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Two	approaches.

There	are	two	different	but	complimentary	approaches	for	studying	the
computable	content	of	mathematical	principles.

Reverse	mathematics: calibrates	the	strength	of	theorems	according	to
the	set-existence	axioms	needed	to	prove	them.

Takes	place	inside	subsystems	of	second-order	arithmetic, RCA0, WKL0,
ACA0, ATR0, Π1

1-CA0.

Effective	mathematics: investigates	the	computational	complexity	of
solutions	to	computable	problems.

Locates	sets	within	various	inductive	structures, e.g., the	jump	hierarchy,
the	arithmetical	hierarchy, etc.

There	is	a	fruitful	interplay	between	these	approaches.



Π1
2 principles.

Most	of	the	principles	we	study	are Π1
2 statements,

∀X ∃Y φ(X, Y),

where φ is	arithmetical	(possibly	with	parameters).

Recall	that	for	a	set X ⊆ ω, [X]n = {F ⊆ X : |F| = n}.

RTnk . For	every	coloring f : [ω]n → k, there	exists	an	infinite H ⊆ ω such
that H is	homogeneous	for f, i.e., f is	constant	on [H]n.

Such	principles	generally	have	a	natural	class	of instances, and	for	each
instance, a	natural	class	of solutions.

Example. For	Ramsey’s	theorem, the	instances	are	colorings f : [ω]n → k,
and	the	solutions	to	a	given	such f are	the	infinite	homogeneous	sets	for f.



Π1
2 principles.

There	are	many	well-known	examples	of Π1
2 principles.

WKL. Every	infinite	tree T ⊆ 2<ω has	an	infinite	path.

WWKL. Every	tree T ⊆ 2<ω such	that	for	all n,

|{σ ∈ T : |σ| = n}|
2n

is	uniformly	bounded	away	from 0 has	an	infinite	path.

SRT22. Every	stable	coloring f : [ω]n → k has	an	infinite	homogeneous	set.

COH. Every	family	of	sets S⃗ = ⟨Sn : n ∈ ω⟩ has	an	infinite	cohesive	set,
i.e., a	set C such	that	for	all n, either C ∩ Sn =∗ ∅ or C ∩ Sn =∗ ∅.



Π1
2 principles.

In	general, an	implication P → Q in RCA0 can	be	complicated: it	can
appeal	to P multiple	times, or	make non-uniform	decisions.

Theorem. For	every n, RCA0 ⊢ RTn2 → RTn3.

Proof. Let f : [ω]n → 3 be	given. Define g : [ω]n → 2 by

g(x) =

{
0 if f(x) = 0;

1 if f(x) ∈ {1, 2}.

By RTn2, let H be	an	infinite	homogeneous	set	for g.

If H has	color 0, then H is	homogeneous	for f with	color 0.

Otherwise, f(x) ∈ {1, 2} for	all x ∈ [H]2. That	is, f ↾ [H]2 is	a 2-coloring.
So	by RTn2 again, there	is	an	infinite	homogeneous	set H̃ ⊆ H for f.



Uniform	reducibility.

In	many	cases, however, an	implication	of Π1
2 principles	is	simpler,

stemming	from	a	stronger	reduction	holding	between	the	two.

Definition. Q ⩽u P if	there	are	procedures Φ and Ψ such	that	if A is	an
instance	of Q then Φ(A) is	an	instance	of P, and	if S is	a	solution	to Φ(A)
then Ψ(A⊕ S) is	a	solution	to A.

Q ⩽su P if	there	are	procedures Φ and Ψ such	that	if A is	an	instance	of
Q then Φ(A) is	an	instance	of P, and	if S is	a	solution	to Φ(A) then Ψ(S)
is	a	solution	to A.

(In	computable	analysis, this	is	called (strong)	Weihrauch	reducibility.)

Most	implications	between Π1
2 principles	are	strong	uniform	reductions

that	formalize. Frequently, the	backwards	procedure, Ψ, is	the	identity.



Uniform	reducibility.

