Random measures

Quinn Culver

The University of Notre Dame

24 April 2013

(日) (同) (三) (三)

Motivating Question

Is there a natural measure on the space of measures (on 2^{ω}) as, say, the Lebesgue measure is natural?

A E A

Preliminaries

- A (Borel probability) measure on 2^{ω} is a function $\mu \colon 2^{<\omega} \to [0,1]$ satisfying
 - $\mu(\varnothing) = 1$ and
 - $\mu(\sigma) = \mu(\sigma 0) + \mu(\sigma 1).$
- $\mathcal{P}(2^{\omega}) =$ (Borel probability) measures on 2^{ω}
 - This space is nice enough to do computability on.
- $MLR_{\lambda} \subset 2^{\omega}$ is the set of (Lebesgue) Martin-Löf randoms.

< 回 ト < 三 ト < 三 ト

Introduction

- A measure is determined by the sequence ⟨μ(0|σ)⟩_{σ∈2^{≤ω}} of conditional probabilities, where μ(0|σ)μ(σ) = μ(σ0).
- This is easy to work with.

A Natural Map

Definition (Porter)

The map $\Phi: 2^{\omega} \to \mathcal{P}(2^{\omega})$, $x \mapsto \mu_x$ is defined by

• $\mu_x(\varnothing) = 1$,

•
$$\mu_x(0|\sigma_i) = x_i$$
,

where $x_i(j) = x(\langle i, j \rangle)$ is the *i*th **column** of x (thought of as a real number).

This map is

- computable: $\mu_x(\sigma)$ is computable, to desired precision, uniformly in (the oracle) x and σ ;
- surjective
- (strongly) almost injective: y has no dyadic columns and $x \neq y \implies \mu_x \neq \mu_y$

イロト イポト イヨト イヨト 二日

"A function is glorified into a random variable as soon as its domain is assigned a probability distribution with respect to which the function is measurable" – Joseph Doob

- Φ pushes forward λ to $P = \lambda \circ \Phi^{-1} \in \mathcal{P}(\mathcal{P}(2^{\omega}))$
- *P* corresponds to the stochastic process that uses an IID uniform sequence $\langle X_i \rangle_{i \in \omega}$ to assign conditional probabilities (as before)
- Any $Q \in \mathcal{P}(\mathcal{P}(2^{\omega}))$ is the push forward of *some* measure on [0, 1] via Φ .
 - Does that make P natural?

- Now we have $MLR_P = \Phi(MLR_\lambda)$
- What do elements of MLR_P look like?
- What do elements of MLR_{μ} look like for $\mu \in MLR_{P}$?
 - $y \in MLR_{\mu}$ if $y \notin \bigcap U_n$ whenever $\langle U_n \rangle_{n \in G}$ is uniformly $\Sigma_1^{0,x}$ with $\mu U_n < 2^{-n}$, where $\mu = \mu_x$.

· · · · · · · · ·

Barycenter of P

Fact

$$\lambda(\sigma) = \int_{\mathcal{P}(2^{\omega})} \mu(\sigma) \, dP$$

Proof.

$$\begin{split} \int_{\mathcal{P}(2^{\omega})} \mu(\sigma) \, dP &= \int_{2^{\omega}} \mu_{\mathsf{x}}(\sigma) \, d\lambda \qquad (\text{Change of variables.}) \\ &= \int_{2^{\omega}} \prod_{i=0}^{|\sigma|-1} \mu_{\mathsf{x}}(\sigma(i)|\sigma \upharpoonright i) \, d\lambda \\ &= \prod_{i=0}^{|\sigma|-1} \int_{2^{\omega}} \mu_{\mathsf{x}}(\sigma(i)|\sigma \upharpoonright i) \, d\lambda \quad (\text{Independence.}) \\ &= 2^{-|\sigma|} \end{split}$$

Randoms' randoms are random...

μ

Fact (Hoyrup)

$$\bigcup_{\in \mathsf{MLR}_{\mathcal{P}}}\mathsf{MLR}_{\mu}=\mathsf{MLR}_{\lambda}$$

Proof.

