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Background

– 1930: Kronecker, Van der Waerden, and others study
‘explicitly given’ fields, splitting algorithms, etc.

1947-50: Post and Turing show undecidability of semigroup
problems.

1954-55: Novikov and Boon show undecidability of the Word
Problem for Groups.

1956: Frölich and Shepherdson give basic definitions;
construct an explicitly given field with no splitting algorithm.

1960-70: Hilbert’s Tenth Problem (Putnam, Robinson, Davis,
Matiyasevich)

Computable Ring Theory.

Chris Conidis Algebraic Computability: A Personal Perspective



Background

– 1930: Kronecker, Van der Waerden, and others study
‘explicitly given’ fields, splitting algorithms, etc.

1947-50: Post and Turing show undecidability of semigroup
problems.

1954-55: Novikov and Boon show undecidability of the Word
Problem for Groups.
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Background

Definition

A computable ring is a computable subset A ⊆ N equipped with
two computable binary operations + and · on A, together with
elements 0, 1 ∈ A such that R = (A, 0, 1,+, ·) is a ring.

All rings will be countable and commutative, unless we say
otherwise.
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Background

Definition

A ring R is Noetherian if every infinite ascending chain of ideals
I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ IN ⊆ · · · in R eventually stabilizes.

Theorem

R is Noetherian if and only if every ideal of R is finitely generated.

Definition

A ring R is Artinian if every infinite descending chain of ideals
J0 ⊇ J1 ⊇ J2 ⊇ · · · JN ⊇ · · · in R eventually stabilizes.

Definition

A ring R is strongly Noetherian if there exists a number n ∈ N
such that the length of every strictly increasing chain of ideals in R
is bounded by n.
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Background

Theorem 1 (Hopkins, Annals of Math 1939)

If R is Artinian, then R is Noetherian.

Theorem 2 (Hopkins, Annals of Math 1939)

If R is Artinian, then R is strongly Noetherian.
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Reverse Mathematics

3 standard subsystems of second order arithmetic:

RCA0: Recursive Comphrehension Axiom.

WKL0: Weak König’s Lemma.

ACA0: Arithmetic Comprehension Axiom.

ACA0 −→WKL0 −→ RCA0
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Reverse Math of Rings

Theorem (Friedman, Simpson, Smith)

Over RCA0, WKL0 is equivalent to the statement “Every ring
contains a prime ideal.”

Theorem (Friedman, Simpson, Smith)

Over RCA0, ACA0 is equivalent to the statement “Every ring
contains a maximal ideal.”

Chris Conidis Algebraic Computability: A Personal Perspective



Reverse Math of Rings

Theorem (Friedman, Simpson, Smith)

Over RCA0, WKL0 is equivalent to the statement “Every ring
contains a prime ideal.”

Theorem (Friedman, Simpson, Smith)

Over RCA0, ACA0 is equivalent to the statement “Every ring
contains a maximal ideal.”

Chris Conidis Algebraic Computability: A Personal Perspective



Ideals in Computable Rings

Theorem (Downey, Lempp, Mileti)

There is a computable integral domain R such that R is not a
field, and every nontrivial ideal in R is of PA degree.

Corollary (RCA0)

WKL0 is equivalent to the statement “Every ring that is not a field
contains a nontrivial ideal.”

Mileti: What is the reverse mathematical strength of the theorem
that says every Artinian ring is Noetherian?
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Every Artinian Ring is Noetherian

Theorem 1

If R contains an infinite strictly increasing chain of ideals, then R
also contains an infinite strictly decreasing chain of ideals.

Theorem 2

If, for every n ∈ N, R contains a strictly increasing chain of ideals
of length n, then R also contains an infinite strictly decreasing
chain of ideals.

How much computational power does it take to go from an infinite
strictly increasing chain of ideals to an infinite strictly decreasing
chain of ideals?
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New Results

Theorem (Conidis, 2010)

There is a computable integral domain R with an infinite uniformly
computable strictly increasing chain of ideals, and such that every
strictly decreasing chain of ideals in R contains a member of PA
degree.

Corollary (RCA0)

Theorem 1 implies WKL0.
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Results

Theorem (Conidis, 2010)

The following are equivalent over RCA0.

