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A coarse description of Xis a D s.t. p(XAD) = 0.

Y <. X if there is a T s.t. for any coarse description D of X, [P is a
coarse description of Y.

Ais coarsely computable if A <, 0, i.e., if Ahas a computable
coarse description.
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Thm (Kucera). If X, Y <. (' are relatively 1-random then they do
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If A<t X,Y then Xis A-T-random but computes A.
If X is A-weakly 2-random then X does not compute A.

If X, Y are relatively weakly 2-random, they form a minimal pair.



Ais low for T-randomness if every 1-random set is A-1-random.
Such sets are usually called K-trivial. (Nies)
Let K be the class of K-trivials.

Thm (Nies).
1. Every K-trivial is (supenlow.

2. Kis aTuring ideal.

3. Every K-trivial is computable in a c.e. K-trivial.
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Ais a base for T-randomness if there is an A-T-random X >+ A.
By KuCera-Gdacs, every K-trivial is a base for 1-randomness.

Thm (Hirschfeldt, Nies, and Stephan). Every base for
1-randomness is K-trivial.

Cor. If X, Y are relatively 1-random and A <1 X, Y then A'is
K-trivial.
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Let I, = [27,2"*1) and let I(S) = Upeg In-

Let F(A) = {(n,/) :n€e AN icuw}

Let E(A) = I(F(A)).

A <1 Biff E(A) <. E(B).

If X is random then we should have E(A) £. X for A £ 0.
Let X¢ = {A: p(XAD) =0 — A< D}.

If X is andom then we should have X¢ = 0.



Thm. If X is T-random then X¢ C K.

Cor. If X is weakly 2-random then X¢ = 0.



Thm. If X'is 1-random then X¢ C K.
Cor. If X is weakly 2-random then X¢ = 0.

Thm. Let X < 0" be 1-random. There is a noncomputable c.e. A
s.1.if p(XAD) < }1 then A <. D. In particular, X¢ # 0.
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If X, Y are relatively random, their coarse degrees should form a
minimal pair.

Thm. If X, Y <1 0" are relatively 2-random then their coarse
degrees do not form a minimal pair.

Thm. If X, Y are relatively weakly 3-random then their coarse
degrees form a minimal pair.



Let Py, ..., Py partition w into infinite computable sets.
Write X; for X [ P; and X; for X | U#, P;.

Lem. If each X;is (X © A)-1-random then X is A-1-random.



Let Py, ..., Py partition w into infinite computable sets.
Write X; for X [ P; and X; for X | U#, P
Lem. If each X;is (X © A)-1-random then X is A-1-random.

Soif A <1 Xy for all i then X is A-1-random.



Let Py, ..., Py partition w into infinite computable sets.

Write X; for X [ P; and X; for X | U#, P

Lem. If each X;is (X © A)-1-random then X is A-1-random.
Soif A <1 Xy for all i then X is A-1-random.

Thus if A ¢ K then there is an is.t. A £r X,



Let Py, ..., Py partition w into infinite computable sets.

Write X; for X' [ P; and X for X [ U, Pi.

Lem. If each X;is (X © A)-1-random then X is A-1-random.
Soif A <1 Xy for all i then X is A-1-random.

Thus if A ¢ K then there is an is.t. A £r X,

We build a coarse description D of X s.t. A £+ D in stages.
As we go along, we make p(XAD) smaller and smaller.

At stage e, we ensure that 3n—(®2(n)| = A(n)) by using a
sufficiently thin partition.
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Thm. Let X <. 0" be 1-random. There is a noncomputable c.e. A
s.t.if B(XAD) < }1 then A <. D. In particular, X© # 0.

The proof is related to that of the following result:

For C C 2v¥, let C° be the set of all A computable from every
1-random X € C.

Thm (Hirschfeldt and Miller). If C is Zg and p(C) = 0 then thereis a
noncomputable c.e. A € C°.
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Thm. If X, Y are relatively weakly 3-random then their coarse
degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to
A £. 0 then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If X, Y <1 0" are relatively 2-random then their coarse
degrees do not form a minimal pair.

Proof uses a connection between coarse computability and
lowness.
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Thm. TFAE for a c.e. Turing degree a:
1. IfAcaisc.e.and p(A) = J then A <. 0.
2. aislow.

Let X, Y <t 0" be relatively 2-random.

Relativizing a previous construction, there is an (¢’-c.e. B >+ @ s.t.
the jump of any coarse description of X or Y computes B.

Let Abe a c.e. set with A’ = Bs.t. p(A) = J and A £, 0.

Then any coarse description of X or Y computes a coarse
description of A.
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Thm (Hirschfeldt, Nies, and Stephan). If X 2, ¢’ is 1-random and
A <t Xisc.e., then Ais K-trivial.

Is every K-frivial computed by an incomplete 1-random?

Recall: If X, Y are relatively 1-random and A <1 X, Y, then Ais
K-trivial.

Is every K-trivial computed by a pair of relatively 1-random sets?

Thm (Day and Miller / Bienvenu, Greenberg, Kucera, Nies, and
Turetsky). There is an incomplete T-random that computes every
K-trivial.

Thm (Bienvenu, Greenberg, Ku€era, Nies, and Turetsky). There is
a K-tfrivial that is not computable from any pair of relatively
1-random sefs.
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X is LR-hard if ¢ is low for 1-randomness relative to X, i.e., every
set that is X-1-random is 2-random.

Thm (Bienvenu, Greenberg, Kucera, Nies, and Turetsky). There is
a K-frivial A s.t. every T-random that computes A is LR-hard.

Suppose A € X© for 1-random X.
Let Pp={2":new}and Py = w\ Py partition w.
Then A < Xj, s0 X is 2-random. Thus:

Cor. There are K-trivials that are not in X© for any Ag 1-random X.

Open Question. Is every K-trivial in X¢ for some 1-random X?



