A model-theoretic approach to characterizing randomness notions

Cameron Freer (MIT)

Joint work with Nate Ackerman (Harvard)

Buenos Aires Semester on Computability, Complexity and Randomness

March 13, 2013

Warmup: Notions of randomness from $G(\omega, p)$ and for \mathscr{R}

G(ω , **p**): Erdős–Rényi random variable with vertex set ω and edges with independent probabilities *p*.

ℜ: Rado graph, i.e., the "random graph", obtained (up to isomorphism) by G(ω, p) with probability 1 (for 0 < p < 1).

Warmup: Notions of randomness from $G(\omega, p)$ and for \mathscr{R}

G(ω , **p**): Erdős–Rényi random variable with vertex set ω and edges with independent probabilities *p*.

ℜ: Rado graph, i.e., the "random graph", obtained (up to isomorphism) by G(ω, p) with probability 1 (for 0 < p < 1).

Q: For which points in the basic probability space does $G(\omega, p)$ yield \mathscr{R} ?

Q: Consider the image of $G(\omega, p)$ for, say, a ML random point in the basic space. In what sense does this constitute an algorithmically random presentation of \Re ?

Warmup: Notions of randomness from $G(\omega, p)$ and for \mathscr{R}

G(ω , **p**): Erdős–Rényi random variable with vertex set ω and edges with independent probabilities *p*.

ℜ: Rado graph, i.e., the "random graph", obtained (up to isomorphism) by G(ω, p) with probability 1 (for 0 < p < 1).

Q: For which points in the basic probability space does $G(\omega, p)$ yield \mathscr{R} ?

Q: Consider the image of $G(\omega, p)$ for, say, a ML random point in the basic space. In what sense does this constitute an algorithmically random presentation of \Re ?

Q: There are many other probabilistic constructions of \mathscr{R} . Do these yield different measure-one sets of points in the basic space (upon taking the preimage of the isomorphism class of \mathscr{R})?

Q: Taking these sets to constitute notions of randomness, do we recover any well-known classes? Do we obtain any new ones?

Q: What if we consider other structures or classes of structures (e.g., models of a given theory) and their probabilistic constructions?

Talk Outline

Two points of view:

1. Probabilistic constructions provide new examples of "almost everywhere" theorems, using which we can **recharacterize old notions of randomness** or **discover new ones**.

2. We can use symmetric computable probabilistic constructions of unordered countable structures to formulate notions of **algorithmically random such structures**.

Background on computability of graphons

Characterizing μ **-Martin**–Löf (for continuous μ) and Kurtz randomness

Open questions:

Recovering familiar randomness notions

The poset of such randomness notions

Algorithmically random countable structures

Effective dimension

Powerful consequences of statements about randomness