW} < \alpha + 1 \iff \forall \varepsilon P_{f,\varepsilon}^{\alpha} = \emptyset.$$

・ロト ・回ト ・ヨト ・ヨト

April 25, 2013

10 / 25

The statement $P_{f,\varepsilon}^{\alpha} = 0$ is naively $\Sigma_{2\alpha}$.

Core of the theorem

 $\{e: P^{\alpha}_{f_e,\varepsilon} = \emptyset\}$ is $\Sigma_{2\alpha}$ -complete.

Building Functions From Trees

Proposition

For any well-founded T, f_T is everywhere differentiable and uniformly computable from T.

Linda Brown Westrick (University of CA Lightface Analysis of the Differentiabi

・ロト ・日ト ・ヨト

Now we define a rank on well-founded trees which agrees with the rank of the functions they generate.

Definition

For $T \subseteq \mathbb{N}^{<\mathbb{N}}$ a well-founded tree, the **limsup rank** of T, denoted $|T|_{ls}$, is defined as

$$T|_{ls} = \max(\sup_{n} |T_n|_{ls}, [\limsup_{n} |T_n|_{ls}] + 1),$$

(ロ) (日) (日) (日) (日)

April 25, 2013

12 / 25

if $T \neq \emptyset$, and $|T|_{ls} = 0$ if $T = \emptyset$.

Proposition

For all well-founded T, $|T|_{ls} = |f_T|_{KW}$.

$$■ |T|_{ls} = 3
■ |T|_{ls} = ω + 1$$

Linda Brown Westrick (University of CA Lightface Analysis of the Differentiabi

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

To show that $P_{f,\varepsilon}^{\alpha} = \emptyset$ is $\Sigma_{2\alpha}$ -complete, it suffices to do the following:

Combinatorial Task

Uniformly in a given $\Sigma_{2\alpha}$ question, produce T whose rank encodes the answer:

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

April 25, 2013

14 / 25

- If $\Sigma_{2\alpha}$, then $|T|_{ls} \leq \alpha$
- If $\Pi_{2\alpha}$, then $|T|_{ls} = \alpha + 1$

"Let the children encode the evidence and witnesses."

æ

(ロ) (日) (日) (日) (日)

Example: Σ_2/Π_2 Case

Given a statement $P = \forall x \exists y R(x, y)$, we want to build T so that $|T|_{ls} = \begin{cases} 2 & \text{if } P \\ \leq 1 & \text{if } \neg P \end{cases}$.

This idea works if R is nice

Let $T = \{\emptyset\} \cup \{\langle x, y \rangle : R(x, y)\}$

This is how nice R has to be

If R satisfies the following, then T is as required:

(Unique witnesses)
$$R(x, y_1) \wedge R(x, y_2) \implies y_1 = y_2$$

 $(Stable evidence) \exists y R(x, y) \implies \forall z < x \exists y R(z, y).$

Proof. Suppose P holds. Then infinitely many $\langle x, y_x \rangle \in T$, so $|T|_{ls} = 2$. Suppose $\neg P$ holds, in particular $\neg \exists y R(x_0, y)$. Then by stable evidence, $\langle z, y \rangle \notin T$ for all $z \ge x_0$. And by unique witnesses, T has at most x_0 -many children of the form $\langle z, y \rangle$ for $z < x_0$. So T is finite.

・ロト ・日ト ・ヨト ・ヨト

A Construction for Finite α

"Let the children encode the evidence and witnesses."

Lemma

From any Π_{2n+2} statement $\forall x \exists y R(x, y)$ one may uniformly produce a Π_{2n} formula \tilde{R} such that

- $\ \, @ \ \, \tilde{R} \ \, has \ \, unique \ \, witnesses \\$
- \bullet \tilde{R} has stable evidence

Construction

Given a Π_{2n} statement $P \equiv \forall x \exists y R(x, y)$, define

$$T(P) = \{ \emptyset \} \cup \{ \langle x, y \rangle^{\frown} \sigma : \sigma \in T(\tilde{R}(x, y)) \}.$$

Then
$$|T|_{ls} = \begin{cases} n+1 & \text{if } P \\ \leq n & \text{if } \neg P \end{cases}$$

Proof: By induction on T.

Linda Brown Westrick (University of CA Lightface Analysis of the Differentiabi

・ロッ ・回ッ ・ロッ

Recall:

Combinatorial Task

Uniformly in a given $\Sigma_{2\alpha}$ question, produce T whose rank encodes the answer:

- If $\Sigma_{2\alpha}$, then $|T|_{ls} \leq \alpha$
- If $\Pi_{2\alpha}$, then $|T|_{ls} = \alpha + 1$

We have sketched how to do this for the case $\alpha < \omega$.

・ロト ・回ト ・ヨト

"Let the children evaluate multiple questions"

・ロト ・日ト・ ・ヨト

Given a Π_{ω} statement P_{ω} we want to build T so that $|T|_{ls} = \begin{cases} \omega + 1 & \text{if } P_{\omega} \\ < \omega & \text{if } \neg P_{\omega} \end{cases}$. Uniformly we can decompose P_{ω} as $P_{\omega} \equiv \bigwedge_{i=1}^{\infty} P_i$, where each P_i is Π_{2i} .

