Randomizing Reals

Ian Haken

University of California - Berkeley

May 22, 2013

Studies of algorithmic randomness within recursion theory investigate what "almost-everywhere" properties hold effectively. This can take place in the context of various spaces (Cantor space, Brownian motion, probability measures...).

Studies of algorithmic randomness within recursion theory investigate what "almost-everywhere" properties hold effectively. This can take place in the context of various spaces (Cantor space, Brownian motion, probability measures...).

It is usually the case that "almost-everywhere" is with respect to a uniform measure on that space (e.g. Lebesgue measure on Cantor space).

Studies of algorithmic randomness within recursion theory investigate what "almost-everywhere" properties hold effectively. This can take place in the context of various spaces (Cantor space, Brownian motion, probability measures...).

It is usually the case that "almost-everywhere" is with respect to a uniform measure on that space (e.g. Lebesgue measure on Cantor space).

What happens if we replace Lebesgue measure on 2^{ω} with an arbitrary measure?

Theorem (Reimann–Slaman, 2008)

For any real X, the following are equivalent:

- 1. $X >_T 0$.
- 2. There is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Theorem (Reimann–Slaman, 2008)

For any real X, the following are equivalent:

- 1. $X >_T 0$.
- 2. There is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Question

Can we replace "Martin-Löf-random" with stronger notions of randomness?

- ▶ Martin-Löf Random (MLR):
- ▶ Difference Random (DiffR):

- ▶ Weak-2-Random (W2R):
- ▶ n-random $(n\mathbf{R})$:

These randomness notions can be defined in terms of tests $\{V_k\}_{k\in\omega}$ where a real X passes the test if $X\notin \bigcap_k V_k$.

- ► Martin-Löf Random (MLR):
- ▶ Difference Random (DiffR):

- ▶ Weak-2-Random (W2R):
- n-random $(n\mathbf{R})$:

These randomness notions can be defined in terms of tests $\{V_k\}_{k\in\omega}$ where a real X passes the test if $X\notin\bigcap_k V_k$.

- Martin-Löf Random (MLR): V_k = W_{g(k)} where g(k) is recursive, and λ(V_k) ≤ 2^{-k}
 Difference Random (DiffR): V_k = W_{g1(k)} \ W_{g2(k)} where g₁(k), g₂(k) is a recursive functions, and λ(V_k) ≤ 2^{-k}
- Weak-2-Random (W2R): V_k = W_{g(k)} where g(k) is recursive, and lim λ(V_k) = 0
 n-random (nR): V_k = W⁰⁽ⁿ⁻¹⁾_{g(k)} where g(k) is 0⁽ⁿ⁻¹⁾-recursive, and λ(V_k) ≤ 2^{-k}

These randomness notions can be defined in terms of tests $\{V_k\}_{k\in\omega}$ where a real X passes the test if $X\notin \bigcap_k V_k$.

- Martin-Löf Random (MLR): V_k = W^μ_{g(k)} where g(k) is recursive (in μ), and μ(V_k) ≤ 2^{-k}
 Difference Random (DiffR): V_k = W^μ_{g1(k)} \ W^μ_{g2(k)} where g₁(k), g₂(k) is a recursive functions (in μ), and μ(V_k) ≤ 2^{-k}
- Weak-2-Random (W2R): V_k = W^μ_{g(k)} where g(k) is recursive (in μ), and lim μ(V_k) = 0
 n-random (nR): V_k = W^{μ(n-1)}_{g(k)} where g(k) is μ⁽ⁿ⁻¹⁾-recursive, and μ(V_k) ≤ 2^{-k}

Heirarchy of Randomness

The Problem

Definition

A real X is Martin-Löf (DiffR, W2R, ...) randomizable if there is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf (DiffR, W2R, ...) random.

Question

What reals are DiffR (W2R, nR, ...) randomizable?

What about **continuous** measures?

Definition

A real X is **not-continuously-random** ($X \in NCR$) if for every continuous measure μ , X is not μ -MLR.

What about **continuous** measures?

