Strong reductions between combinatorial problems

Damir D. Dzhafarov University of California, Berkeley

April 23, 2013

Two approaches.

There are two different but complimentary approaches for studying the computable content of mathematical principles.

Reverse mathematics: calibrates the strength of theorems according to the set-existence axioms needed to prove them.

Takes place inside subsystems of second-order arithmetic, RCA_0 , WKL_0 , ACA_0 , ATR_0 , Π_1^1 - CA_0 .

Effective mathematics: investigates the computational complexity of solutions to computable problems.

Locates sets within various inductive structures, e.g., the jump hierarchy, the arithmetical hierarchy, etc.

There is a fruitful interplay between these approaches.

Π_2^1 principles.

Most of the principles we study are Π_2^1 statements,

 $\forall X \exists Y \varphi(X, Y),$

where ϕ is arithmetical (possibly with parameters).

Recall that for a set $X \subseteq \omega$, $[X]^n = \{F \subseteq X : |F| = n\}$.

 RT_k^n . For every coloring $f : [\omega]^n \to k$, there exists an infinite $H \subseteq \omega$ such that H is homogeneous for f, i.e., f is constant on $[H]^n$.

Such principles generally have a natural class of instances, and for each instance, a natural class of solutions.

Example. For Ramsey's theorem, the instances are colorings $f : [\omega]^n \to k$, and the solutions to a given such f are the infinite homogeneous sets for f.

Π_2^1 principles.

There are many well-known examples of Π_2^1 principles.

WKL. Every infinite tree $T \subseteq 2^{<\omega}$ has an infinite path.

WWKL. Every tree $T \subseteq 2^{<\omega}$ such that for all n,

$$\frac{|\{\sigma \in T : |\sigma| = n\}|}{2^n}$$

is uniformly bounded away from 0 has an infinite path.

SRT₂². Every stable coloring $f : [\omega]^n \to k$ has an infinite homogeneous set.

COH. Every family of sets $\vec{S} = \langle S_n : n \in \omega \rangle$ has an infinite cohesive set, i.e., a set *C* such that for all *n*, either $C \cap S_n =^* \emptyset$ or $C \cap \overline{S_n} =^* \emptyset$.

Π_2^1 principles.

In general, an implication $P \rightarrow Q$ in RCA₀ can be complicated: it can appeal to P multiple times, or make non-uniform decisions.

Theorem. For every n, $RCA_0 \vdash RT_2^n \to RT_3^n$. Proof. Let $f : [\omega]^n \to 3$ be given. Define $g : [\omega]^n \to 2$ by

$$g(\mathbf{x}) = \begin{cases} 0 & \text{if } f(\mathbf{x}) = 0; \\ 1 & \text{if } f(\mathbf{x}) \in \{1, 2\}. \end{cases}$$

By $RT_{2'}^n$ let *H* be an infinite homogeneous set for *g*.

If H has color 0, then H is homogeneous for f with color 0.

Otherwise, $f(\mathbf{x}) \in \{1, 2\}$ for all $\mathbf{x} \in [H]^2$. That is, $f \upharpoonright [H]^2$ is a 2-coloring. So by RT_2^n again, there is an infinite homogeneous set $\widetilde{H} \subseteq H$ for f.

Uniform reducibility.

In many cases, however, an implication of Π_2^1 principles is simpler, stemming from a stronger reduction holding between the two.

Definition. $Q \leq_u P$ if there are procedures Φ and Ψ such that if A is an instance of Q then $\Phi(A)$ is an instance of P, and if S is a solution to $\Phi(A)$ then $\Psi(A \oplus S)$ is a solution to A.

 $Q \leq_{su} P$ if there are procedures Φ and Ψ such that if A is an instance of Q then $\Phi(A)$ is an instance of P, and if S is a solution to $\Phi(A)$ then $\Psi(S)$ is a solution to A.

(In computable analysis, this is called (strong) Weihrauch reducibility.)

Most implications between Π_2^1 principles are strong uniform reductions that formalize. Frequently, the backwards procedure, Ψ , is the identity.

Uniform reducibility.

Examples. If j < k, then $RT_j^n \leq_{su} RT_k^n$.

