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Motivating Question

Is there a natural measure on the space of measures (on 2¥) as, say, the
Lebesgue measure is natural?
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Preliminaries

o A (Borel probability) measure on 2 is a function p: 2<“ — [0, 1]
satisfying
» u(@)=1and
> p(o) = u(00) + (o).
e P(2¥) = (Borel probability) measures on 2“
» This space is nice enough to do computability on.

e MLR) C 2¥ is the set of (Lebesgue) Martin-Lof randoms.
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Introduction

@ A measure is determined by the sequence (1(0[0)),cp<w Of
conditional probabilities, where ;(0|o) (o) = p(00).

@ This is easy to work with.
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A Natural Map

Definition (Porter)
The map ®: 2 — P(2¥), x — iy is defined by
o ux(2) =1,
o ux(0]oj) = x;,
where x;(j) = x((i,j)) is the i column of x (thought of as a real
number).

This map is
e computable: py(o) is computable, to desired precision, uniformly in
(the oracle) x and o;
@ surjective
@ (strongly) almost injective: y has no dyadic columns and
XFY = fix # Hy
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Gloria in excelsis ®

“A function is glorified into a random variable as soon as its domain is
assigned a probability distribution with respect to which the function is
measurable” — Joseph Doob

e ® pushes forward A to P = Ao ®~1 € P(P(2¥))

@ P corresponds to the stochastic process that uses an [ID uniform
sequence (Xj);.,, to assign conditional probabilities (as before)

e Any Q € P(P(2%)) is the push forward of some measure on [0, 1] via
d.

» Does that make P natural?
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Random measures

@ Now we have MLRp = ®(MLR})
@ What do elements of MLRp look like?
@ What do elements of MLR,, look like for » € MLRp?

» y € MLR, if y ¢ () U, whenever (U,)
nU, <277, where = py.

. . 0, .
ncw 15 uniformly X7 with
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Barycenter of P
Fact

o) = /P o M) 9P

Proof.
/ wu(o) dP = / px (o) dA (Change of variables.)
P(2v) 2w
lo|—1
— [ 11 wlotlo 1) dr
2 =0
lo]—1
= H / tx(o(i)lo [ i)dXA (Independence.)
i=0 72

— 2= lo]
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Randoms’ randoms are random...

Fact (Hoyrup)

J MLR, =MLR,
HEMLRp

Proof.

(S) A X Solovay test (A,) ., is a i Solovay test for each 1 € MLRp:
Build a P-ML test Vi := {u: >, pu(A,) > 2K} € 29

1ZZAAH=/ZM(An)dP2/‘/ > 1(Ay) dP

> 25P(Vy)
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...and randoms are randoms’' randoms

U MLR, = MLR)
WEMLRp

Proof (cont.)

(2)
@ I lower semicomputable (I.s.c.) tp: P(2¥) — [0, 0] and
t,: 2¥ — [0, 00] that are finite iff input is random.

o tp(u) - tu(x) is a l.s.c. function of (u, x)

o f(x):=inf,tp(n) - tu(x)is Ls.c.

o [ f(x)dr<1

@ So x € MLR) = f(x) < o0 = tp(p) < 00 and t,(x) < o0 O
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Random measures are atomless

Fact (Quinn)
€ MLRp = Vx p{x} = 0.

Proof.

o {x: px has an atom with mass > 1/n} = {x: Vk3o € 2K[ux(c) >
1/n]} € MY

@ m(x) := max mass of an atom of iy,

@ mj(x) := max mass of an atom strictly above i = 0,1
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Random measures are atomless

Atomlessness proof continued.

@ m(x) := max mass of an atom of i,

@ mj(x) := max mass of an atom strictly above i = 0,1
Facts:

e m(x) = max{xpmo(x), (1 — xo)m1(x)}

@ m and m; have the same distribution.

@ Kolmogorov's 0-1 law = m, m; =0 a.s. or m,m; > 0 a.s.