Definition

A real X is **not-continuously-random** ($X \in NCR$) if for every continuous measure μ , X is not μ -MLR.

Theorem (Kjos-Hanssen–Montalban, 2005) For every $\beta < \omega_1^{\text{CK}}$ there is a real $X \equiv_T 0^{(\beta)}$ such that $X \in \text{NCR}$. What about **continuous** measures?

Definition

A real X is **not-continuously-random** ($X \in NCR$) if for every continuous measure μ , X is not μ -MLR.

Theorem (Kjos-Hanssen–Montalban, 2005) For every $\beta < \omega_1^{\text{CK}}$ there is a real $X \equiv_T 0^{(\beta)}$ such that $X \in \text{NCR}$.

Theorem (Reimann–Slaman, 2008) NCR \subset HYP

Some Useful Facts

Theorem (Franklin–Ng, 2010)

Suppose X is Martin-Löf random. Then the following are equivalent:

- 1. X is difference random.
- 2. $X \not\geq_T 0'$.

Theorem (Downey-Nies-Weber-Yu, 2006)

Suppose X is Martin-Löf random. Then the following are equivalent:

- 1. X is weakly-2-random.
- 2. X forms a minimal pair with 0' , i.e. $X \ge_T Z$ and $0' \ge_T Z$ implies $0 \ge_T Z$.

Some Relativized Useful Facts

Theorem (Franklin–Ng, 2010)

Suppose X is μ -Martin-Löf random. Then the following are equivalent:

- 1. X is μ -difference random.
- 2. $X \oplus \mu \geq_T \mu'$.

Theorem (Downey-Nies-Weber-Yu, 2006)

Suppose X is μ -Martin-Löf random. Then the following are equivalent:

- 1. X is μ -weakly-2-random.
- 2. $X \oplus \mu$ forms a minimal pair with μ' over μ , i.e. $X \oplus \mu \ge_T Z$ and $\mu' \ge_T Z$ implies $\mu \ge_T Z$.

Initial Observations

Returning to arbitrary (not necessarily continuous) measures...

Initial Observations

Returning to arbitrary (not necessarily continuous) measures...

Proposition

If X is *n*-r.e. then X is μ -DiffR iff $\mu(X) > 0$.

In particular, there is no measure μ such that $\mu(0') = 0$ and 0' is μ -DiffR.

Initial Observations

Returning to arbitrary (not necessarily continuous) measures...

Proposition

If X is *n*-r.e. then X is μ -DiffR iff $\mu(X) > 0$. In particular, there is no measure μ such that $\mu(0') = 0$ and 0' is μ -DiffR.

Proposition

There are no neutral measures for DiffR. That is, given any measure μ , there is a real X such that $\mu(X) = 0$ and X is captured in a DiffR test relative to every representation of μ .

Some Negative Results

Theorem (H.)

If $X \in NCR$ then for $n \ge 3$, X is n-random with respect to μ iff $\mu(X) > 0$.

Some Negative Results

Theorem (H.)

If $X \in NCR$ then for $n \ge 3$, X is n-random with respect to μ iff $\mu(X) > 0$.

Proposition (Reimann-Slaman, 2008)

If $n \ge 2$, then for all $k \ge 0$, $0^{(k)}$ is not *n*-random with respect to a continuous measure.

Proposition (Reimann-Slaman, 2008)

For $n \geq 3, 0^{(\omega)}$ is not *n*-random with respect to a continuous measure.

Some Negative Results

Theorem (H.)

If $X \in NCR$ then for $n \ge 3$, X is n-random with respect to μ iff $\mu(X) > 0$.

Proposition (Reimann-Slaman, 2008)

If $n \ge 2$, then for all $k \ge 0$, $0^{(k)}$ is not *n*-random with respect to a continuous measure.

Proposition (Reimann-Slaman, 2008)

For $n \geq 3, 0^{(\omega)}$ is not *n*-random with respect to a continuous measure.

Theorem (H.)

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

Proof.

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

Proof.

▶ *There is a Π_2^0 predicate H(a, Z) such that H(a, Z) holds iff $Z = H_a$.

Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

Proof.