 $\mathsf{SRT}_2^2 \leqslant_{\mathsf{su}} \mathsf{RT}_2^2.$

If n < m, then $\operatorname{RT}_k^n \leq_{\operatorname{su}} \operatorname{RT}_k^m$.

Cholak, Jockusch, and Slaman. COH $\leq_{su} RT_2^2$.

Jockusch. If $3 \le n < m$, then $\mathrm{RT}_k^n \to \mathrm{RT}_k^m$ over RCA_0 but $\mathrm{RT}_k^m \not\leq_{\mathrm{u}} \mathrm{RT}_k^n$. Indeed, every computable instance of RT_k^n has a $\emptyset^{(n)}$ -computable solution, but this is not the case for RT_k^m .

Jockusch. If n < m, the degrees of solutions to computable instances of DNR_n and DNR_m agree. But DNR_n \leq_u DNR_m.

Different numbers of colors.

There is no known degree-theoretic difference between solutions to computable instances of RT_i^n and RT_k^n . This motivates the following:

Question. If j < k, is $RT_k^n \leq_{(s)u} RT_j^n$?

Definition. For a Π_2^1 principle P, let P^2 be the principle whose instances are pairs $\langle A, B \rangle$ with A and B instances of P, and solutions are pairs $\langle S, T \rangle$ with S a solution to A and T a solution to B.

```
Example. COH^2 \leq_{su} COH.

WKL^2 \leq_{su} WKL.

(RT_j^n)^2 \leq_{su} RT_{j^2}^n.
```

It follows that if $RT_{j^2}^n \leq_{(s)u} RT_j^n$ then $(RT_j^n)^2 \leq_{(s)u} RT_j^n$.

Definition. For a Π_2^1 principle P, define analogously the principle Pⁿ for each $n \ge 2$, and the principle P^{ω}.

Observation. For any P, if $P^2 \leq_{(s)u} P$ then $P^n \leq_{(s)u} P$ for all $n \ge \omega$.

For example, suppose $P^2 \leq_u P$ via Φ and Ψ . If $\langle A_0, A_1, A_2, A_3 \rangle$ is any instance of P^4 , then

 $\Phi(A_0, \Phi(A_1, \Phi(A_2, A_3)))$

is an instance of P. By repeatedly applying Ψ , we can unravel any solution *S* to this instance into a sequence of solutions to the A_i .

Question. If $P^2 \leq_{(s)u} P$, must it be that $P^{\omega} \leq_{(s)u} P$?

Given a sequence $\langle A_0, A_1, \ldots \rangle$ of colorings $[\omega]^n \to j$, we would like to imitate our argument from above by defining an instance *A* of P by

$$A = \Phi(A_0, \Phi(A_1, \Phi(A_2, \cdots))).$$

But this process clearly fails to converge.

However, we can solve the question by approximating this process.

For concreteness, take $P = RT_j^n$, and suppose $\langle RT_j^n, RT_j^n \rangle \leq_u RT_j^n$ via Φ and Ψ . Fix a sequence of colorings $f_0, f_1, \ldots : [\omega]^n \to j$.

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

for all large enough $\mathbf{x} \in [\omega]^n$. Thus, $g_0 \approx \Phi(f_0, g_1)$.

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

for all large enough $\mathbf{x} \in [\omega]^n$. Thus, $g_0 \approx \Phi(f_0, \Phi(f_1, g_2))$.

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

We build new colorings $g_0, g_1, \ldots : [\omega]^n \to j$ so as to satisfy

$$g_i(\mathbf{x}) = \Phi(f_i, g_{i+1})(\mathbf{x})$$

for all large enough $\mathbf{x} \in [\omega]^n$. Thus, $g_0 \approx \Phi(f_0, \Phi(f_1, \Phi(f_2, \Phi(f_3, \cdots))))$.

If H_i is homogeneous for g_i then $H_i - n_i$ is homogeneous for $\Phi(f_i, g_{i+1})$.

Squashing theorem.

We conclude that if $(RT_i^n)^2 \leq_u RT_i^n$ then $(RT_i^n)^{\omega} \leq_u RT_i^n$.

A similar argument holds for many other Π_2^1 principles, including SRT₂², COH, WKL₀, TS_k², etc.

Theorem (Dorais, Dzhafarov, Hirst, Mileti, and Shafer). If P is Π_2^1 and satisfies totality and finite tolerance, then $P^{\omega} \leq_{(s)u} P$ if $P^2 \leq_{(s)u} P$.

