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Getting on the Same Page

Definition
The prefix-free Kolmogorov complexity K(σ) of a string σ ∈ 2<ω

is the length of the shortest input to the universal decoding
machine, U, that produces σ.

The KC theorem say that for any c.e. set W ⊂ 2<ω × N (a
‘request set’) with

∑
(σ,n)∈W

2−n <∞ (‘bounded’) there is a

machine M such that for any (σ, n) ∈W there is a τ with
|τ | ≤ n and M(τ) = σ. We can build machines by just asking
nicely and not being greedy.
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Lowness Notions

Definition
A real A is K-trivial if for all n, K(A � n) ≤+ K(n).

For any real A we can relativize (prefix-free) Kolmogorov
complexity to A, KA, by allowing U to access A as an oracle.

Definition
A real A is low for K if for all σ, K(σ) ≤+ KA(σ).
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Mutual Information

We can think of the difference K(σ)−KA(σ) as A’s
information about the string σ. A low for K real has some
constant bound on its information about strings.

Definition (Levin)

The mutual information of reals A,B is

I(A : B) = log
∑
σ,τ

2K(σ)−KA(σ)+K(τ)−KB(τ)−K(σ,τ),

where K(σ, τ) is the complexity of the pair (σ, τ).
The simplified mutual information of reals A,B is

Is(A : B) = log
∑
σ

2K(σ)−KA(σ)−KB(σ).

It is open whether I(A : B) = Is(A : B) for all A,B.
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Some Nice Properties

I I(A : B) =+ I(B : A)

I If A ≥T C, then I(A : B) ≥+ I(C : B)

I If A is MLR relative to B, then I(A : B) <∞.

I If A is low for K, then I(A : B) <∞ for every B.

I If I(A : B) <∞ for every B, then A is low for K.
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Self-Information

We can also examine the quantity I(A : A), the self-information
of A.

Definition
A real A has finite self-information if I(A : A) <∞.
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Some Nice Properties

I If A ≥T B and A has finite self-information, then so does
B.

I If A is low for K, then A has finite self-information.

I If A ≥T 0′, then A does not have finite self-information.

I If A is MLR, then A does not have finite self-information.

I If A has finite self-information, then A is jump traceable
and so A is GL1 (A′ ≤T A⊕ ∅′).
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Finite Self-Information

So, having finite self-information is a lowness notion that
contains the K-trivials. Is it another characterization of being
K-trivial?

Theorem (Hirschfeldt, Weber)

There is a c.e real that has finite self-information and is not low
for K.

So we can ask about where these reals occur, how they behave,
etc. We know there are none above ∅′ and some below ∅′. What
about incomparable to ∅′?

Theorem (H.)

There is a perfect Π0
1 class of reals with finite self-information.

Therefore they are not all ∆0
2.
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A bound on information

The proofs of these theorems depend on the following lemma of
Hirschfeldt and Weber.

Lemma
There is a ∆0

2 function f : 2<ω → N with ∀i∀∞∀s[fs(σ) > i]
such that

∑
σ,τ

2f(σ)+f(τ)−K(σ,τ) <∞

Now if we have an A such that for all σ,
K(σ)−KA(σ) ≤+ f(σ), then A has finite self-information. We
just need to build a perfect set of reals that obey this bound on
their information. This brings us to a much broader topic.
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Weak Lowness Notions
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Weak Lowness Notions

Definition
For a function g : N→ N, a real A is K-trivial up to g if for all
n, K(A � n) ≤+ K(n) + g(n).
For a function f : 2<ω → N, a real A is low for K up to f if for
all σ, K(σ) ≤+ KA(σ) + f(σ).

We denote the set of reals that are K-trivial up to g, KT (g),
and the set of reals low for K up to f , LK(f).
We usually think of functions that are orders, that is,
unbounded and nondecreasing, but in a very fluid way. All we
really need is that they have finite-to-one approximations, i.e.
∀i∀∞σ∀sfs(σ) > i. This does restrict us to ∆0

2 functions, but

Theorem (Baartse, Barmpalias)

There is a ∆0
3 order g such that KT (g) is exactly the set of

K-trivials.
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How much weaker are these notions?

I LK(0) = KT (0) (Nies, 2005). There is a computable order
f such that LK(f) 6= KT (g) for any ∆0

2 order g.

I LK(0) is closed downwards under ≤T . So is LK(f) for any
f . For any ∆0

2 order g, for any real B, there is a real in
KT (g) computing B.

I LK(0) is closed under effective join (Downey, Hirschfeldt,
Nies, Stephan, 2003). For any ∆0

2 order f , LK(f) is not
(unless it is all of 2<ω).

I LK(0) has only countably many elements, and they are all
∆0

2(Chaitin, 1976). For any ∆0
2 order f , LK(f) contains a

perfect set.