1. WKL0.

2. If R is Artinian, then every prime ideal of R is maximal.

3. If R is Artinian and an integral domain, then R is a field.

4. If R is Artinian, then the Jacobson radical J ⊂ R and
nilradical N ⊂ R exist and are equal.

5. If R is Artinian, then J ⊂ R exists and R/J is Noetherian.
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Results

Theorem (Conidis, 2010)

There is a computable ring R such that, for every n ∈ N, R
contains a strictly increasing chain of computable ideals of length
n, and such that every infinite strictly decreasing chain of ideals in
R computes ∅′.

Theorem (Conidis, 2010)

ACA0 proves Theorem 2.

Corollary (RCA0+BΣ2)

Theorem 2 is equivalent to ACA0.

Corollary (RCA0)

Theorem 1 is implied by ACA0, and implies WKL0.
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Ideals in Computable Rings

Theorem (Downey, Lempp, Mileti)

There is a computable integral domain R such that R is not a
field, and every nontrivial ideal in R is of PA degree.

Question: Does there exist such a ring R that is not an integral
domain? No.

Ann(x) = {y ∈ R : x · y = 0} ⊂ R
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The Search for a Proof of Theorem 1 that doesn’t filter
through Theorem 2

Question

Does there exist a proof of Theorem 1 that doesn’t also prove
Theorem 2?

Does there exist a model of RCA0 in which every Artinian ring
is Noetherian, but not every Artinian ring has finite length?

Is there a proof of the Key Lemma that does not use the full
power of ACA0?

Answer: Yes!

Theorem (Conidis, 2012)

Theorem 1 is equivalent to WKL0 over RCA0.

Theorem (Conidis, 2012)

The Key Lemma is equivalent to WKL0 over RCA0.
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A Computable Structure Theorem for Computable Artinian
Rings

Theorem

Every Artinian ring is a finite direct product of local Artinian rings.
(Z/nZ)

Theorem (Conidis, 2013)

Every computable Artinian ring is a finite (computable) direct
product of computable local Artinian rings, each with computable
maximal ideal M and tower

R ⊃ M ⊃ M2 ⊃ M3 · · · ⊃ MN = 0.

Corollary

WKL0 proves Theorem 1.

Combination of two different proofs over IΣ2, and the Computable
Structure Theorem.
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Computable Vector Spaces

Theorem (Downey, Hirschfeldt, Kach, Lempp, Mileti, Montalbán,
2007)

There is a computable infinite dimensional vector space V such
that every nontrivial subspace of V is of PA Turing degree. The
converse is obvious.

Theorem (DHKLMM, 2007)

WKL0 is equivalent to saying that “every vector space of
dimension at least two has a nontrivial subspace.”
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Foundational Questions About Infinite Dimensional Vector
Spaces

Question (Downey)

What are the Reverse Mathematical Strengths of the following
statements?

1 Every infinite dimensional vector space has an infinite
dimensional proper subspace.

2 Every infinite dimensional vector space has an
infinite/coinfinite dimensional subspace.

3 Every infinite dimensional vector space has an infinite/cofinite
dimensional subspace.

Notice that (1) is weaker than (2),(3), and it is not hard to check
that (1)–(3) follow from ACA0.
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Reverse Mathematics of Infinite Dimensional Vector Spaces

Theorem (Conidis, 2012)

There is a computable vector space V such that every infinite
dimensional proper subspace of V computes ∅′.

Corollary

Statements (1)–(3) from the previous slide are equivalent to ACA0.
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2-Based Vector Spaces

Definition

A (computable) vector space V is 2-based if it is a quotient of the
form

V = Q∞/〈vi − qi ,jvj : i 6= j , qi ,j ∈ Q〉.

Theorem

There is a computable 2-based vector space V such that every
infinite/coinfinite dimensional subspace of V computes ∅′.
(Analogous to (2))

Theorem

There is a computable 2-based vector space V such that every
infinite/cofinite dimensional subspace of V computes ∅′.
(Analogous to (3))
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2-Based Vector Spaces

Corollary

The statements

“Every infinite dimensional 2-based vector space contains an
infinite/coinfinite dimensional subspace,” and

“Every infinite dimensional 2-based vector space contains an
infinite/cofinite dimensional subspace”

Are equivalent to ACA0 (over RCA0).
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Infinite Dimensional Proper Subspaces of 2-Based Vector
Spaces

Theorem

Let P be a PA-Turing Degree, and let V be a computable infinite
dimensional 2-based vector space. Then P computes an infinite
dimensional proper subspace of V . (Analogous to (1))

Corollary

The statement “Every infinite dimensional 2-based vector space
has an infinite dimensional subspace” is equivalent to WKL0 over
RCA0.