(Totality and finite tolerance are mild combinatorial assumptions.)

As given, our argument above only works for \leq_u . This is because the numbers n_i used in the construction of the g_i depend on the instance f_0, f_1, \ldots of colorings. A more careful construction is necessary for \leq_{su} .

Different numbers of colors.

Theorem (Jockusch). Every computable $f : [\omega]^n \to j$ has an infinite homogeneous set H with $H' \leq_T \emptyset^{(n)}$.

But one can build a computable sequence $f_0, f_1, \ldots : [\omega]^n \to j$ so that every sequence of homogeneous sets computes $\emptyset^{(n)}$.

Corollary. $(RT_j^n)^{\omega} \not\leq_u RT_j^n$. Hence, $(RT_j^n)^2 \not\leq_u RT_j^n$, so $RT_{j^2}^n \not\leq_u RT_j^n$. We do not know how to extend this to arbitrary k > j in the case of \leq_u .

Corollary. If j < k, then $RT_k^n \not\leq_{su} RT_j^n$.

Proof. One can show that if $RT_k^n \leq_{su} RT_j^n$ then $RT_{k^s}^n \leq_{su} RT_{j^s}^n$ for all *s*. (This is a combinatorial argument. It is not clear if it holds also for \leq_{u} .) Take *s* so large that there are two different powers of 2 between *j*^s and *k*^s.

Uniform reductions and thin sets.

Definition. Fix *n* and $k \in \{2, 3, ..., \omega\}$. A set $T \subseteq \omega$ is thin for a coloring $f : [\omega]^n \to k$ if there is a c < k such that $f(\mathbf{x}) \neq c$ for all $\mathbf{x} \in [T]^n$.

 TS_k^n . Every $f: [\omega]^n \to k$ has an infinite thin set.

For every *n*, we have that

 $\mathsf{TS}^n_{\boldsymbol{\omega}} \leqslant_{\mathsf{su}} \cdots \leqslant_{\mathsf{su}} \mathsf{TS}^n_4 \leqslant_{\mathsf{su}} \mathsf{TS}^n_3 \leqslant_{\mathsf{su}} \mathsf{TS}^n_2 = \mathsf{RT}^n_2 <_{\mathsf{su}} \mathsf{RT}^n_3 <_{\mathsf{su}} \mathsf{RT}^n_4 <_{\mathsf{su}} \cdots$

Question (Miller). If $j < k \in \{2, 3, ..., \omega\}$, does $TS_k^n \to TS_j^n$ over RCA₀?

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer, n = 1; Hirschfeldt and Joskusch, $n \ge 2$). If $j < k \in \{2, 3, ..., \omega\}$, then $TS_j^n \not\leq_u TS_k^n$.

The proof is a direct construction. The squashing theorem does not help.

Uniform reductions and rainbows.

Definition. Fix *n*, *k*. A coloring $f : [\omega]^n \to \omega$ is *k*-bounded if $|f^{-1}(c)| \leq k$ for all $c \in \omega$. A set $R \subseteq \omega$ is a rainbow for *f* if $f \upharpoonright [R]^n$ is injective.

RRT^{*n*}_{*k*}. Every *k*-bounded $f: [\omega]^n \to \omega$ has an infinite rainbow.

Theorem (Csima and Mileti). If X is 2-random then every computable instance of RRT_k^2 has an X-computable solution.

Theorem (Slaman). RRT_2^2 does not imply $\forall k RT_k^1$ over RCA_0 .

By contrast, for each k, RT_k^1 is computably true.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer). The Csima-Mileti result holds if RRT_k^2 is replaced by $(RRT_k^2)^{\omega}$. Hence, $RT_k^1 \nleq_u RRT_2^2$.

Proof. Otherwise, $(RT_k^1)^{\omega} \leq_u (RRT_2^2)^{\omega}$. But the former can code \emptyset' .

Computable (non-uniform) reducibility.

Definition. $Q \leq_c P$ if every instance *A* of Q computes an instance *B* of P, such that if *S* is a solution to *B* then $A \oplus S$ computes a solution to *A*.

 $Q \leq_{sc} P$ if every instance *A* of Q computes an instance *B* of P, such that if *S* is a solution to *B* then *S* computes a solution to *A*.

