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History

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Kechris and Woodin, 1986

{f : f is differentiable} =
⋃
α<ω1

{f : |f |KW < α},

where each constituent of the union is Borel.
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Effectivizations

Mazurkiewicz, 1936

{f : f is differentiable} is Π1
1-complete.

Effective version:
{e : fe is differentiable} is Π1

1-complete

Kechris and Woodin, 1986

{f : f is differentiable} =
⋃
α<ω1

{f : |f |KW < α},

where each constituent of the union is Borel.

Effective version:

{e : fe is differentiable} =
⋃

α<ωCK
1

{e : |fe|KW < α},

where each constituent of the union is HYP.
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Our Goal

Theorem (W)

(a) The set {e : |fe|KW < α+ 1} is Π2α+1-complete for any constructive
ordinal α > 0.

(b) The set {e : |fe|KW < λ} is Σλ-complete for λ a constructive limit ordinal.

Remark: This result is expressed in the notation of Ash and Knight (2000).
Here (∅(ω))′ is a Σω-complete set.

The Problem
How can we build differentiable functions which by their ranks encode the
answers to arbitrary Π2α questions?
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The Differentiability Rank

Definition

Fix f ∈ C[0, 1], ε > 0. For a closed set P ⊆ [0, 1], define

P ′f,ε = {x ∈ P : for every open U 3 x, there are p, q, r, s ∈ U
such that[p, q] ∩ [r, s] ∩ P 6= ∅,

and

∣∣∣∣f(p)− f(q)

p− q
− f(r)− f(s)

r − s

∣∣∣∣ > ε}

Iterate this procedure through all the ordinals.

Definition

P 0
f,ε = [0, 1] Pα+1

f,ε = (Pαf,ε)
′
f,ε Pλf,ε = ∩α<λPαf,ε
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The Differentiability Rank

Theorem (Kechris and Woodin, 1986)

A function f is differentiable if and only if there is an α < ω1 such that for all
ε, Pαf,ε = ∅.

Definition (Kechris and Woodin, 1986)

For f ∈ C[0, 1], the differentiability rank of f , denoted |f |KW , is the least
α such that for all ε, Pαf,ε = ∅.
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Examples

1 |f |KW = 1 if and only if f is continuously differentiable

2 x2 sin( 1
x ) has rank 2

3 Here is an idealized rank 2 function:

0 1

y = x2
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Examples

4. Building a function with higher rank:

0 1

α + 1

5. A rank λ+ 1 function, where λ is the limit of α1, α2,...

0 1

α2 α1

Linda Brown Westrick ( University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness)A Lightface Analysis of the Differentiability Rank April 25, 2013 8 / 25



Σα-completeness

Spector showed that |a|O = |b|O =⇒ Ha ≡T Hb. Thus H2a ≡1 H2b .

Definition (following Ash and Knight, 2000)

A set X is Σα if X ≤1 H2a for any a such that |a|O = α. X is Σα-complete if
X ≡1 H2a for such a.

For example, X is Σω-complete if and only if X ≡1 (∅(ω))′.
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Naive Upper Bound

We are proving this:

Theorem (W)

For any constructive ordinal α > 0, the set {e : |fe|KW < α+ 1} is
Π2α+1-complete.

From the preceding definitions,

|fe|KW < α+ 1 ⇐⇒ ∀εPαf,ε = ∅.

The statement Pαf,ε = 0 is naively Σ2α.

Core of the theorem

{e : Pαfe,ε = ∅} is Σ2α-complete.
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Building Functions From Trees

Definition

If T ⊆ N<N is well-founded, define fT by fT ≡ 0 if T = ∅ and

0 1

T_0T_1

0 1otherwise.

Proposition

For any well-founded T , fT is everywhere differentiable and uniformly
computable from T .
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A Rank on Trees

Now we define a rank on well-founded trees which agrees with the rank of the
functions they generate.

Definition

For T ⊆ N<N a well-founded tree, the limsup rank of T , denoted |T |ls, is
defined as

|T |ls = max(sup
n
|Tn|ls, [lim sup

n
|Tn|ls] + 1),

if T 6= ∅, and |T |ls = 0 if T = ∅.

Proposition

For all well-founded T , |T |ls = |fT |KW .
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Examples

1 |T |ls = 3

2 |T |ls = ω + 1
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Forget Everything But Trees

To show that Pαf,ε = ∅ is Σ2α-complete, it suffices to do the following:

Combinatorial Task
Uniformly in a given Σ2α question, produce T whose rank encodes the answer:

If Σ2α, then |T |ls ≤ α
If Π2α, then |T |ls = α+ 1
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A Strategy For Finite α

“Let the children encode the evidence and witnesses.”
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Example: Σ2/Π2 Case

Given a statement P = ∀x∃yR(x, y), we want to build T so that

|T |ls =

{
2 if P

≤ 1 if ¬P
.

This idea works if R is nice

Let T = {∅} ∪ {〈x, y〉 : R(x, y)}

This is how nice R has to be
If R satisfies the following, then T is as required:

1 (Unique witnesses) R(x, y1) ∧R(x, y2) =⇒ y1 = y2
2 (Stable evidence) ∃yR(x, y) =⇒ ∀z < x∃yR(z, y).

Proof. Suppose P holds. Then infinitely many 〈x, yx〉 ∈ T , so |T |ls = 2.
Suppose ¬P holds, in particular ¬∃yR(x0, y). Then by stable evidence,
〈z, y〉 /∈ T for all z ≥ x0. And by unique witnesses, T has at most x0-many
children of the form 〈z, y〉 for z < x0. So T is finite.