(\subseteq) A λ Solovay test $\langle A_n \rangle_{n \in \omega}$ is a μ Solovay test for each $\mu \in MLR_P$: Build a *P*-ML test $V_k := \{\mu : \sum_n \mu(A_n) > 2^k\} \in \Sigma_1^0$.

$$1 \ge \sum \lambda A_n = \int \sum \mu(A_n) \, dP \ge \int_{V_k} \sum \mu(A_n) \, dP$$

 $\ge 2^k P(V_k)$

Quinn Culver (Notre Dame)

(日) (同) (三) (三)

...and randoms are randoms' randoms

$$\bigcup_{\mu\in\mathsf{MLR}_{P}}\mathsf{MLR}_{\mu}=\mathsf{MLR}_{\lambda}$$

Proof (cont.)

(⊇)

• \exists lower semicomputable (l.s.c.) $t_P \colon \mathcal{P}(2^{\omega}) \to [0, \infty]$ and $t_{\mu} \colon 2^{\omega} \to [0, \infty]$ that are finite iff input is random.

•
$$t_P(\mu) \cdot t_\mu(x)$$
 is a l.s.c. function of (μ, x)

• $f(x) := \inf_{\mu} t_P(\mu) \cdot t_{\mu}(x)$ is l.s.c.

•
$$\int_{2^{\omega}} f(x) \, d\lambda \leq 1$$

• So $x \in \mathsf{MLR}_\lambda \Rightarrow f(x) < \infty \Rightarrow t_{\mathsf{P}}(\mu) < \infty$ and $t_\mu(x) < \infty$

(日) (周) (三) (三)

Fact (Quinn)

 $\mu \in \mathsf{MLR}_{\mathcal{P}} \Rightarrow \forall x \, \mu\{x\} = 0.$

Proof.

- { $x: \mu_x$ has an atom with mass $\geq 1/n$ } = { $x: \forall k \exists \sigma \in 2^k [\mu_x(\sigma) \geq 1/n$ } } \in \Pi_1^0.
- $m(x) := \max \max of an atom of <math>\mu_x$,
- $m_i(x) := \max \max of an atom strictly above i = 0, 1$

★聞▶ ★ 国▶ ★ 国▶

Atomlessness proof continued.

- $m(x) := \max \max of an atom of <math>\mu_x$,
- $m_i(x) := \max$ mass of an atom strictly above i = 0, 1

Facts:

- $m(x) = \max\{x_0 m_0(x), (1-x_0)m_1(x)\}$
- *m* and *m_i* have the same distribution.
- Kolmogorov's 0-1 law $\Rightarrow m, m_i = 0$ a.s. or $m, m_i > 0$ a.s.

□ ▶ ▲ □ ▶ ▲ □

Atomlessness proof continued.

Λ

$$\begin{split} \mathcal{M} &:= \{x_0 m_0 \ge (1 - x_0) m_1\}.\\ \int_{2^{\omega}} m(x) &= \int_{\mathcal{M}} x_0 m_0(x) + \int_{\mathcal{M}^c} (1 - x_0) m_1(x)\\ &\leq \int_{2^{\omega}} x_0 m_0(x) + \int_{\mathcal{M}^c} (1 - x_0) m_1(x)\\ &= \int_{2^{\omega}} \mathrm{fc}(x) m(x) + \int_{\mathcal{M}^c} (1 - x_0) m_1(x) \quad (\mathrm{fc} \equiv_d x_0)\\ &= \int_{2^{\omega}} \mathrm{fc}(x) m(x) + \int_{2^{\omega}} (1 - x_0) m_1(x) - \int_{\mathcal{M}} (1 - x_0) m_1(x)\\ &= \int_{2^{\omega}} \mathrm{fc}(x) m(x) + \int_{2^{\omega}} (1 - \mathrm{fc}(x)) m(x) - \int_{\mathcal{M}} (1 - x_0) m_1(x)\\ &= \int_{2^{\omega}} m(x) - \int_{\mathcal{M}} (1 - x_0) m_1(x). \end{split}$$

Atomlessness proof continued.

$$\int_{2^{\omega}} m(x) \leq \int_{2^{\omega}} m(x) - \int_{\mathcal{M}} (1-x_0) m_1(x)$$

•
$$\Rightarrow \lambda M = 0$$
 or $m_1(x) = 0$ a.s. on M .

• Similarly
$$\lambda(M^c) = 0$$
 or $m_0(x) = 0$ a.s. on M^c .

- $0 < \lambda M \Rightarrow m_1 = 0$ is zero on a positive measure set, hence a.e.
- Similarly if $0 < \lambda M^c$.

Thus having an atom is a null Π_1^0 class, so even Kurtz random measures are atomless.

