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Introduction

Studies of algorithmic randomness within recursion theory
investigate what “almost-everywhere” properties hold
effectively. This can take place in the context of various spaces
(Cantor space, Brownian motion, probability measures...).

It is usually the case that “almost-everywhere” is with respect
to a uniform measure on that space (e.g. Lebesgue measure on
Cantor space).

What happens if we replace Lebesgue measure on 2ω with an
arbitrary measure?
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Introduction

Theorem (Reimann–Slaman, 2008)

For any real X, the following are equivalent:

1. X >T 0.

2. There is a measure µ such that µ(X) = 0 and X is
µ-Martin-Löf-random.

Question

Can we replace “Martin-Löf-random” with stronger notions of
randomness?
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Randomness Notions Stronger than MLR

These randomness notions can be defined in terms of tests
{Vk}k∈ω where a real X passes the test if X /∈

⋂
k Vk.

I Martin-Löf Random (MLR):

Vk = Wg(k) where g(k) is recursive, and λ(Vk) ≤ 2−k

I Difference Random (DiffR):

Vk = Wg1(k)
\Wg2(k)

where g1(k), g2(k) is a recursive

functions, and λ(Vk) ≤ 2−k

I Weak-2-Random (W2R):

Vk = Wg(k) where g(k) is recursive, and limλ(Vk) = 0

I n-random (nR):

Vk = W 0(n−1)

g(k) where g(k) is 0(n−1)-recursive, and

λ(Vk) ≤ 2−k
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Randomness Notions Stronger than MLR

These randomness notions can be defined in terms of tests
{Vk}k∈ω where a real X passes the test if X /∈

⋂
k Vk.

I Martin-Löf Random (MLR):
Vk = Wµ

g(k) where g(k) is recursive (in µ), and µ(Vk) ≤ 2−k

I Difference Random (DiffR):
Vk = Wµ

g1(k)
\Wµ

g2(k)
where g1(k), g2(k) is a recursive

functions (in µ), and µ(Vk) ≤ 2−k

I Weak-2-Random (W2R):
Vk = Wµ

g(k) where g(k) is recursive (in µ), and limµ(Vk) = 0

I n-random (nR):

Vk = Wµ(n−1)

g(k) where g(k) is µ(n−1)-recursive, and
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Heirarchy of Randomness

DR

⊃

Kurtz ⊃ MLR ⊃ DiffR

⊃

⊃
2R ⊃ 3R ⊃ · · ·

W2R

⊃



The Problem

Definition
A real X is Martin-Löf (DiffR, W2R, ...) randomizable if
there is a measure µ such that µ(X) = 0 and X is µ-Martin-Löf
(DiffR, W2R, ...) random.

Question

What reals are DiffR (W2R, nR, ...) randomizable?



What about continuous measures?

Definition
A real X is not-continuously-random (X ∈ NCR) if for
every continuous measure µ, X is not µ-MLR.

Theorem (Kjos-Hanssen–Montalban, 2005)

For every β < ωCK
1 there is a real X ≡T 0(β) such that

X ∈ NCR.

Theorem (Reimann–Slaman, 2008)

NCR ⊂ HYP
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Some Useful Facts

Theorem (Franklin–Ng, 2010)

Suppose X is Martin-Löf random. Then the following are
equivalent:

1. X is difference random.

2. X 6≥T 0′.

Theorem (Downey–Nies–Weber–Yu, 2006)

Suppose X is Martin-Löf random. Then the following are
equivalent:

1. X is weakly-2-random.

2. X forms a minimal pair with 0′ , i.e. X ≥T Z and 0′ ≥T Z
implies 0 ≥T Z.



Some Relativized Useful Facts

Theorem (Franklin–Ng, 2010)

Suppose X is µ-Martin-Löf random. Then the following are
equivalent:

1. X is µ-difference random.

2. X⊕µ 6≥T µ′.

Theorem (Downey–Nies–Weber–Yu, 2006)

Suppose X is µ-Martin-Löf random. Then the following are
equivalent:

1. X is µ-weakly-2-random.

2. X⊕µ forms a minimal pair with µ′ over µ, i.e. X⊕µ ≥T Z
and µ′ ≥T Z implies µ ≥T Z.



Initial Observations

Returning to arbitrary (not necessarily continuous) measures...

Proposition

If X is n-r.e. then X is µ-DiffR iff µ(X) > 0.
In particular, there is no measure µ such that µ(0′) = 0 and 0′

is µ-DiffR.

Proposition

There are no neutral measures for DiffR. That is, given any
measure µ, there is a real X such that µ(X) = 0 and X is
captured in a DiffR test relative to every representation of µ.
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Some Negative Results

Theorem (H.)

