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What happens if we replace Lebesgue measure on 2* with an
arbitrary measure?
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Theorem (Reimann—Slaman, 2008)

For any real X, the following are equivalent:
1. X >70.

2. There is a measure p such that u(X) =0 and X is
p-Martin-Lof-random.

Question

Can we replace “Martin-Lof-random” with stronger notions of
randomness?
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Randomness Notions Stronger than MLR

These randomness notions can be defined in terms of tests
{Vk}rew where a real X passes the test if X ¢ (), Vi.

» Martin-Lof Random (MLR):

Vi, = W;(k) where g(k) is recursive (in ), and p(V) < 27F

» Difference Random (DiffR):
Vi = W;l(k) \ Wg“g(k) where ¢;(k), g2(k) is a recursive
functions (in y), and pu(V3) < 27F
» Weak-2-Random (W2R):
Vi, = Wg“(k) where g(k) is recursive (in p), and lim p(Vg) = 0
» n-random (nR):
Ve = WE where g(k) is p= ive, and
k=W Wwhere g(k)is p -recursive, an

p(Vi) < 27F
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The Problem

Definition

A real X is Martin-Lof (DiffR, W2R, ...) randomizable if
there is a measure p such that pu(X) =0 and X is pu-Martin-Lof
(DiffR, W2R, ...) random.

Question
What reals are DiffR (W2R, nR, ...) randomizable?
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What about continuous measures?

Definition
A real X is not-continuously-random (X € NCR) if for
every continuous measure g, X is not u-MLR.

Theorem (Kjos-Hanssen-Montalban, 2005)
For every 8 < w?K there is a real X =¢ 0%) such that
X € NCR.

Theorem (Reimann—Slaman, 2008)
NCR c HYP
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Some Relativized Useful Facts

Theorem (Franklin—Ng, 2010)

Suppose X is pu-Martin-Lof random. Then the following are
equivalent:

1. X is p-difference random.
2. Xdu 2 1.

Theorem (Downey—Nies—Weber—Yu, 2006)

Suppose X is p-Martin-Lof random. Then the following are
equivalent:

1. X is p-weakly-2-random.

2. X®u forms a minimal pair with g/ over pu, i.e. X®u >7 Z
and p/ >7 Z implies u >1 Z.
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Initial Observations

Returning to arbitrary (not necessarily continuous) measures...

Proposition

If X is n-r.e. then X is p-DiffR iff p(X) > 0.
In particular, there is no measure p such that p(0’) = 0 and 0/
is p-DiffR.

Proposition

There are no neutral measures for DiffR. That is, given any
measure (i, there is a real X such that u(X) =0 and X is
captured in a DiffR test relative to every representation of u.
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Theorem (H.)

For any recursive ordinal «, if X is a real such that
00 <7 X <7 0+ then X is W2R with respect to yu iff
w(X) > 0.

Proof.

» “There is a 1y predicate H(a, Z) such that H(a, Z) holds
iff Z =H,.

» Fixing an ordinal representation a such that o = |a|p and
an index e such that ®X = H,. Define

C={Z: 7 is total A H(a, ®7)}

Then C is a ITJ class containing X.
» X is ui-W2R implies u(C) > 0, so p >7 H,.
» u(X)=0=p #r X, but g/ >700+t) >4 X,

*
Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, 1990.
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Building Measures

» Suppose that f: 2% — 2 is a continuous function. Then
we can define a new measure py by

p(o) = Mf(a))

» Suppose X = ¥(Z) where Z is MLR in u. If we have the
condition that there is a constant ¢ such that for all o

(o) > AT (0))
then X is u-MLR.

Proposition (Reimann-Slaman, 2008)

X is u-MLR for a continuous measure p iff there is a MLR real
Z such that X =4 Z.
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Analyzing the Reimann—Slaman proof for MLR

Theorem
If X >7 0 then there is a measure p such that p(X) =0 and X
is p-Martin-Lof-random.

Proof.

1. Find a G such that X & G =r G'.
2. Find a Z which is random relative to G’ and such that
X ET(G) Z.
3. Let @, ¥ be Turing functionals (relative to G) such that
®(X)=Z and ¥(Z) = X. Define
Pre(c) = {7 : ¥71(0) C 7 A ®(7) D o}. Find a measure
such that
A(Pre(0)) < () < A(@(0))

(more or less)

O



Is the Intermediate Step Necessary?

In step (2), we found a random real Z such that X =pg) Z
using:

Theorem (Kucera)

If X ® G >7 G’ then there is a MLR relative to G real Z such
that X ET(G) Z.

Note that this theorem does not extend to DiffR (or higher).
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it necessary to find G, Z such that Z is random in G and

X ET(G) A
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Theorem (H.)

Suppose X is p-random (DiffR, W2R, DR, ...) and that

p(X) = 0. Then there are reals M, Z such that Z is A-random
(DiffR, W2R, DR, ...) relative to M and such that X = Z.
Furthermore, if 4 is continuous then X =) Z.



Question

Is this intermediate step necessary? That is, to randomize X, is
it necessary to find G, Z such that Z is random in G and

X ET(G) Z7

Theorem (H.)

Suppose v is a continuous measure, X is p-random (DiffR,
W2R, DR, ...) relative to v and that (X) = 0. Then there are
reals M, N,Z such that Z is v-random (DiffR, W2R, DR, ...)
relative to M@N and such that X =pqn) Z.

Furthermore, if p is continuous then X =4 yan) Z.



Lemma

There is a one-to-one Turing functional ® (relative to p),
computably invertible on its range, such that ®(Y) | iff
1(Y) = 0 and such that 3cVo (A(o) > ¢~ u(®71(0))).

Proof.
ON BOARD



Questions

1. Is there a nice characterization of reals which can be made
W2R with to respect to some p? (Or DiffR, DR, 2R, ...)



Questions

1. Is there a nice characterization of reals which can be made
W2R with to respect to some p? (Or DiffR, DR, 2R, ...)

2. In the counter-examples given for W2R (that is, where
there is no measure p such that p(X) =0 and X is
u-W2R), the real X is a Iy singleton. Are there other
counter-examples?



Questions

1. Is there a nice characterization of reals which can be made
W2R with to respect to some p? (Or DiffR, DR, 2R, ...)

2. In the counter-examples given for W2R (that is, where
there is no measure p such that p(X) =0 and X is
u-W2R), the real X is a Iy singleton. Are there other
counter-examples?

3. Are there reals X >7 0" (or even reals X =7 0') for which
there is a measure p such that X is p-DiffR?



Questions

1. Is there a nice characterization of reals which can be made
W2R with to respect to some p? (Or DiffR, DR, 2R, ...)

2. In the counter-examples given for W2R (that is, where
there is no measure p such that p(X) =0 and X is
u-W2R), the real X is a Iy singleton. Are there other
counter-examples?

3. Are there reals X >7 0" (or even reals X =7 0') for which
there is a measure p such that X is p-DiffR?

4. Can anything be said about reals which are not DiffR (DR,
W2R, ...) random for any continuous measures?



