Coarse Computability and Algorithmic Randomness

Denis R. Hirschfeldt

The University of Chicago

Joint work with Carl Jockusch and Paul Schupp

Upper density:
$$\overline{\rho}(S) = \limsup_{n} \frac{|S \cap [0, n)|}{n}$$
.
Lower density: $\underline{\rho}(S) = \liminf_{n} \frac{|S \cap [0, n)|}{n}$.

Density: If $\overline{\rho}(S) = \underline{\rho}(S)$ then $\rho(S) = \overline{\rho}(S)$.

A coarse description of X is a D s.t. $\rho(X \triangle D) = 0$.

Upper density:
$$\overline{\rho}(S) = \limsup_{n} \frac{|S \cap [0, n)|}{n}$$
.
Lower density: $\underline{\rho}(S) = \liminf_{n} \frac{|S \cap [0, n)|}{n}$.

Density: If $\overline{\rho}(S) = \underline{\rho}(S)$ then $\rho(S) = \overline{\rho}(S)$.

A coarse description of X is a D s.t. $\rho(X \triangle D) = 0$.

 $Y \leq_{c} X$ if there is a Γ s.t. for any coarse description D of X, Γ^{D} is a coarse description of Y.

A is coarsely computable if $A \leq_{c} \emptyset$, i.e., if A has a computable coarse description.

Let A be noncomputable.

If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.

Let A be noncomputable.

If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.

Thm (Kučera). If $X, Y \leq_{\mathbf{T}} \emptyset'$ are relatively 1-random then they do not form a minimal pair.

If $A \leq_{\mathbf{T}} X$, Y then X is A-1-random but computes A.

Let A be noncomputable.

If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.

Thm (Kučera). If $X, Y \leq_{\mathbf{T}} \emptyset'$ are relatively 1-random then they do not form a minimal pair.

If $A \leq_{\mathbf{T}} X$, Y then X is A-1-random but computes A.

If X is A-weakly 2-random then X does not compute A.

If X, Y are relatively weakly 2-random, they form a minimal pair.

A is low for 1-randomness if every 1-random set is A-1-random.

Such sets are usually called K-trivial. (Nies)

Let \mathcal{K} be the class of K-trivials.

Thm (Nies).

- 1. Every K-trivial is (super)low.
- 2. \mathcal{K} is a Turing ideal.

3. Every K-trivial is computable in a c.e. K-trivial.

A is a base for 1-randomness if there is an A-1-random $X \ge_{T} A$.

By Kučera-Gács, every K-trivial is a base for 1-randomness.

A is a base for 1-randomness if there is an A-1-random $X \ge_{T} A$.

By Kučera-Gács, every K-trivial is a base for 1-randomness.

Thm (Hirschfeldt, Nies, and Stephan). Every base for 1-randomness is *K*-trivial.

A is a base for 1-randomness if there is an A-1-random $X \ge_{T} A$.

By Kučera-Gács, every K-trivial is a base for 1-randomness.

Thm (Hirschfeldt, Nies, and Stephan). Every base for 1-randomness is *K*-trivial.

Cor. If *X*, *Y* are relatively 1-random and $A \leq_{T} X$, *Y* then *A* is *K*-trivial.

```
Let I_n = [2^n, 2^{n+1}) and let I(S) = \bigcup_{n \in S} I_n.
```

```
Let F(A) = \{ \langle n, i \rangle : n \in A \land i \in \omega \}.
```

```
Let E(A) = I(F(A)).
```

```
A \leq_{\mathrm{T}} B iff E(A) \leq_{\mathrm{c}} E(B).
```

```
Let I_n = [2^n, 2^{n+1}) and let I(S) = \bigcup_{n \in S} I_n.
```

```
Let F(A) = \{ \langle n, i \rangle : n \in A \land i \in \omega \}.
```

Let E(A) = I(F(A)).

 $A \leq_{\mathrm{T}} B$ iff $E(A) \leq_{\mathrm{c}} E(B)$.

If X is random then we should have $E(A) \leq_{c} X$ for $A \leq_{T} \emptyset$.

Let
$$I_n = [2^n, 2^{n+1})$$
 and let $I(S) = \bigcup_{n \in S} I_n$.

```
Let F(A) = \{ \langle n, i \rangle : n \in A \land i \in \omega \}.
```

Let E(A) = I(F(A)).

 $A \leq_{\mathrm{T}} B$ iff $E(A) \leq_{\mathrm{c}} E(B)$.

If X is random then we should have $E(A) \leq_{c} X$ for $A \leq_{T} \emptyset$.

