Strong reductions between combinatorial problems

Damir D. Dzhafarov
University of California, Berkeley

April 23, 2013

Two approaches.

There are two different but complimentary approaches for studying the computable content of mathematical principles.

Reverse mathematics: calibrates the strength of theorems according to the set-existence axioms needed to prove them.

Takes place inside subsystems of second-order arithmetic, $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}$, $\mathrm{ACA}_{0}, \mathrm{ATR}_{0}, \Pi_{1}^{1}-\mathrm{CA}_{0}$.

Effective mathematics: investigates the computational complexity of solutions to computable problems.
Locates sets within various inductive structures, e.g., the jump hierarchy, the arithmetical hierarchy, etc.

There is a fruitful interplay between these approaches.

Π_{2}^{1} principles.

Most of the principles we study are Π_{2}^{1} statements,

$$
\forall X \exists Y \varphi(X, Y)
$$

where φ is arithmetical (possibly with parameters).
Recall that for a set $X \subseteq \omega,[X]^{n}=\{F \subseteq X:|F|=n\}$.
RT_{k}^{n}. For every coloring $f:[\omega]^{n} \rightarrow k$, there exists an infinite $H \subseteq \omega$ such that H is homogeneous for f, i.e., f is constant on $[H]^{n}$.

Such principles generally have a natural class of instances, and for each instance, a natural class of solutions.

Example. For Ramsey's theorem, the instances are colorings $f:[\omega]^{n} \rightarrow k$, and the solutions to a given such f are the infinite homogeneous sets for f.

Π_{2}^{1} principles.

There are many well-known examples of Π_{2}^{1} principles.
WKL. Every infinite tree $T \subseteq 2^{<\omega}$ has an infinite path.
WWKL. Every tree $T \subseteq 2^{<\omega}$ such that for all n,

$$
\frac{|\{\sigma \in T:|\sigma|=n\}|}{2^{n}}
$$

is uniformly bounded away from 0 has an infinite path.
SRT_{2}^{2}. Every stable coloring $f:[\omega]^{n} \rightarrow k$ has an infinite homogeneous set.
COH . Every family of sets $\vec{S}=\left\langle S_{n}: n \in \omega\right\rangle$ has an infinite cohesive set, i.e., a set C such that for all n, either $C \cap S_{n}=* \emptyset$ or $C \cap \overline{S_{n}}=* \emptyset$.

Π_{2}^{1} principles.

In general, an implication $\mathrm{P} \rightarrow \mathrm{Q}$ in RCA_{0} can be complicated: it can appeal to P multiple times, or make non-uniform decisions.

Theorem. For every $n, \mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{n} \rightarrow \mathrm{RT}_{3}^{n}$.
Proof. Let $f:[\omega]^{n} \rightarrow 3$ be given. Define $g:[\omega]^{n} \rightarrow 2$ by

$$
g(\mathbf{x})= \begin{cases}0 & \text { if } f(\mathbf{x})=0 ; \\ 1 & \text { if } f(\mathbf{x}) \in\{1,2\} .\end{cases}
$$

By RT_{2}^{n}, let H be an infinite homogeneous set for g.
If H has color 0 , then H is homogeneous for f with color 0 .
Otherwise, $f(\mathbf{x}) \in\{1,2\}$ for all $\mathbf{x} \in[H]^{2}$. That is, $f \upharpoonright[H]^{2}$ is a 2-coloring. So by RT_{2}^{n} again, there is an infinite homogeneous set $\tilde{H} \subseteq H$ for f.

Uniform reducibility.

In many cases, however, an implication of Π_{2}^{1} principles is simpler, stemming from a stronger reduction holding between the two.

Definition. $\mathrm{Q} \leqslant{ }_{u} \mathrm{P}$ if there are procedures Φ and Ψ such that if A is an instance of Q then $\Phi(A)$ is an instance of P , and if S is a solution to $\Phi(A)$ then $\Psi(A \oplus S)$ is a solution to A.
$\mathrm{Q} \leqslant_{\text {su }} \mathrm{P}$ if there are procedures Φ and Ψ such that if A is an instance of Q then $\Phi(A)$ is an instance of P , and if S is a solution to $\Phi(A)$ then $\Psi(S)$ is a solution to A.
(In computable analysis, this is called (strong) Weihrauch reducibility.)
Most implications between Π_{2}^{1} principles are strong uniform reductions that formalize. Frequently, the backwards procedure, Ψ, is the identity.