- ▶ *There is a Π_2^0 predicate H(a, Z) such that H(a, Z) holds iff $Z = H_a$.
- ► Fixing an ordinal representation a such that $\alpha = |a|_{\mathcal{O}}$ and an index e such that $\Phi_e^X = H_a$. Define

$$\mathcal{C} = \{ Z : \Phi_e^Z \text{ is total} \land H(a, \Phi_e^Z) \}$$

Then \mathcal{C} is a Π_2^0 class containing X.

Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

Proof.

- ▶ *There is a Π_2^0 predicate H(a, Z) such that H(a, Z) holds iff $Z = H_a$.
- ► Fixing an ordinal representation a such that $\alpha = |a|_{\mathcal{O}}$ and an index e such that $\Phi_e^X = H_a$. Define

$$\mathcal{C} = \{ Z : \Phi_e^Z \text{ is total} \land H(a, \Phi_e^Z) \}$$

Then \mathcal{C} is a Π_2^0 class containing X.

• X is μ -W2R implies $\mu(\mathcal{C}) > 0$, so $\mu \ge_T H_a$.

Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.

For any recursive ordinal α , if X is a real such that $0^{(\alpha)} \leq_T X \leq_T 0^{(\alpha+1)}$ then X is W2R with respect to μ iff $\mu(X) > 0$.

Proof.

- ▶ *There is a Π_2^0 predicate H(a, Z) such that H(a, Z) holds iff $Z = H_a$.
- ► Fixing an ordinal representation a such that $\alpha = |a|_{\mathcal{O}}$ and an index e such that $\Phi_e^X = H_a$. Define

$$\mathcal{C} = \{ Z : \Phi_e^Z \text{ is total} \land H(a, \Phi_e^Z) \}$$

Then \mathcal{C} is a Π_2^0 class containing X.

• X is μ -W2R implies $\mu(\mathcal{C}) > 0$, so $\mu \ge_T H_a$.

•
$$\mu(X) = 0 \Rightarrow \mu \not\geq_T X$$
, but $\mu' \geq_T 0^{(\alpha+1)} \geq_T X$.

Sacks, Gerald E. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.

Building Measures

► Suppose that $f: 2^{\omega} \to 2^{\omega}$ is a continuous function. Then we can define a new measure μ_f by

$$\mu_f(\sigma) = \lambda(f^{-1}(\sigma))$$

Building Measures

► Suppose that $f: 2^{\omega} \to 2^{\omega}$ is a continuous function. Then we can define a new measure μ_f by

$$\mu_f(\sigma) = \lambda(f^{-1}(\sigma))$$

Suppose $X = \Psi(Z)$ where Z is MLR in μ . If we have the condition that there is a constant c such that for all σ

$$\mu(\sigma) \geq c\lambda(\Psi^{-1}(\sigma))$$

then X is μ -MLR.

Building Measures

► Suppose that $f: 2^{\omega} \to 2^{\omega}$ is a continuous function. Then we can define a new measure μ_f by

$$\mu_f(\sigma) = \lambda(f^{-1}(\sigma))$$

► Suppose $X = \Psi(Z)$ where Z is MLR in μ . If we have the condition that there is a constant c such that for all σ

$$\mu(\sigma) \geq c\lambda(\Psi^{-1}(\sigma))$$

then X is μ -MLR.

Proposition (Reimann–Slaman, 2008) X is μ -MLR for a continuous measure μ iff there is a MLR real Z such that $X \equiv_{tt} Z$.

Theorem

If $X >_T 0$ then there is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Theorem

If $X >_T 0$ then there is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Proof.

1. Find a G such that $X \oplus G \equiv_T G'$.

Theorem

If $X >_T 0$ then there is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Proof.

- 1. Find a G such that $X \oplus G \equiv_T G'$.
- 2. Find a Z which is random relative to G and such that $X \equiv_{T(G)} Z$.

Theorem

If $X >_T 0$ then there is a measure μ such that $\mu(X) = 0$ and X is μ -Martin-Löf-random.

Proof.