Let
$$X^{\mathfrak{c}} = \{A : \rho(X \triangle D) = 0 \rightarrow A \leqslant_{\mathbf{T}} D\}.$$

If X is random then we should have $X^{c} = \mathbf{0}$.

Thm. If *X* is 1-random then $X^{\mathfrak{c}} \subseteq \mathcal{K}$.

Cor. If X is weakly 2-random then $X^{c} = \mathbf{0}$.

Thm. If *X* is 1-random then $X^{\mathfrak{c}} \subseteq \mathcal{K}$.

Cor. If *X* is weakly 2-random then $X^{\mathfrak{c}} = \mathbf{0}$.

Thm. Let $X \leq_{\mathbf{T}} \emptyset'$ be 1-random. There is a noncomputable c.e. A s.t. if $\overline{\rho}(X \triangle D) < \frac{1}{4}$ then $A \leq_{\mathbf{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

If X, Y are relatively random, their coarse degrees should form a minimal pair.

If X, Y are relatively random, their coarse degrees should form a minimal pair.

Thm. If $X, Y \leq_{\mathbf{T}} \emptyset''$ are relatively 2-random then their coarse degrees do not form a minimal pair.

If X, Y are relatively random, their coarse degrees should form a minimal pair.

Thm. If $X, Y \leq_{\mathbf{T}} \emptyset''$ are relatively 2-random then their coarse degrees do not form a minimal pair.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Write X_i for $X \upharpoonright P_i$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_j$.

Lem. If each X_i is $(X_{\neq i} \oplus A)$ -1-random then X is A-1-random.

Write X_i for $X \upharpoonright P_i$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_i$.

Lem. If each X_i is $(X_{\neq i} \oplus A)$ -1-random then X is A-1-random.

So if $A \leq_{\mathbf{T}} X_{\neq i}$ for all *i* then X is A-1-random.

Write X_i for $X \upharpoonright P_i$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_i$.

Lem. If each X_i is $(X_{\neq i} \oplus A)$ -1-random then X is A-1-random.

So if $A \leq_{\mathbf{T}} X_{\neq i}$ for all *i* then X is A-1-random.

Thus if $A \notin \mathcal{K}$ then there is an *i* s.t. $A \notin_{\mathbf{T}} X_{\neq i}$.

Write X_i for $X \upharpoonright P_i$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_i$.

Lem. If each X_i is $(X_{\neq i} \oplus A)$ -1-random then X is A-1-random.

So if $A \leq_{\mathbf{T}} X_{\neq i}$ for all *i* then X is A-1-random.

Thus if $A \notin \mathcal{K}$ then there is an *i* s.t. $A \notin_{\mathbf{T}} X_{\neq i}$.

We build a coarse description D of X s.t. $A \notin_{\mathbf{T}} D$ in stages.

As we go along, we make $\overline{\rho}(X \triangle D)$ smaller and smaller.

At stage *e*, we ensure that $\exists n \neg (\Phi_e^D(n) \downarrow = A(n))$ by using a sufficiently thin partition.

Thm. Let $X \leq_{\mathbf{T}} \emptyset'$ be 1-random. There is a noncomputable c.e. A s.t. if $\overline{\rho}(X \triangle D) < \frac{1}{4}$ then $A \leq_{\mathbf{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

Thm. Let $X \leq_{\mathbf{T}} \emptyset'$ be 1-random. There is a noncomputable c.e. A s.t. if $\overline{\rho}(X \triangle D) < \frac{1}{4}$ then $A \leq_{\mathbf{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

The proof is related to that of the following result:

For $C \subseteq 2^{\omega}$, let C^{\diamond} be the set of all A computable from every 1-random $X \in C$.

Thm (Hirschfeldt and Miller). If C is Σ_3^0 and $\mu(C) = 0$ then there is a noncomputable c.e. $A \in C^{\diamond}$.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to $A \not\leq_{c} \emptyset$ then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to $A \not\leq_{c} \emptyset$ then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If $X, Y \leq_{\mathbf{T}} \emptyset''$ are relatively 2-random then their coarse degrees do not form a minimal pair.

Proof uses a connection between coarse computability and lowness.

Thm. TFAE for a c.e. Turing degree **a**:

- 1. If $A \in \mathbf{a}$ is c.e. and $\rho(A) = \frac{1}{2}$ then $A \leq_{\mathbf{c}} \emptyset$.
- 2. **a** is low.