Uniform reducibility.

Examples. If $j<k$, then $\mathrm{RT}_{j}^{n} \leqslant s u \mathrm{RT}_{k}^{n}$.
$\mathrm{SRT}_{2}^{2} \leqslant \mathrm{su} \mathrm{RT}_{2}^{2}$.
If $n<m$, then $\mathrm{RT}_{k}^{n} \leqslant s u \mathrm{R}_{k}^{m}$.
Cholak, Jockusch, and Slaman. $\mathrm{COH} \leqslant_{\text {su }} \mathrm{RT}_{2}^{2}$.
Jockusch. If $3 \leqslant n<m$, then $\mathrm{RT}_{k}^{n} \rightarrow \mathrm{RT}_{k}^{m}$ over RCA_{0} but $\mathrm{RT}_{k}^{m} \not Z_{\mathrm{u}} \mathrm{RT}_{k}^{n}$. Indeed, every computable instance of RT_{k}^{n} has a $\emptyset^{(n)}$-computable solution, but this is not the case for $R T_{k}^{m}$.

Jockusch. If $n<m$, the degrees of solutions to computable instances of DNR_{n} and DNR_{m} agree. But $\mathrm{DNR}_{n} \not \mathbb{Z}_{\mathrm{u}} \mathrm{DNR}_{m}$.

Different numbers of colors.

There is no known degree-theoretic difference between solutions to computable instances of RT_{j}^{n} and RT_{k}^{n}. This motivates the following:

Question. If $j<k$, is $\mathrm{RT}_{k}^{n} \leqslant(\mathrm{~s}) \mathrm{u} \mathrm{R}_{j}^{n}$?
Definition. For a Π_{2}^{1} principle P, let P^{2} be the principle whose instances are pairs $\langle A, B\rangle$ with A and B instances of P , and solutions are pairs $\langle S, T\rangle$ with S a solution to A and T a solution to B.

Example. $\mathrm{COH}^{2} \leqslant$ su COH .
$\mathrm{WKL}^{2} \leqslant$ su $W K L$.

$$
\left(R T_{j}^{n}\right)^{2} \leqslant s u T_{j^{2}}^{n}
$$

It follows that if $R T_{j^{2}}^{n} \leqslant(\mathrm{~s}) \mathrm{u} R T_{j}^{n}$ then $\left(\mathrm{RT}_{j}^{n}\right)^{2} \leqslant(\mathrm{~s}) \mathrm{u} \mathrm{RT}_{j}^{n}$.

Multiple applications.

Definition. For a Π_{2}^{1} principle P, define analogously the principle P^{n} for each $n \geqslant 2$, and the principle P^{ω}.

Observation. For any P , if $\mathrm{P}^{2} \leqslant(\mathrm{~s}) \mathrm{u}$ P then $\mathrm{P}^{n} \leqslant(s) \mathrm{P}$ for all $n \geqslant \omega$.
For example, suppose $\mathrm{P}^{2} \leqslant u \mathrm{P}$ via Φ and Ψ. If $\left\langle A_{0}, A_{1}, A_{2}, A_{3}\right\rangle$ is any instance of P^{4}, then

$$
\Phi\left(A_{0}, \Phi\left(A_{1}, \Phi\left(A_{2}, A_{3}\right)\right)\right)
$$

is an instance of P. By repeatedly applying Ψ, we can unravel any solution S to this instance into a sequence of solutions to the A_{i}.

Multiple applications.