This last one is the theorem we want.
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The Proof

To prove the theorem, we build a computable tree, T , all of
whose paths satisfy K(σ) ≤+ KA(σ) + f(σ). To ensure this
inequality holds, we build a KC set, L, alongside T and
enumerate requests for short descriptions of strings when we see
them get short descriptions relative to some path through T .

The problem, of course, is that as the number of branches
through T increases, the same mass might be used to give short
descriptions of different σ over and over again. We need to
know we can keep up while keeping the mass in L bounded.
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The Proof

We use the fact that we are only paying up to a factor of f . We
know f has a finite-to-one approximation, so for any i, only
finitely many σ ever take value i. We contrive to ensure that all
descriptions of σ with f(σ) = i converge on T below the level
where T branches for the i+ 1st time.

If it looks like this is failing for a given i, keep the path above
the i+ 1st branching level with the most mass (and all identical
extensions from nodes at that level), kill all other paths, and
move the branching level up (picture to come).
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Picture

f ≥ 0 f ≥ 1 f ≥ 2
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Picture

f ≥ 0 f ≥ 1 f ≥ 2

Uα(τ) ↓= σ
and f(σ) = 1

Ian Herbert Mutual Information and Weak Lowness Notions



Picture

f ≥ 0 f ≥ 1 f ≥ 2

Uα(τ) ↓= σ
and f(σ) = 1

Find the path above

the second branching level

with the most mass
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Picture

f ≥ 0 f ≥ 1 f ≥ 2

Keep it and any

identical extensions alive,

kill all other paths, and branch
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Picture

f ≥ 0 f ≥ �1 4 f ≥ �2 16

Keep it and any

identical extensions alive,

kill all other paths, and branch
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Verification

We need to make sure the branching levels eventually settle.
This is where having a finite-to-one approximation is important.
Only finitely many σ ever are in a position to threaten the ith
branching level, and each of these can only injure it finitely
often.

Next, we need to show the mass we put into L is bounded. We
can consider separately the mass paid into L for the living
subtree of T and for the nodes killed during the construction.
For the second part, we use the following lemma.

Lemma
For any injury to the ith branching level in the construction, the
amount that has been paid into L on the paths above that
branching level (those kept and those killed) is no more than
2−ci−1 times the mass, m, that converges on the path chosen
during this injury.
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Bounding the Mass

Now we can bound the mass that is wasted by bounding the
mass that is lost by each injury. Each injury fixes some mass to
a lower level in the tree and we have a rough bound (1) on how
much mass can converge on any level. We keep track of the
mass as it trickles down.
This finishes the proof that every path through our perfect tree
is in LK(f).
Now, using the Hirschfeldt-Weber function fHW we get:

Theorem
There is a perfect Π0

1 set of reals with finite self-information.
Moreover, for any real A there are reals B0, B1 with finite
self-information such that A ≤T B0 ⊕B1.
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Some Other Applications

Definition
The effective Hausdorff dimension of a real S is
dim(S) = lim inf

n→∞
K(S�n)

n .

The effective packing dimension of a real S is
Dim(S) = lim sup

n→∞

K(S�n)
n .

Definition
A real A is low for effective Hausdorff dimension if for every
real S, dim(S) = dimA(S).
A real A is low for effective packing dimension if for every real
S, Dim(S) = DimA(S).
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Dimension

Note that if a real A is in LK(log |σ|) then A is low for both
notions of dimension.

Theorem (H.; Lempp, Miller, Ng, Turetsky, Weber)

There is a perfect, non-ideal Π0
1 set of reals that are low for

dimension.
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More Fun Applications

It is clear that the function K(σ) has a finite-to-one
approximation. Then so does bεK(σ)c for any rational ε. So we
can build a perfect non-ideal Π0

1 set of reals that are in
LK(bεK(σ)c), i.e., that satisfy

b(1− ε)K(σ)c ≤+ KA(σ).

It is not hard to build a tree that works for countably many
orders (only let the first i-many injure the first i-many
branching levels), so we can also build a perfect non-ideal Π0

1

set of reals that are in LK(bεK(σ)c) for every ε. These reals are
arbitrarily close to being low for K, but it’s still not good
enough.
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Extending to all orders

We can even extend our construction to handle all ∆0
2 orders

simultaneously, at the cost of some complexity. We’ll want to
use the same strategy as for countably many orders, but we
don’t know which ∆0

2 functions even are orders. So, we guess.

We add more branching levels to our tree, which we use to
guess whether of not φe,s is a finite-to-one approximation. The
subtree generated by making all the right guesses at these
branching nodes will have its infinite paths in LK(f) for every
∆0

2 order f .
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Extending to all orders

Some branches will be injured infinitely often, but if they are it
will be because they are wrong, and so we can ignore them.
The verification that the masses are finite for the different Le’s
goes more or less the same as before.

Theorem (H.)

There is a perfect set P of reals such that for every ∆0
2 order f

P ⊆ LK(f).
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Thanks!
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