This will work once we make $P \mapsto T(P)$ better

Let $T = \{\emptyset\} \cup \{n^{\frown}\sigma : \sigma \in T(\bigwedge_{i=1}^{n} P_i)\}$

Unfortunately, this T has rank $\omega + 1$ regardless of what P is.

Linda Brown Westrick (University of CA Lightface Analysis of the Differentiabi

イロト イポト イヨト イヨト

The Core

In order to make the preceding construction work, we need

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P_1, \ldots, P_k , where each P_i is $\Pi_{2\alpha_i}$, produce a tree $T(P_1, \ldots, P_k)$ such that

$$|T|_{ls} = \begin{cases} \max_i \alpha_i + 1 & \text{if all statements hold} \\ \leq \alpha_i & \text{for each } i \text{ such that } P_i \text{ fails} \end{cases}$$

Assuming the stronger combinatorial task when the α_i are finite, we can encode $P_{\omega} \equiv \bigwedge_{i=1}^{\infty} P_i$ from the previous slide:

$$T = \{\emptyset\} \cup \{n^{\frown}\sigma : \sigma \in T(P_1, \dots, P_n)\}$$

One may check that $|T|_{ls} = \begin{cases} \omega + 1 & \text{if } P_{\omega} \\ (\text{the least } n \text{ such that } \neg P_n) + 1 & \text{if } \neg P_{\omega} \end{cases}$.

《曰》 《圖》 《문》 《문》

We have "reduced" the entire problem to this:

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P_1, \ldots, P_k , where each P_i is $\Pi_{2\alpha_i}$, produce a tree $T(P_1, \ldots, P_k)$ such that

$$|T|_{ls} = \begin{cases} \max_i \alpha_i + 1 & \text{if all statements hold} \\ \leq \alpha_i & \text{for each } i \text{ such that } P_i \text{ fails} \end{cases}$$

We sketch the proof for the special case when $\alpha_i < \omega$ for all *i*.

・ロト ・日下 ・ヨト

Given P_1, \ldots, P_k , with complexity $\Pi_{\alpha_1}, \ldots, \Pi_{\alpha_k}$, construct $T(P_1, \ldots, P_k)$ by recursion as follows:

- **Q** Renumber all the formulas so that $\alpha_1 \geq \cdots \geq \alpha_k$
- ② Rewrite all the formulas in the form P_i ≡ ∀x∃yR_i(x, y), where R_i has unique witnesses and stable evidence. Also ensure that R_i(x, y) ⇒ x < y.</p>
- $\textcircled{0} \text{Put} \ \emptyset \text{ in } T$
- For each $n = \langle m_0, \ldots, m_k \rangle$, define T_n (the *n*th subtree):
 - $n \notin T$ unless $m_0 < m_1 < \cdots < m_k$
 - **2** If for any $i, \alpha_i = 1$ and $R_i(m_{i-1}, m_i)$ fails, $n \notin T$
 - **③** Otherwise, define T_n recursively as the tree obtained from the following statements:
 - $R_i(m_{i-1}, m_i)$ for each *i* with $\alpha_i > 1$
 - $\forall x \exists y R_i(x, y)$ for each *i* with $\alpha_i < \alpha_1$.

・ロト ・回ト ・ヨト ・ヨト

Case 1. Suppose each statement holds.

For each natural number m_0 , define $\langle \overline{m} \rangle$ recursively by letting m_i be the unique y such that $R_i(m_{i-1}, m_i)$ holds. Then $T_{\langle \overline{m} \rangle}$ was built from formulas:

• $R_i(m_{i-1}, m_i)$, which hold

• $\forall x \exists y R_i(x, y)$, which hold

Out of the above formulas, the most complex is $\Pi_{2(\alpha_1-1)}$. Therefore, by induction, $|T_{\langle \overline{m} \rangle}|_{ls} = (\alpha_1 - 1) + 1 = \alpha_1$. There are infinitely many such subtrees. So $|T|_{ls} = \alpha_1 + 1$.

(D) (A) (A)

Case 2. Let r be largest such that $\forall x \exists y R_r(x, y)$ fails. Claims:

- For each n, $|T_n|_{ls} \leq \alpha_r$.
- Prove the end of a set of m₀,..., m_{r-1}, there is at most one choice of m_r,..., m_k which makes |T_{⟨m̄⟩}|_{ls} = α_r.
- One Let z be such that ¬∃yR_r(z, y). There are only finitely many ways to put m₀ < m₁ < · · · < m_{r-1} < z.</p>

• If $m_{r-1} \ge z$, then $|T_{\langle \overline{m} \rangle}|_{ls} \le \alpha_r - 1$, because $R_r(m_{r-1}, m_r)$ does not hold. Therefore, $\sup_n |T_n|_{ls} \le \alpha_r$ (Claim 1) and $\limsup_n |T_n|_{ls} \le \alpha_r - 1$ (Claims 2-4). Thus $|T|_{ls} \le \alpha_r$.

イロト イヨト イヨト イヨト

April 25, 2013

25 / 25