Question. If $\mathrm{P}^{2} \leqslant(\mathrm{~s}) \mathrm{P}$, must it be that $\mathrm{P}^{\omega} \leqslant_{(s) \mathrm{u}} \mathrm{P}$?
Given a sequence $\left\langle A_{0}, A_{1}, \ldots\right\rangle$ of colorings $[\omega]^{n} \rightarrow j$, we would like to imitate our argument from above by defining an instance A of P by

$$
A=\Phi\left(A_{0}, \Phi\left(A_{1}, \Phi\left(A_{2}, \cdots\right)\right)\right)
$$

But this process clearly fails to converge.
However, we can solve the question by approximating this process.
For concreteness, take $\mathrm{P}=\mathrm{RT}_{j}^{n}$, and suppose $\left\langle\mathrm{RT}_{j}^{n}, \mathrm{RT}_{j}^{n}\right\rangle \leqslant u \mathrm{RT}_{j}^{n}$ via Φ and Ψ. Fix a sequence of colorings $f_{0}, f_{1}, \ldots:[\boldsymbol{\omega}]^{n} \rightarrow j$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, g_{1}\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, g_{2}\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{w}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, g_{3}\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

Multiple applications.

We build new colorings $g_{0}, g_{1}, \ldots:[\omega]^{n} \rightarrow j$ so as to satisfy

$$
g_{i}(\mathbf{x})=\Phi\left(f_{i}, g_{i+1}\right)(\mathbf{x})
$$

for all large enough $\mathbf{x} \in[\boldsymbol{\omega}]^{n}$. Thus, $g_{0} \approx \Phi\left(f_{0}, \Phi\left(f_{1}, \Phi\left(f_{2}, \Phi\left(f_{3}, \cdots\right)\right)\right)\right)$.

If H_{i} is homogeneous for g_{i} then $H_{i}-n_{i}$ is homogeneous for $\Phi\left(f_{i}, g_{i+1}\right)$.

Squashing theorem.

We conclude that if $\left(\mathrm{RT}_{j}^{n}\right)^{2} \leqslant u \mathrm{RT}_{j}^{n}$ then $\left(\mathrm{R} T_{j}^{n}\right)^{\omega} \leqslant u R T_{j}^{n}$.
A similar argument holds for many other Π_{2}^{1} principles, including SRT_{2}^{2}, $\mathrm{COH}, \mathrm{WKL}_{0}, \mathrm{TS}_{k}^{2}$, etc.

Theorem (Dorais, Dzhafarov, Hirst, Mileti, and Shafer). If P is Π_{2}^{1} and satisfies totality and finite tolerance, then $\mathrm{P}^{\omega} \leqslant(s) u \mathrm{P}$ if $\mathrm{P}^{2} \leqslant(s) \mathrm{P}$.
(Totality and finite tolerance are mild combinatorial assumptions.)
As given, our argument above only works for $\leqslant u$. This is because the numbers n_{i} used in the construction of the g_{i} depend on the instance f_{0}, f_{1}, \ldots of colorings. A more careful construction is necessary for $\leqslant_{\text {su }}$.

Different numbers of colors.

Theorem (Jockusch). Every computable $f:[\omega]^{n} \rightarrow j$ has an infinite homogeneous set H with $H^{\prime} \leqslant \tau \emptyset^{(n)}$.

But one can build a computable sequence $f_{0}, f_{1}, \ldots:[\omega]^{n} \rightarrow j$ so that every sequence of homogeneous sets computes $\emptyset^{(n)}$.

Corollary. $\left(\mathrm{RT}_{j}^{n}\right)^{\omega} \not \mathbf{Z u}_{\mathrm{u}} \mathrm{RT} T_{j}^{n}$. Hence, $\left(\mathrm{RT}_{j}^{n}\right)^{2} \not \mathbb{Z u}_{\mathrm{u}} \mathrm{RT}_{j}^{n}$, so $\mathrm{RT}_{j^{2}}^{n} \not \mathbb{Z u}_{\mathrm{u}} \mathrm{R} T_{j}^{n}$. We do not know how to extend this to arbitrary $k>j$ in the case of $\leqslant u$.

Corollary. If $j<k$, then $\mathrm{RT}_{k}^{n} \not \leq$ su RT_{j}^{n}.
Proof. One can show that if $R T_{k}^{n} \leqslant s u T_{j}^{n}$ then $R T_{k^{s}}^{n} \leqslant s u T_{j^{s}}^{n}$ for all s. (This is a combinatorial argument. It is not clear if it holds also for \leqslant_{u}.) Take s so large that there are two different powers of 2 between j^{s} and k^{s}.

Uniform reductions and thin sets.