Linda Brown Westrick ( University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness)A Lightface Analysis of the Differentiability Rank April 25, 2013 16 / 25



A Construction for Finite α

“Let the children encode the evidence and witnesses.”

Lemma

From any Π2n+2 statement ∀x∃yR(x, y) one may uniformly produce a Π2n

formula R̃ such that

1 ∀x∃yR(x, y) ⇐⇒ ∀x∃yR̃(x, y)

2 R̃ has unique witnesses

3 R̃ has stable evidence

Construction

Given a Π2n statement P ≡ ∀x∃yR(x, y), define

T (P ) = {∅} ∪ {〈x, y〉aσ : σ ∈ T (R̃(x, y))}.

Then |T |ls =

{
n+ 1 if P

≤ n if ¬P
.

Proof: By induction on T .
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Recap

Recall:

Combinatorial Task
Uniformly in a given Σ2α question, produce T whose rank encodes the answer:

If Σ2α, then |T |ls ≤ α
If Π2α, then |T |ls = α+ 1

We have sketched how to do this for the case α < ω.
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A Strategy for Infinite α

“Let the children evaluate multiple questions”

Linda Brown Westrick ( University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness)A Lightface Analysis of the Differentiability Rank April 25, 2013 19 / 25



Example: Σω/Πω case

Given a Πω statement Pω we want to build T so that |T |ls =

{
ω + 1 if Pω

< ω if ¬Pω
.

Uniformly we can decompose Pω as Pω ≡
∧∞
i=1 Pi, where each Pi is Π2i.

This will work once we make P 7→ T (P ) better

Let T = {∅} ∪ {naσ : σ ∈ T (
∧n
i=1 Pi)}

Unfortunately, this T has rank ω + 1 regardless of what P is.

Linda Brown Westrick ( University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness)A Lightface Analysis of the Differentiability Rank April 25, 2013 20 / 25



The Core

In order to make the preceding construction work, we need

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P1, . . . , Pk, where each Pi is Π2αi ,
produce a tree T (P1, . . . , Pk) such that

|T |ls =

{
maxi αi + 1 if all statements hold

≤ αi for each i such that Pi fails

Assuming the stronger combinatorial task when the αi are finite, we can
encode Pω ≡

∧∞
i=1 Pi from the previous slide:

T = {∅} ∪ {naσ : σ ∈ T (P1, . . . , Pn)}

One may check that |T |ls =

{
ω + 1 if Pω

(the least n such that ¬Pn) + 1 if ¬Pω
.
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The Core

We have “reduced” the entire problem to this:

Stronger Combinatorial Task

Uniformly in a finite sequence of statements P1, . . . , Pk, where each Pi is Π2αi
,

produce a tree T (P1, . . . , Pk) such that

|T |ls =

{
maxi αi + 1 if all statements hold

≤ αi for each i such that Pi fails

We sketch the proof for the special case when αi < ω for all i.
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Construction

Given P1, . . . , Pk, with complexity Πα1
, . . . ,Παk

, construct T (P1, . . . , Pk) by
recursion as follows:

1 Renumber all the formulas so that α1 ≥ · · · ≥ αk
2 Rewrite all the formulas in the form Pi ≡ ∀x∃yRi(x, y), where Ri has

unique witnesses and stable evidence. Also ensure that
Ri(x, y) =⇒ x < y.

3 Put ∅ in T
4 For each n = 〈m0, . . . ,mk〉, define Tn (the nth subtree):

1 n /∈ T unless m0 < m1 < · · · < mk

2 If for any i, αi = 1 and Ri(mi−1,mi) fails, n /∈ T
3 Otherwise, define Tn recursively as the tree obtained from the following

statements:

Ri(mi−1,mi) for each i with αi > 1
∀x∃yRi(x, y) for each i with αi < α1.
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Verification

Case 1. Suppose each statement holds.
For each natural number m0, define 〈m〉 recursively by letting mi be the
unique y such that Ri(mi−1,mi) holds.
Then T〈m〉 was built from formulas:

Ri(mi−1,mi), which hold

∀x∃yRi(x, y), which hold

Out of the above formulas, the most complex is Π2(α1−1). Therefore, by
induction, |T〈m〉|ls = (α1 − 1) + 1 = α1. There are infinitely many such
subtrees. So |T |ls = α1 + 1.

Linda Brown Westrick ( University of California, Berkeley Buenos Aires Semester Computability, Complexity and Randomness)A Lightface Analysis of the Differentiability Rank April 25, 2013 24 / 25



Verification

Case 2. Let r be largest such that ∀x∃yRr(x, y) fails.
Claims:

1 For each n, |Tn|ls ≤ αr.
2 For each choice of m0, . . . ,mr−1, there is at most one choice of
mr, . . . ,mk which makes |T〈m〉|ls = αr.

3 Let z be such that ¬∃yRr(z, y). THere are only finitely many ways to put
m0 < m1 < · · · < mr−1 < z.

4 If mr−1 ≥ z, then |T〈m〉|ls ≤ αr − 1, because Rr(mr−1,mr) does not hold.

Therefore, supn |Tn|ls ≤ αr (Claim 1) and lim supn |Tn|ls ≤ αr − 1 (Claims
2-4).
Thus |T |ls ≤ αr.
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