Thm. TFAE for a c.e. Turing degree **a**: 1. If $A \in \mathbf{a}$ is c.e. and $\rho(A) = \frac{1}{2}$ then $A \leq_{\mathbf{c}} \emptyset$. 2. **a** is low.

Let $X, Y \leq_{\mathbf{T}} \emptyset''$ be relatively 2-random.

Relativizing a previous construction, there is an \emptyset' -c.e. $B >_{\mathbf{T}} \emptyset'$ s.t. the jump of any coarse description of X or Y computes B.

Thm. TFAE for a c.e. Turing degree **a**: 1. If $A \in \mathbf{a}$ is c.e. and $\rho(A) = \frac{1}{2}$ then $A \leq_{\mathbf{c}} \emptyset$. 2. **a** is low.

Let $X, Y \leq_{\mathbf{T}} \emptyset''$ be relatively 2-random.

Relativizing a previous construction, there is an \emptyset' -c.e. $B >_{T} \emptyset'$ s.t. the jump of any coarse description of X or Y computes B.

Let A be a c.e. set with A' = B s.t. $\rho(A) = \frac{1}{2}$ and $A \leq_{c} \emptyset$.

Then any coarse description of X or Y computes a coarse description of A.

Thm (Hirschfeldt, Nies, and Stephan). If $X \not\geq_{\mathbf{T}} \emptyset'$ is 1-random and $A \leq_{\mathbf{T}} X$ is c.e., then A is K-trivial.

Is every K-trivial computed by an incomplete 1-random?

Thm (Hirschfeldt, Nies, and Stephan). If $X \not\geq_{\mathbf{T}} \emptyset'$ is 1-random and $A \leq_{\mathbf{T}} X$ is c.e., then A is K-trivial.

Is every K-trivial computed by an incomplete 1-random?

Recall: If X, Y are relatively 1-random and $A \leq_{T} X, Y$, then A is *K*-trivial.

Is every K-trivial computed by a pair of relatively 1-random sets?

Thm (Hirschfeldt, Nies, and Stephan). If $X \not\geq_{\mathbf{T}} \emptyset'$ is 1-random and $A \leq_{\mathbf{T}} X$ is c.e., then A is K-trivial.

Is every K-trivial computed by an incomplete 1-random?

Recall: If X, Y are relatively 1-random and $A \leq_{T} X, Y$, then A is *K*-trivial.

Is every K-trivial computed by a pair of relatively 1-random sets?

Thm (Day and Miller / Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is an incomplete 1-random that computes every *K*-trivial.

Thm (Hirschfeldt, Nies, and Stephan). If $X \not\ge_{\mathbf{T}} \emptyset'$ is 1-random and $A \leq_{\mathbf{T}} X$ is c.e., then A is K-trivial.

Is every K-trivial computed by an incomplete 1-random?

Recall: If X, Y are relatively 1-random and $A \leq_{T} X$, Y, then A is *K*-trivial.

Is every K-trivial computed by a pair of relatively 1-random sets?

Thm (Day and Miller / Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is an incomplete 1-random that computes every *K*-trivial.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a *K*-trivial that is not computable from any pair of relatively 1-random sets.

X is LR-hard if \emptyset' is low for 1-randomness relative to X, i.e., every set that is X-1-random is 2-random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a *K*-trivial *A* s.t. every 1-random that computes *A* is LR-hard.

X is LR-hard if \emptyset' is low for 1-randomness relative to X, i.e., every set that is X-1-random is 2-random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a *K*-trivial *A* s.t. every 1-random that computes *A* is LR-hard.

Suppose $A \in X^{c}$ for 1-random X.

Let $P_0 = \{2^n : n \in \omega\}$ and $P_1 = \omega \setminus P_0$ partition ω .

Then $A \leq_{\mathbf{T}} X_1$, so X_0 is 2-random. Thus:

Cor. There are *K*-trivials that are not in X^{c} for any Δ_{2}^{0} 1-random *X*.

X is LR-hard if \emptyset' is low for 1-randomness relative to X, i.e., every set that is X-1-random is 2-random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a *K*-trivial *A* s.t. every 1-random that computes *A* is LR-hard.

Suppose $A \in X^{c}$ for 1-random X.

Let $P_0 = \{2^n : n \in \omega\}$ and $P_1 = \omega \setminus P_0$ partition ω .

Then $A \leq_{\mathbf{T}} X_1$, so X_0 is 2-random. Thus:

Cor. There are *K*-trivials that are not in X^{c} for any Δ_{2}^{0} 1-random *X*.

Open Question. Is every K-trivial in X^{c} for some 1-random X?