Examples. If j < k, then RTnj ⩽su RTnk .

Examples. SRT22 ⩽su RT22.

Examples. If n < m, then RTnk ⩽su RTmk .

Examples. Cholak, Jockusch, and	Slaman. COH ⩽su RT22.

Examples. Jockusch. If 3 ⩽ n < m, then RTnk → RTmk over RCA0 but
Examples. RTmk ≰u RTnk . Indeed, every	computable	instance	of RTnk has	a
Examples. ∅(n)-computable	solution, but	this	is	not	the	case	for RTmk .

Examples. Jockusch. If n < m, the	degrees	of	solutions	to	computable
Examples. instances	of DNRn and DNRm agree. But DNRn ≰u DNRm.



Different	numbers	of	colors.

There	is	no	known	degree-theoretic	difference	between	solutions	to
computable	instances	of RTnj and RTnk . This	motivates	the	following:

Question. If j < k, is RTnk ⩽(s)u RTnj ?

Definition. For	a Π1
2 principle P, let P2 be	the	principle	whose	instances

are	pairs ⟨A,B⟩ with A and B instances	of P, and	solutions	are	pairs ⟨S, T⟩
with S a	solution	to A and T a	solution	to B.

Example. COH2 ⩽su COH.
Example. WKL2 ⩽su WKL.
Example. (RTnj )

2 ⩽su RTnj2 .

It	follows	that	if RTnj2 ⩽(s)u RTnj then (RTnj )
2 ⩽(s)u RTnj .



Multiple	applications.

Definition. For	a Π1
2 principle P, define	analogously	the	principle Pn for

each n ⩾ 2, and	the	principle Pω.

Observation. For	any P, if P2 ⩽(s)u P then Pn ⩽(s)u P for	all n ⩾ ω.

For	example, suppose P2 ⩽u P via Φ and Ψ. If ⟨A0,A1,A2,A3⟩ is	any
instance	of P4, then

Φ(A0,Φ(A1,Φ(A2,A3)))

is	an	instance	of P. By	repeatedly	applying Ψ, we	can	unravel	any
solution S to	this	instance	into	a	sequence	of	solutions	to	the Ai.



Multiple	applications.

Question. If P2 ⩽(s)u P, must	it	be	that Pω ⩽(s)u P?

Given	a	sequence ⟨A0,A1, . . .⟩ of	colorings [ω]n → j, we	would	like	to
imitate	our	argument	from	above	by	defining	an	instance A of P by

A = Φ(A0,Φ(A1,Φ(A2, · · · ))).

But	this	process	clearly	fails	to	converge.

However, we	can	solve	the	question	by	approximating	this	process.

For	concreteness, take P = RTnj , and	suppose ⟨RTnj ,RTnj ⟩ ⩽u RTnj via Φ

and Ψ. Fix	a	sequence	of	colorings f0, f1, . . . : [ω]n → j.



Multiple	applications.

We	build	new	colorings g0, g1, . . . : [ω]n → j so	as	to	satisfy

gi(x) = Φ(fi, gi+1)(x)

for	all	large	enough x ∈ [ω]n. Thus, g0 ≈ Φ(f0, g1).
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n3

If Gi is	homogeneous	for gi then Gi − ni is	homogeneous	for Φ(fi, gi+1).
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Squashing	theorem.

We	conclude	that	if (RTnj )
2 ⩽u RTnj then (RTnj )

ω ⩽u RTnj .

A similar	argument	holds	for	many	other Π1
2 principles, including SRT22,

COH, WKL0, TS2k , etc.

Theorem	(Dorais, Dzhafarov, Hirst, Mileti, and	Shafer). If P is Π1
2 and

satisfies	totality	and	finite	tolerance, then Pω ⩽(s)u P if P2 ⩽(s)u P.

(Totality	and	finite	tolerance	are	mild	combinatorial	assumptions.)

As	given, our	argument	above	only	works	for ⩽u. This	is	because	the
numbers ni used	in	the	construction	of	the gi depend	on	the	instance
f0, f1, . . . of	colorings. A more	careful	construction	is	necessary	for ⩽su.