Definition. Fix n and $k \in\{2,3, \ldots, \omega\}$. A set $T \subseteq \omega$ is thin for a coloring $f:[\omega]^{n} \rightarrow k$ if there is a $c<k$ such that $f(\mathbf{x}) \neq c$ for all $\mathbf{x} \in[T]^{n}$.
TS_{k}^{n}. Every $f:[\omega]^{n} \rightarrow k$ has an infinite thin set.
For every n, we have that

$$
\mathrm{TS}_{\omega}^{n} \leqslant_{\mathrm{su}} \cdots \leqslant_{\mathrm{su}} \mathrm{TS}_{4}^{n} \leqslant_{\mathrm{su}} \mathrm{TS}_{3}^{n} \leqslant_{\mathrm{su}} \mathrm{TS}_{2}^{n}=\mathrm{RT}_{2}^{n}<_{\mathrm{su}} \mathrm{RT}_{3}^{n}<_{\mathrm{su}} \mathrm{RT}_{4}^{n}<_{\mathrm{su}} \cdots .
$$

Question (Miller). If $j<k \in\{2,3, \ldots, \omega\}$, does $\mathrm{TS}_{k}^{n} \rightarrow \mathrm{TS}_{j}^{n}$ over RCA_{0} ?
Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer, $n=1$; Hirschfeldt and Joskusch, $n \geqslant 2$). If $j<k \in\{2,3, \ldots, \omega\}$, then $\mathrm{TS}_{j}^{n} \not \mathbb{Z}_{u} \mathrm{TS}_{k}^{n}$.

The proof is a direct construction. The squashing theorem does not help.

Uniform reductions and rainbows.

Definition. Fix n, k. A coloring $f:[\omega]^{n} \rightarrow \omega$ is k-bounded if $\left|f^{-1}(c)\right| \leqslant k$ for all $c \in \omega$. A set $R \subseteq \omega$ is a rainbow for f if $f \upharpoonright[R]^{n}$ is injective.
$\operatorname{RRT}_{k}^{n}$. Every k-bounded $f:[\omega]^{n} \rightarrow \omega$ has an infinite rainbow.
Theorem (Csima and Mileti). If X is 2-random then every computable instance of RRT_{k}^{2} has an X-computable solution.

Theorem (Slaman). RRT_{2}^{2} does not imply $\forall k \mathrm{RT}_{k}^{1}$ over RCA_{0}.
By contrast, for each k, RT_{k}^{1} is computably true.
Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer). The Csima-Mileti result holds if $R R T_{k}^{2}$ is replaced by $\left(R R T_{k}^{2}\right)^{\omega}$. Hence, $R T_{k}^{1} \not Z_{u} R R T_{2}^{2}$.
Proof. Otherwise, $\left(R_{k}^{1}\right)^{\omega} \leqslant u\left(R R T_{2}^{2}\right)^{\omega}$. But the former can code \emptyset^{\prime}.

Computable (non-uniform) reducibility.

Definition. $\mathrm{Q} \leqslant_{c} \mathrm{P}$ if every instance A of Q computes an instance B of P , such that if S is a solution to B then $A \oplus S$ computes a solution to A.
$\mathrm{Q} \leqslant{ }_{s c} \mathrm{P}$ if every instance A of Q computes an instance B of P , such that if S is a solution to B then S computes a solution to A.

\leqslant_{c} is perhaps the most natural reduction between Π_{2}^{1} principles.

Stable colorings and Δ_{2}^{0} partitions.

Definition. A coloring $f:[\omega]^{2} \rightarrow 2$ is stable if $\lim _{y} f(x, y)$ exists for all x.
SRT_{k}^{2}. Every stable $f:[\omega]^{2} \rightarrow k$ has an infinite homogeneous set.
D_{k}^{2}. For every Δ_{2}^{0}-definable partition $\left\langle A_{0}, \ldots, A_{k-1}\right\rangle$ of ω, there is an infinite set S contained in one of the A_{i}.