Random measures are mutually singular (wrt λ)

Definition

• Absolute continuity: $\mu \ll \lambda$ iff $\lambda A = 0 \Rightarrow \mu A = 0$

Note: $\mu \ll \lambda \Rightarrow \mu$ atomless

• Mutual singularity: $\mu \perp \lambda$ iff $\exists A \ \lambda A = 1$, $\mu A = 0$.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Random measures are mutually singular (wrt λ)

Fix $\mu \in MLR_P$.

Fact (Laurent) $MLR_{\mu} \cap MLR^{\mu} = \emptyset$

 μ -full λ -full

Proof idea.

- Given x, look at places where $\mu(0|x \upharpoonright n) > \frac{3}{4}$.
- $x \in MLR_{\mu}$ obeys the μ measure, so more than $\frac{3}{4}$ of the time, x(n) will be 0.
- $x \in MLR^{\mu}$ obeys λ , so $\frac{1}{2}$ of the time, x(n) will be 0.

★聞▶ ★ 国▶ ★ 国▶

• Motivation: If $\mu \ll \lambda,$ then by Radon-Nikdodym and Lebesgue differentiation

$$-rac{\log\mu(x\restriction n)}{n}
ightarrow 1$$
 μ -a.e. & λ -a.e

• Notice: $\limsup -\frac{\log \mu(x \upharpoonright n)}{n} > 0 \mu$ -a.e. $\Rightarrow \mu$ is atomless.

- $c_i(\mu, x) := \mu(x(i)|x \upharpoonright i)$
- $\mu(x \upharpoonright n) = \prod_{i < n} c_i(\mu, x)$
- The c_i's are uniformly distributed IID

For all x and P-almost every μ ,

$$\begin{aligned} -\frac{1}{n}\log\mu(x\upharpoonright n) &= -\frac{1}{n}\log\prod_{i< n}c_i(\mu, x) \\ &= -\frac{1}{n}\sum_{i< n}\log c_i(\mu, x) \\ &\to -\mathbb{E}(\log c_i) = 1 \end{aligned} \tag{By LLN.}$$

Fact (Effective LLN)

Since $(\log c_i)_{i \in \omega}$ is an IID sequence of computable random variables on $\mathcal{P}(2^{\omega}) \times 2^{\omega}$, for each $(\mu, x) \in MLR_{P \otimes \lambda}$

$$-\frac{1}{n}\sum_{i< n}\log c_i(\mu, x)\to 1.$$

Quinn Culver (Notre Dame)

Fact (Van Lambalgen)

 $(\mu, x) \in \mathsf{MLR}_{P \otimes \lambda}$ iff $\mu \in \mathsf{MLR}_P$ and $x \in \mathsf{MLR}^{\mu}$

Quinn Culver (Notre Dame)

Random measures

► < ∃ ►</p>

• $(\mu, x) \in \mathsf{MLR}_{P \otimes \lambda}$ iff $\mu \in \mathsf{MLR}_P$ and $x \in \mathsf{MLR}^{\mu}$

Fact

If $\mu \in MLR_P$, then $-\frac{1}{n}\log \mu(x \upharpoonright n) \rightarrow 1$ for $x \in MLR^{\mu}$ (in particular λ -a.e.).

• So λ -a.e. x has lots of μ -information (on average).

•
$$-\frac{1}{n}\log\mu(x\restriction n) \to 1$$
 λ -a.e.

• But this doesn't generalize atomlessness, we want convergence μ -a.e.

Conjecture

If $\mu \in MLR_P$ and $x \in MLR_\mu$, then

$$-rac{1}{n}\log\mu(x\restriction n)
ightarrow\int H(p)d\lambda,$$

where $H(p) = -p \log p - (1-p) \log(1-p)$.

通 ト イヨ ト イヨト

Questions & To-do list

- Are there $\mu, \nu \in MLR_P$ with $MLR_{\mu} \cap MLR_{\nu} = \emptyset$?
- If not, are there $\mu_i \in MLR_P$ with $\bigcap MLR_{\mu_i} = \emptyset$?
- What is $P\{\mu : x \in MLR_{\mu}\}$ for a fixed $x \in MLR_{\lambda}$?
- Investigate the more general theory of pushing forward not-necessarily λ .
- The maps $T_{\sigma} : \mathcal{P}(2^{\omega}) \to \mathcal{P}(2^{\omega}), T(\mu)(\tau) = \mu(\sigma\tau)/\mu(\sigma)$ are *P*-invariant for each σ .
- Computability-theoretic questions?