If X ∈ NCR then for n ≥ 3, X is n-random with respect to µ iff
µ(X) > 0.

Proposition (Reimann–Slaman, 2008)

If n ≥ 2, then for all k ≥ 0, 0(k) is not n-random with respect to
a continuous measure.

Proposition (Reimann–Slaman, 2008)

For n ≥ 3, 0(ω) is not n-random with respect to a continuous
measure.

Theorem (H.)

For any recursive ordinal α, if X is a real such that
0(α) ≤T X ≤T 0(α+1) then X is W2R with respect to µ iff
µ(X) > 0.
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Theorem (H.)

For any recursive ordinal α, if X is a real such that
0(α) ≤T X ≤T 0(α+1) then X is W2R with respect to µ iff
µ(X) > 0.

Proof.

I *There is a Π0
2 predicate H(a, Z) such that H(a, Z) holds

iff Z = Ha.

I Fixing an ordinal representation a such that α = |a|O and
an index e such that ΦX

e = Ha. Define

C = {Z : ΦZ
e is total ∧H(a,ΦZ

e )}

Then C is a Π0
2 class containing X.

I X is µ-W2R implies µ(C) > 0, so µ ≥T Ha.

I µ(X) = 0⇒ µ 6≥T X, but µ′ ≥T 0(α+1) ≥T X.

*
Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, 1990.
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Building Measures

I Suppose that f : 2ω → 2ω is a continuous function. Then
we can define a new measure µf by

µf (σ) = λ(f−1(σ))

I Suppose X = Ψ(Z) where Z is MLR in µ. If we have the
condition that there is a constant c such that for all σ

µ(σ) ≥ cλ(Ψ−1(σ))

then X is µ-MLR.

Proposition (Reimann–Slaman, 2008)

X is µ-MLR for a continuous measure µ iff there is a MLR real
Z such that X ≡tt Z.
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Analyzing the Reimann–Slaman proof for MLR

Theorem
If X >T 0 then there is a measure µ such that µ(X) = 0 and X
is µ-Martin-Löf-random.

Proof.

1. Find a G such that X ⊕G ≡T G′.
2. Find a Z which is random relative to G and such that
X ≡T (G) Z.

3. Let Φ,Ψ be Turing functionals (relative to G) such that
Φ(X) = Z and Ψ(Z) = X. Define
Pre(σ) = {τ : Ψ−1(σ) ⊆ τ ∧ Φ(τ) ⊇ σ}. Find a measure µ
such that

λ(Pre(σ)) ≤ µ(σ) ≤ λ(Φ(σ))

(more or less)
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Is the Intermediate Step Necessary?

In step (2), we found a random real Z such that X ≡T (G) Z
using:

Theorem (Kučera)

If X ⊕G ≥T G′ then there is a MLR relative to G real Z such
that X ≡T (G) Z.

Note that this theorem does not extend to DiffR (or higher).



Question

Is this intermediate step necessary? That is, to randomize X, is
it necessary to find G,Z such that Z is random in G and
X ≡T (G) Z?

Theorem (H.)

Suppose X is µ-random (DiffR, W2R, DR, ...) and that
µ(X) = 0. Then there are reals M,Z such that Z is λ-random
(DiffR, W2R, DR, ...) relative to M and such that X ≡T (M) Z.
Furthermore, if µ is continuous then X ≡tt(M) Z.
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Theorem (H.)
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Question

Is this intermediate step necessary? That is, to randomize X, is
it necessary to find G,Z such that Z is random in G and
X ≡T (G) Z?

Theorem (H.)

Suppose ν is a continuous measure, X is µ-random (DiffR,
W2R, DR, ...) relative to ν and that µ(X) = 0. Then there are
reals M,N,Z such that Z is ν-random (DiffR, W2R, DR, ...)
relative to M⊕N and such that X ≡T (M⊕N) Z.
Furthermore, if µ is continuous then X ≡tt(M⊕N) Z.



Lemma
There is a one-to-one Turing functional Φ (relative to µ),
computably invertible on its range, such that Φ(Y ) ↓ iff
µ(Y ) = 0 and such that ∃c∀σ

(
λ(σ) ≥ c · µ(Φ−1(σ))

)
.

Proof.
ON BOARD



Questions

1. Is there a nice characterization of reals which can be made
W2R with to respect to some µ? (Or DiffR, DR, 2R, ...)

2. In the counter-examples given for W2R (that is, where
there is no measure µ such that µ(X) = 0 and X is
µ-W2R), the real X is a Π0

2 singleton. Are there other
counter-examples?

3. Are there reals X ≥T 0′ (or even reals X ≡T 0′) for which
there is a measure µ such that X is µ-DiffR?

4. Can anything be said about reals which are not DiffR (DR,
W2R, ...) random for any continuous measures?
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