Different	numbers	of	colors.

Theorem	(Jockusch). Every	computable f : [ω]n → j has	an	infinite
homogeneous	set H with H ′ ⩽T ∅(n).

But	one	can	build	a	computable	sequence f0, f1, . . . : [ω]n → j so	that
every	sequence	of	homogeneous	sets	computes ∅(n).

Corollary. (RTnj )
ω ≰u RTnj . Hence, (RTnj )

2 ≰u RTnj , so RTnj2 ≰u RTnj .

We	do	not	know	how	to	extend	this	to	arbitrary k > j in	the	case	of ⩽u.

Corollary. If j < k, then RTnk ≰su RTnj .

Proof. One	can	show	that	if RTnk ⩽su RTnj then RTnks ⩽su RTnjs for	all s.
(This	is	a	combinatorial	argument. It	is	not	clear	if	it	holds	also	for ⩽u.)
Take s so	large	that	there	are	two	different	powers	of 2 between js and ks.



Uniform	reductions	and	thin	sets.

Definition. Fix n and k ∈ {2, 3, . . . ,ω}. A set T ⊆ ω is thin for	a	coloring
f : [ω]n → k if	there	is	a c < k such	that f(x) ̸= c for	all x ∈ [T]n.

TSnk . Every f : [ω]n → k has	an	infinite	thin	set.

For	every n, we	have	that

TSnω ⩽su · · · ⩽su TSn4 ⩽su TSn3 ⩽su TSn2 = RTn2 <su RTn3 <su RTn4 <su · · · .

Question	(Miller). If j < k ∈ {2, 3, . . . ,ω}, does TSnk → TSnj over RCA0?

Theorem	(Dorais, Dzhafarov, Hirst, Mileti	and	Shafer, n = 1; Hirschfeldt
and	Joskusch, n ⩾ 2). If j < k ∈ {2, 3, . . . ,ω}, then TSnj ≰u TSnk .

The	proof	is	a	direct	construction. The	squashing	theorem	does	not	help.



Uniform	reductions	and	rainbows.

Definition. Fix n, k. A coloring f : [ω]n → ω is k-bounded if |f−1(c)| ⩽ k
for	all c ∈ ω. A set R ⊆ ω is	a rainbow for f if f ↾ [R]n is	injective.

RRTnk . Every k-bounded f : [ω]n → ω has	an	infinite	rainbow.

Theorem	(Csima	and	Mileti). If X is 2-random	then	every	computable
instance	of RRT2k has	an X-computable	solution.

Theorem	(Slaman). RRT22 does	not	imply ∀k RT1k over RCA0.

By	contrast, for	each k, RT1k is	computably	true.

Theorem	(Dorais, Dzhafarov, Hirst, Mileti	and	Shafer). The	Csima-Mileti
result	holds	if RRT2k is	replaced	by (RRT2k)

ω. Hence, RT1k ≰u RRT22.

Proof. Otherwise, (RT1k)
ω ⩽u (RRT22)

ω. But	the	former	can	code ∅ ′.



Computable	(non-uniform)	reducibility.

Definition. Q ⩽c P if	every	instance A of Q computes	an	instance B of P,
such	that	if S is	a	solution	to B then A⊕ S computes	a	solution	to A.

Q ⩽sc P if	every	instance A of Q computes	an	instance B of P, such	that
if S is	a	solution	to B then S computes	a	solution	to A.

..

uniform

.non-uniform.

strong

.

weak

.

⩽su

. ⩽sc.

⩽u

. ⩽c

⩽c is	perhaps	the	most	natural	reduction	between Π1
2 principles.



Stable	colorings	and ∆0
2 partitions.

Definition. A coloring f : [ω]2 → 2 is stable if limy f(x, y) exists	for	all x.

SRT2k . Every	stable f : [ω]2 → k has	an	infinite	homogeneous	set.