 \leq_c is perhaps the most natural reduction between Π_2^1 principles.

Stable colorings and Δ_2^0 partitions.

Definition. A coloring $f : [\omega]^2 \to 2$ is stable if $\lim_y f(x, y)$ exists for all x.

 $\operatorname{SRT}_{k}^{2}$. Every stable $f : [\omega]^{2} \to k$ has an infinite homogeneous set.

 D_k^2 . For every Δ_2^0 -definable partition $\langle A_0, \ldots, A_{k-1} \rangle$ of ω , there is an infinite set *S* contained in one of the A_i .

These are equivalent under \leq_u , essentially just by the limit lemma.

Theorem (Chong, Lempp, and Yang). Over RCA₀, $D_k^2 \leftrightarrow SRT_k^2$.

Theorem (CJS; Mileti). Over RCA₀, $RT_k^2 \leftrightarrow D_k^2 + COH$.

(That $RT_2^2 \rightarrow COH$ is just a formalization of the fact that $COH \leq_{su} RT_2^2$.)

COH, D_2^2 , and ω -models.

Theorem (Chong, Slaman, Yang). Over RCA_0 , COH is not implied by D_2^2 . The proof uses a very special non-standard model of RCA_0 .

Question. Is every ω -model of D_2^2 a model of COH?

The result of Chong, Slaman, and Yang suggests that if there is a proof of COH from SRT_2^2 in ω -models, it should be complicated.

For instance, their model satisfies Σ_2^0 , which usually suffices to formalize finite injury arguments.

Even so, the implication itself may be the typical one.

Question. Does COH reduce to D_2^2 according to any of our notions?

Cohesive avoidance.

It would be the case that COH $\leq_{su} D_k^2$ if, given $\vec{S} = \langle S_i : i \in \omega \rangle$, there were a partition $\langle A_0, \ldots, A_{k-1} \rangle$ of ω that is Δ_2^0 in \vec{S} , such that any infinite subset of any A_i computed an \vec{S} -cohesive set.

If $\vec{S} = \langle S_0, ..., S_{n-1} \rangle$, then this holds with $k = 2^n$, as any infinite subset of any of the 2^n many Boolean combinations of the S_i is \vec{S} -cohesive.

Theorem (Dzhafarov). Fix *n* and $k < 2^n$. There is a family $\vec{S} = \langle S_0, \ldots, S_{n-1} \rangle$ such that for any partition $\langle A_0, \ldots, A_{k-1} \rangle$ of ω , arithmetical in \vec{S} , there is an infinite subset of one of the A_i that computes no \vec{S} -cohesive set.

In particular, this is true for partitions that are Δ_2^0 in \vec{S} .

Corollary. For all k, COH $\leq_{sc} D_k^2$. In fact, COH $\leq_{sc} D_{<\infty}^2$.

Cohesive avoidance.

The proof of the theorem is a forcing argument, using a combinatorial elaboration of Seetapun's argument.

To make *H* not compute an \vec{S} -cohesive set, we must ensure that $\Delta(H) \cap S_i$ and $\Delta(H) \cap \overline{S_i}$ infinite, for some *i* that depends on Δ .

In the case of a strong reduction, we essentially build *H* independently of \vec{S} : we extend *H* to find a new computation $\Delta(H)(x) \downarrow = 1$, and then set $S_i(x) = 0$ or $S_i(x) = 1$ as needed, for an appropriate *i*.

For a weak reduction, we are looking at computations of the form $\Delta(\vec{S} \oplus H)(x) \downarrow = 1$, so the bits of S_i must be built along with H. This makes matters much more difficult.

But if we fix Δ , we can make some progress.

Cohesive avoidance.

Theorem (Dzhafarov). Fix Δ and Γ . There is a family $\vec{S} = \langle S_i : i \in \omega \rangle$ such that every stable $f \leq_T \vec{S}$ has either an infinite red homogeneous set *R* with $\Delta(\vec{S} \oplus R)$ not \vec{S} -cohesive, or an infinite blue homogeneous set *B* with $\Gamma(\vec{S} \oplus B)$ not \vec{S} -cohesive.

Corollary. COH $\not\leq_u$ SRT₂².

So, in which ways is COH reducible SRT₂²?

La cuenta, por favor.