This gives a connection between the equational definition of a
vector space and its algorithmic properties. More complicated (i.e.
non-2-based) equations are required to produce an infinite
dimensional vector space all of whose proper infinite dimensional
subspaces compute ∅′.
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Euclidean Domains

Definition

A ring R is said to be a Euclidean domain if it is an integral
domain and there is a function ϕ : R → N such that:

1 ϕ(x) = 0 whenever x = 0 or x is a unit.

2 For all nonzero x ∈ R and y ∈ R we can write

y = qx + r

where ϕ(x) > ϕ(r).

Every Eulidean ring has a “Euclidean Algorithm.” If R is a
computable Euclidean ring with a computable Euclidean function
ϕ, then R has a computable Euclidean Algorithm.
For the purposes of a Euclidean Algorithm, we can replace N with
any given ordinal α. Such rings are called Transfinite Euclidean
Domains.

Chris Conidis Algebraic Computability: A Personal Perspective



Euclidean Domains

Definition

A ring R is said to be a Euclidean domain if it is an integral
domain and there is a function ϕ : R → N such that:

1 ϕ(x) = 0 whenever x = 0 or x is a unit.

2 For all nonzero x ∈ R and y ∈ R we can write

y = qx + r

where ϕ(x) > ϕ(r).

Every Eulidean ring has a “Euclidean Algorithm.” If R is a
computable Euclidean ring with a computable Euclidean function
ϕ, then R has a computable Euclidean Algorithm.

For the purposes of a Euclidean Algorithm, we can replace N with
any given ordinal α. Such rings are called Transfinite Euclidean
Domains.

Chris Conidis Algebraic Computability: A Personal Perspective



Euclidean Domains

Definition

A ring R is said to be a Euclidean domain if it is an integral
domain and there is a function ϕ : R → N such that:

1 ϕ(x) = 0 whenever x = 0 or x is a unit.

2 For all nonzero x ∈ R and y ∈ R we can write

y = qx + r

where ϕ(x) > ϕ(r).

Every Eulidean ring has a “Euclidean Algorithm.” If R is a
computable Euclidean ring with a computable Euclidean function
ϕ, then R has a computable Euclidean Algorithm.
For the purposes of a Euclidean Algorithm, we can replace N with
any given ordinal α. Such rings are called Transfinite Euclidean
Domains.

Chris Conidis Algebraic Computability: A Personal Perspective



Transfinite Euclidean Domains

Theorem (Motzkin, 1949)

R is a Transfinite Euclidean Domain if and only if there is an
ordinal β and strictly increasing sequence of sets {Rα}α<β such
that:

1 R0 exactly contains the zero element and units of R;

2 Rα+1 exactly contains those elements x ∈ R such that for all
y ∈ R there exists r ∈ ∪ρ<α+1Rρ;

3 Rα = ∪ρ<αRρ whenever α is a limit ordinal;

4 Rβ = R.

Corollary (Samuel, 1971)

Every Transfinite Euclidean Domain R has a minimal Euclidean
function ϕ0 such that ϕ0(x) = α if and only if x ∈ Rα. Moreover,
ϕ0 is the pointwise minimum over all Euclidean functions for R.
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Transfinite Euclidean Domains

Definition

The Transfinite Euclidean Rank of a Transfinite Euclidean Domain
R is the ordinal β in the Theorem above. It is the least ordinal β
for which there is a Euclidean function ϕ : R → β.
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A Question

Question (Motzkin 1949, Samuel 1971)

Is there a properly Transfinite Euclidean Domain? In other words,
is there a Euclidean Domain R with Euclidean Rank > ω?

Theorem (Hiblot, 1975)

There is a Properly Transfinite Euclidean Domain of rank ≤ ω2

(smallest).
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A More Genreal Question

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement
(MTEF) that says “Every transfinite Euclidean ring has a minimal
Transfinite Euclidean Function”?
Is there a largest possible Transfinite Euclidean Rank for all
Euclidean Domains? (This generalizes Motzkin, Samuel above)

Theorem (Conidis, 2013)

Every cardinal κ is the Euclidean rank of some Transfinite
Euclidean Domain R.
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Thank You!
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