
Random measures

Quinn Culver

The University of Notre Dame

24 April 2013

Quinn Culver (Notre Dame) Random measures 24 April 2013 1 / 24



Motivating Question

Is there a natural measure on the space of measures (on 2ω) as, say, the
Lebesgue measure is natural?
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Preliminaries

A (Borel probability) measure on 2ω is a function µ : 2<ω → [0, 1]
satisfying

I µ(∅) = 1 and
I µ(σ) = µ(σ0) + µ(σ1).

P(2ω) = (Borel probability) measures on 2ω

I This space is nice enough to do computability on.

MLRλ ⊂ 2ω is the set of (Lebesgue) Martin-Löf randoms.
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Introduction

A measure is determined by the sequence 〈µ(0|σ)〉σ∈2<ω of
conditional probabilities, where µ(0|σ)µ(σ) = µ(σ0).

This is easy to work with.
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A Natural Map

Definition (Porter)

The map Φ: 2ω → P(2ω), x 7→ µx is defined by

µx(∅) = 1,

µx(0|σi ) = xi ,

where xi (j) = x(〈i , j〉) is the i th column of x (thought of as a real
number).

This map is

computable: µx(σ) is computable, to desired precision, uniformly in
(the oracle) x and σ;

surjective

(strongly) almost injective: y has no dyadic columns and
x 6= y =⇒ µx 6= µy
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Gloria in excelsis Φ

“A function is glorified into a random variable as soon as its domain is
assigned a probability distribution with respect to which the function is
measurable” – Joseph Doob

Φ pushes forward λ to P = λ ◦ Φ−1 ∈ P(P(2ω))

P corresponds to the stochastic process that uses an IID uniform
sequence 〈Xi 〉i∈ω to assign conditional probabilities (as before)

Any Q ∈ P(P(2ω)) is the push forward of some measure on [0, 1] via
Φ.

I Does that make P natural?
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Random measures

Now we have MLRP = Φ(MLRλ)

What do elements of MLRP look like?

What do elements of MLRµ look like for µ ∈ MLRP?

I y ∈ MLRµ if y /∈
⋂

Un whenever 〈Un〉n∈ω is uniformly Σ0,x
1 with

µUn ≤ 2−n, where µ = µx .
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Barycenter of P

Fact

λ(σ) =

∫
P(2ω)

µ(σ) dP

Proof.∫
P(2ω)

µ(σ) dP =

∫
2ω
µx(σ) dλ (Change of variables.)

=

∫
2ω

|σ|−1∏
i=0

µx(σ(i)|σ � i) dλ

=

|σ|−1∏
i=0

∫
2ω
µx(σ(i)|σ � i) dλ (Independence.)

= 2−|σ|
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Randoms’ randoms are random...

Fact (Hoyrup) ⋃
µ∈MLRP

MLRµ = MLRλ

Proof.

(⊆) A λ Solovay test 〈An〉n∈ω is a µ Solovay test for each µ ∈ MLRP :
Build a P-ML test Vk := {µ :

∑
n µ(An) > 2k} ∈ Σ0

1.

1 ≥
∑

λAn =

∫ ∑
µ(An) dP ≥

∫
Vk

∑
µ(An) dP

≥ 2kP(Vk)
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...and randoms are randoms’ randoms

⋃
µ∈MLRP

MLRµ = MLRλ

Proof (cont.)

(⊇)

∃ lower semicomputable (l.s.c.) tP : P(2ω)→ [0,∞] and
tµ : 2ω → [0,∞] that are finite iff input is random.

tP(µ) · tµ(x) is a l.s.c. function of (µ, x)

f (x) := infµ tP(µ) · tµ(x) is l.s.c.∫
2ω f (x) dλ ≤ 1

So x ∈ MLRλ ⇒ f (x) <∞⇒ tP(µ) <∞ and tµ(x) <∞
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Random measures are atomless

Fact (Quinn)

µ ∈ MLRP ⇒ ∀x µ{x} = 0.

Proof.

{x : µx has an atom with mass ≥ 1/n} = {x : ∀k∃σ ∈ 2k [µx(σ) ≥
1/n]} ∈ Π0

1.

m(x) := max mass of an atom of µx ,

mi (x) := max mass of an atom strictly above i = 0, 1
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Random measures are atomless

Atomlessness proof continued.

m(x) := max mass of an atom of µx ,

mi (x) := max mass of an atom strictly above i = 0, 1

Facts:

m(x) = max{x0m0(x), (1− x0)m1(x)}
m and mi have the same distribution.

Kolmogorov’s 0-1 law ⇒ m,mi = 0 a.s. or m,mi > 0 a.s.

Quinn Culver (Notre Dame) Random measures 24 April 2013 12 / 24



Random measures are atomless

Atomlessness proof continued.