D2
k . For	every ∆0

2-definable	partition ⟨A0, . . . ,Ak−1⟩ of ω, there	is	an
D2
k . infinite	set S contained	in	one	of	the Ai.

These	are	equivalent	under ⩽u, essentially	just	by	the	limit	lemma.

Theorem	(Chong, Lempp, and	Yang). Over RCA0, D2
k ↔ SRT2k .

Theorem	(CJS;	Mileti). Over RCA0, RT2k ↔ D2
k + COH.

(That RT22 → COH is	just	a	formalization	of	the	fact	that COH ⩽su RT22.)



COH, D2
2, and ω-models.

Theorem	(Chong, Slaman, Yang). Over RCA0, COH is	not	implied	by D2
2.

The	proof	uses	a	very	special	non-standard	model	of RCA0.

Question. Is	every ω-model	of D2
2 a	model	of COH?

The	result	of	Chong, Slaman, and	Yang	suggests	that	if	there	is	a	proof	of
COH from SRT22 in ω-models, it	should	be	complicated.

For	instance, their	model	satisfies Σ0
2, which	usually	suffices	to	formalize

finite	injury	arguments.

Even	so, the	implication	itself	may	be	the	typical	one.

Question. Does COH reduce	to D2
2 according	to	any	of	our	notions?



Cohesive	avoidance.

It	would	be	the	case	that COH ⩽su D2
k if, given S⃗ = ⟨Si : i ∈ ω⟩, there

were	a	partition ⟨A0, . . . ,Ak−1⟩ of ω that	is ∆0
2 in S⃗, such	that	any	infinite

subset	of	any Ai computed	an S⃗-cohesive	set.

If S⃗ = ⟨S0, . . . , Sn−1⟩, then	this	holds	with k = 2n, as	any	infinite	subset	of
any	of	the 2n many	Boolean	combinations	of	the Si is S⃗-cohesive.

Theorem	(Dzhafarov). Fix n and k < 2n. There	is	a	family
S⃗ = ⟨S0, . . . , Sn−1⟩ such	that	for	any	partition ⟨A0, . . . ,Ak−1⟩ of ω,
arithmetical	in S⃗, there	is	an	infinite	subset	of	one	of	the Ai that	computes
no S⃗-cohesive	set.

In	particular, this	is	true	for	partitions	that	are ∆0
2 in S⃗.

Corollary. For	all k, COH ≰sc D2
k . In	fact, COH ≰sc D2

<∞.



Cohesive	avoidance.

The	proof	of	the	theorem	is	a	forcing	argument, using	a	combinatorial
elaboration	of	Seetapun’s	argument.

To	make H not	compute	an S⃗-cohesive	set, we	must	ensure	that
∆(H) ∩ Si and ∆(H) ∩ Si infinite, for	some i that	depends	on ∆.

In	the	case	of	a strong reduction, we	essentially	build H independently
of S⃗: we	extend H to	find	a	new	computation ∆(H)(x) ↓= 1, and	then	set
Si(x) = 0 or Si(x) = 1 as	needed, for	an	appropriate i.

For	a weak reduction, we	are	looking	at	computations	of	the	form
∆(⃗S⊕H)(x) ↓= 1, so	the	bits	of Si must	be	built	along	with H. This
makes	matters	much	more	difficult.

But	if	we	fix ∆, we	can	make	some	progress.



Cohesive	avoidance.

Theorem	(Dzhafarov). Fix ∆ and Γ . There	is	a	family S⃗ = ⟨Si : i ∈ ω⟩ such
that	every	stable f ⩽T S⃗ has	either	an	infinite	red	homogeneous	set R with
∆(⃗S⊕ R) not S⃗-cohesive, or	an	infinite	blue	homogeneous	set B with
Γ (⃗S⊕ B) not S⃗-cohesive.

Corollary. COH ≰u SRT22.

So, in	which	ways	is COH reducible SRT22?

..

uniform

.computable.

strong

.

weak

.

no

. no.

no

. ?



La	cuenta, por	favor.