- 1. Find a G such that $X \oplus G \equiv_T G'$.
- 2. Find a Z which is random relative to G and such that $X \equiv_{T(G)} Z$.
- 3. Let Φ, Ψ be Turing functionals (relative to G) such that $\Phi(X) = Z$ and $\Psi(Z) = X$. Define $\operatorname{Pre}(\sigma) = \{\tau : \Psi^{-1}(\sigma) \subseteq \tau \land \Phi(\tau) \supseteq \sigma\}$. Find a measure μ such that

$$\lambda(\operatorname{Pre}(\sigma)) \le \mu(\sigma) \le \lambda(\Phi(\sigma))$$

(more or less)

Is the Intermediate Step Necessary?

In step (2), we found a random real Z such that $X \equiv_{T(G)} Z$ using:

Theorem (Kučera)

If $X \oplus G \geq_T G'$ then there is a MLR relative to G real Z such that $X \equiv_{T(G)} Z$.

Note that this theorem does *not* extend to DiffR (or higher).

Is this intermediate step necessary? That is, to randomize X, is it necessary to find G, Z such that Z is random in G and $X \equiv_{T(G)} Z$?

Is this intermediate step necessary? That is, to randomize X, is it necessary to find G, Z such that Z is random in G and $X \equiv_{T(G)} Z$?

Theorem (H.)

Suppose X is μ -random (DiffR, W2R, DR, ...) and that $\mu(X) = 0$. Then there are reals M, Z such that Z is λ -random (DiffR, W2R, DR, ...) relative to M and such that $X \equiv_{T(M)} Z$. Furthermore, if μ is continuous then $X \equiv_{tt(M)} Z$.

Is this intermediate step necessary? That is, to randomize X, is it necessary to find G, Z such that Z is random in G and $X \equiv_{T(G)} Z$?

Theorem (H.)

Suppose ν is a continuous measure, X is μ -random (DiffR, W2R, DR, ...) relative to ν and that $\mu(X) = 0$. Then there are reals M, N, Z such that Z is ν -random (DiffR, W2R, DR, ...) relative to $M \oplus N$ and such that $X \equiv_{T(M \oplus N)} Z$. Furthermore, if μ is continuous then $X \equiv_{tt(M \oplus N)} Z$.

Lemma

There is a one-to-one Turing functional Φ (relative to μ), computably invertible on its range, such that $\Phi(Y) \downarrow$ iff $\mu(Y) = 0$ and such that $\exists c \forall \sigma (\lambda(\sigma) \geq c \cdot \mu(\Phi^{-1}(\sigma)))$.

Proof. ON BOARD

1. Is there a nice characterization of reals which can be made W2R with to respect to some μ ? (Or DiffR, DR, 2R, ...)

- 1. Is there a nice characterization of reals which can be made W2R with to respect to some μ ? (Or DiffR, DR, 2R, ...)
- 2. In the counter-examples given for W2R (that is, where there is no measure μ such that $\mu(X) = 0$ and X is μ -W2R), the real X is a Π_2^0 singleton. Are there other counter-examples?

- 1. Is there a nice characterization of reals which can be made W2R with to respect to some μ ? (Or DiffR, DR, 2R, ...)
- 2. In the counter-examples given for W2R (that is, where there is no measure μ such that $\mu(X) = 0$ and X is μ -W2R), the real X is a Π_2^0 singleton. Are there other counter-examples?
- 3. Are there reals $X \ge_T 0'$ (or even reals $X \equiv_T 0'$) for which there is a measure μ such that X is μ -DiffR?

- 1. Is there a nice characterization of reals which can be made W2R with to respect to some μ ? (Or DiffR, DR, 2R, ...)
- 2. In the counter-examples given for W2R (that is, where there is no measure μ such that $\mu(X) = 0$ and X is μ -W2R), the real X is a Π_2^0 singleton. Are there other counter-examples?
- 3. Are there reals $X \ge_T 0'$ (or even reals $X \equiv_T 0'$) for which there is a measure μ such that X is μ -DiffR?
- 4. Can anything be said about reals which are not DiffR (DR, W2R, ...) random for any **continuous** measures?