M := {x0m0 ≥ (1− x0)m1}.∫
2ω

m(x) =

∫
M

x0m0(x) +

∫
Mc

(1− x0)m1(x)

≤
∫
2ω

x0m0(x) +

∫
Mc

(1− x0)m1(x)

=

∫
2ω

fc(x)m(x) +

∫
Mc

(1− x0)m1(x) (fc ≡d x0)

=

∫
2ω

fc(x)m(x) +

∫
2ω

(1− x0)m1(x)−
∫
M

(1− x0)m1(x)

=

∫
2ω

fc(x)m(x) +

∫
2ω

(1− fc(x))m(x)−
∫
M

(1− x0)m1(x)

=

∫
2ω

m(x)−
∫
M

(1− x0)m1(x).
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Random measures are atomless

Atomlessness proof continued.∫
2ω m(x) ≤

∫
2ω m(x) −

∫
M(1− x0)m1(x)

⇒ λM = 0 or m1(x) = 0 a.s. on M.

Similarly λ(Mc) = 0 or m0(x) = 0 a.s. on Mc .

0 < λM ⇒ m1 = 0 is zero on a positive measure set, hence a.e.

Similarly if 0 < λMc .

Thus having an atom is a null Π0
1 class, so even Kurtz random measures

are atomless.
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Random measures are mutually singular (wrt λ)

Definition

Absolute continuity: µ� λ iff λA = 0⇒ µA = 0
I Note: µ� λ⇒ µ atomless

Mutual singularity: µ ⊥ λ iff ∃A λA = 1, µA = 0.
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Random measures are mutually singular (wrt λ)

Fix µ ∈ MLRP .

Fact (Laurent)

MLRµ︸ ︷︷ ︸
µ−full

∩MLRµ︸ ︷︷ ︸
λ−full

= ∅

Proof idea.

Given x , look at places where µ(0|x � n) > 3
4 .

x ∈ MLRµ obeys the µ measure, so more than 3
4 of the time, x(n)

will be 0.

x ∈ MLRµ obeys λ, so 1
2 of the time, x(n) will be 0.
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B/t absolute continuity & atomlessness

Motivation: If µ� λ, then by Radon-Nikdodym and Lebesgue
differentiation

− logµ(x � n)

n
→ 1 µ-a.e. &λ-a.e.

Notice: lim sup− log µ(x�n)
n > 0µ-a.e.⇒ µ is atomless.
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B/t absolute continuity & atomlessness

ci (µ, x) := µ(x(i)|x � i)

µ(x � n) =
∏

i<n ci (µ, x)

The ci ’s are uniformly distributed IID
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B/t absolute continuity & atomlessness

For all x and P-almost every µ,

−1

n
logµ(x � n) = −1

n
log

∏
i<n

ci (µ, x)

= −1

n

∑
i<n

log ci (µ, x)

→ −E(log ci ) = 1 (By LLN.)
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B/t absolute continuity & atomlessness

Fact (Effective LLN)

Since 〈log ci 〉i∈ω is an IID sequence of computable random variables on
P(2ω)× 2ω, for each (µ, x) ∈ MLRP⊗λ

−1

n

∑
i<n

log ci (µ, x)→ 1.
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B/t absolute continuity & atomlessness

Fact (Van Lambalgen)

(µ, x) ∈ MLRP⊗λ iff µ ∈ MLRP and x ∈ MLRµ
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B/t absolute continuity & atomlessness

(µ, x) ∈ MLRP⊗λ iff µ ∈ MLRP and x ∈ MLRµ

Fact

If µ ∈ MLRP , then − 1
n logµ(x � n)→ 1 for x ∈ MLRµ (in particular

λ-a.e.).

So λ-a.e. x has lots of µ-information (on average).
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B/t absolute continuity & atomlessness

− 1
n logµ(x � n)→ 1 λ-a.e.

But this doesn’t generalize atomlessness, we want convergence µ-a.e.

Conjecture

If µ ∈ MLRP and x ∈ MLRµ, then

−1

n
logµ(x � n)→

∫
H(p)dλ,

where H(p) = −p log p − (1− p) log(1− p).
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Questions & To-do list

Are there µ, ν ∈ MLRP with MLRµ ∩MLRν = ∅?
If not, are there µi ∈ MLRP with

⋂
MLRµi = ∅?

What is P{µ : x ∈ MLRµ} for a fixed x ∈ MLRλ?

Investigate the more general theory of pushing forward not-necessarily
λ.

The maps Tσ : P(2ω)→ P(2ω), T (µ)(τ) = µ(στ)/µ(σ) are
P-invariant for each σ.

Computability-theoretic questions?
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