These are equivalent under \leqslant_{u}, essentially just by the limit lemma.
Theorem (Chong, Lempp, and Yang). Over $\mathrm{RCA}_{0}, \mathrm{D}_{k}^{2} \leftrightarrow \mathrm{SRT}_{k}^{2}$.
Theorem (CJS; Mileti). Over RCA $\mathrm{R}_{0}, \mathrm{RT}_{k}^{2} \leftrightarrow \mathrm{D}_{k}^{2}+\mathrm{COH}$.
(That $\mathrm{RT}_{2}^{2} \rightarrow \mathrm{COH}$ is just a formalization of the fact that $\mathrm{COH} \leqslant_{s u} \mathrm{RT}_{2}^{2}$.)

$\mathrm{COH}, \mathrm{D}_{2}^{2}$, and ω-models.

Theorem (Chong, Slaman, Yang). Over $\mathrm{RCA}_{0}, \mathrm{COH}$ is not implied by D_{2}^{2}. The proof uses a very special non-standard model of RCA_{0}.

Question. Is every ω-model of D_{2}^{2} a model of COH ?
The result of Chong, Slaman, and Yang suggests that if there is a proof of COH from SRT_{2}^{2} in ω-models, it should be complicated.

For instance, their model satisfies Σ_{2}^{0}, which usually suffices to formalize finite injury arguments.

Even so, the implication itself may be the typical one.
Question. Does COH reduce to D_{2}^{2} according to any of our notions?

Cohesive avoidance.

It would be the case that $\mathrm{COH} \leqslant_{\text {su }} \mathrm{D}_{k}^{2}$ if, given $\vec{S}=\left\langle S_{i}: i \in \omega\right\rangle$, there were a partition $\left\langle A_{0}, \ldots, A_{k-1}\right\rangle$ of ω that is Δ_{2}^{0} in \vec{S}, such that any infinite subset of any A_{i} computed an \vec{S}-cohesive set.

If $\vec{S}=\left\langle S_{0}, \ldots, S_{n-1}\right\rangle$, then this holds with $k=2^{n}$, as any infinite subset of any of the 2^{n} many Boolean combinations of the S_{i} is \vec{S}-cohesive.

Theorem (Dzhafarov). Fix n and $k<2^{n}$. There is a family $\vec{S}=\left\langle S_{0}, \ldots, S_{n-1}\right\rangle$ such that for any partition $\left\langle A_{0}, \ldots, A_{k-1}\right\rangle$ of ω, arithmetical in \vec{S}, there is an infinite subset of one of the A_{i} that computes no \vec{S}-cohesive set.

In particular, this is true for partitions that are Δ_{2}^{0} in \vec{S}.
Corollary. For all $k, \mathrm{COH} \not \leq_{\mathrm{sc}} \mathrm{D}_{k}^{2}$. In fact, $\mathrm{COH} \not \mathbb{s c}_{\mathrm{sc}} D_{<\infty}^{2}$.

Cohesive avoidance.

The proof of the theorem is a forcing argument, using a combinatorial elaboration of Seetapun's argument.

To make H not compute an \vec{S}-cohesive set, we must ensure that $\Delta(H) \cap S_{i}$ and $\Delta(H) \cap \bar{S}_{i}$ infinite, for some i that depends on Δ.

In the case of a strong reduction, we essentially build H independently of \vec{S} : we extend H to find a new computation $\Delta(H)(x) \downarrow=1$, and then set $S_{i}(x)=0$ or $S_{i}(x)=1$ as needed, for an appropriate i.

For a weak reduction, we are looking at computations of the form $\Delta(\vec{S} \oplus H)(x) \downarrow=1$, so the bits of S_{i} must be built along with H. This makes matters much more difficult.

But if we fix Δ, we can make some progress.

Cohesive avoidance.

Theorem (Dzhafarov). Fix Δ and Γ. There is a family $\vec{S}=\left\langle S_{i}: i \in \omega\right\rangle$ such that every stable $f \leqslant_{T} \vec{S}$ has either an infinite red homogeneous set R with $\Delta(\vec{S} \oplus R)$ not \vec{S}-cohesive, or an infinite blue homogeneous set B with $\Gamma(\vec{S} \oplus B)$ not \vec{S}-cohesive.

Corollary. $\mathrm{COH} \not \mathbb{Z}_{\mathrm{u}} \mathrm{SRT}_{2}^{2}$.
So, in which ways is COH reducible SRT_{2}^{2} ?

strong	weak	
uniform	no	no
computable	no	

La cuenta, por favor.