Quinn Culver (Notre Dame) Random measures 24 April 2013 12 / 24



Random measures are atomless
Atomlessness proof continued.

M = {Xomo > (1 — Xo)ml}.

Lm0 = [ somo+ [ (1 =xopmit)
_/wxomo(x / (1 — x0)mi(x)

:/2wfc(x)m(x)+/Mc(1—XO)ml(X)
= /Qw fe(x)m(x) + (1 — xo)m1(x

:/2 fc(x)m(x)—l—/zw(l—fc X))m(X)—/M(l—Xo)ml(X)
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Random measures are atomless

Atomlessness proof continued.
Jpo () < o ()~ fiy(1 — x0)ma(x)
@ = MM =0or m(x)=0as. on M.
@ Similarly A\(M€) =0 or mp(x) =0 a.s. on M°€.
@ 0 < AM = my = 0 is zero on a positive measure set, hence a.e.
@ Similarly if 0 < AME€.

Thus having an atom is a null N? class, so even Kurtz random measures
are atomless. ]

v
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Random measures are mutually singular (wrt \)

Definition
o Absolute continuity: ¢ < A iff \A=0= puA=0
Note: 4 < A = p atomless

o Mutual singularity: ¢ L A iff JA M =1, tA=0.
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Random measures are mutually singular (wrt \)

Fix u € MLRp.

Fact (Laurent)

MLR,, N MLR* = ()
N——" SN——"
p—full  X—full

Proof idea.
@ Given x, look at places where p(0|x [ n) > ;3{.

@ x € MLR, obeys the i measure, so more than % of the time, x(n)
will be 0.

@ x € MLR¥ obeys ), so 3 of the time, x(n) will be 0. O
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B/t absolute continuity & atomlessness

@ Motivation: If ;4 < A, then by Radon-Nikdodym and Lebesgue
differentiation

JloBHTN) g ae arae
n

@ Notice: lim sup—w > 0 p-a.e. = p is atomless.
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B/t absolute continuity & atomlessness

o ci(p,x) = p(x(i)lx T7)
o pu(x [ n) = Ilcpcilu,x)
@ The ¢;'s are uniformly distributed 11D
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B/t absolute continuity & atomlessness

For all x and P-almost every p,

——logu( =——|och, 1, x

i<n

1
— 5 loga(un
i<n
— —E(logci) =1 (By LLN.)

Quinn Culver (Notre Dame) Random measures 24 April 2013 19 / 24



B/t absolute continuity & atomlessness

Fact (Effective LLN)
Since (log c;)

P(2¥) x 2¢, for each (i, x) € MLRpgx

1
- Z log ci(p, x) — 1.

i<n

icw IS an IID sequence of computable random variables on
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B/t absolute continuity & atomlessness

Fact (Van Lambalgen)

(11,x) € MLRpgy iff i1 € MLRp and x € MLR¥
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B/t absolute continuity & atomlessness

o (i, x) € MLRpg, iff © € MLRp and x € MLR*

Fact

If w € MLRp, then —Llog (x| n) — 1 for x € MLR¥ (in particular
A-a.e.).

@ So A-a.e. x has lots of p-information (on average).
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B/t absolute continuity & atomlessness

o —llogu(xn)—=1 MNae.

@ But this doesn't generalize atomlessness, we want convergence p-a.e.

Conjecture
If . € MLRp and x € MLR,,, then

——Iogu ) = /H(p

where H(p) = —plogp — (1 — p) log(1 — p).
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Questions & To-do list

@ Are there p,v € MLRp with MLR, "MLR, = 0?
e If not, are there yj € MLRp with (\MLR,,; = (7
e What is P{y : x € MLR,} for a fixed x € MLR,?

@ Investigate the more general theory of pushing forward not-necessarily
A

@ The maps T,: P(2¥) — P(2¥), T(u)(r) = u(or)/u(o) are
P-invariant for each o.

o Computability-theoretic questions?
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