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Coarse reducibility

Upper density: ρ(S) = lim supn
|S ∩ [0, n)|

n
.

Lower density: ρ(S) = lim infn
|S ∩ [0, n)|

n
.

Density: If ρ(S) = ρ(S) then ρ(S) = ρ(S).

A coarse description of X is a D s.t. ρ(X4D) = 0.

Y 6c X if there is a Γ s.t. for any coarse description D of X , ΓD is a
coarse description of Y .

A is coarsely computable if A 6c ∅, i.e., if A has a computable
coarse description.
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Algorithmic randomness and Turing reducibility

Let A be noncomputable.

If X is A-random then X should not compute A.

If X , Y are relatively random, they should form a minimal pair.

Thm [Kučera]. If X , Y 6T ∅′ are relatively 1-random then they do
not form a minimal pair.

If A 6T X , Y then X is A-1-random but computes A.

If X is A-weakly 2-random then X does not compute A.

If X , Y are relatively weakly 2-random, they form a minimal pair.
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K -triviality

A is low for 1-randomness if every 1-random set is A-1-random.

Such sets are usually called K -trivial. [Nies]

Let K be the class of K -trivials.

Thm [Nies].
1. Every K -trivial is (super)low.

2. K is a Turing ideal.

3. Every K -trivial is computable in a c.e. K -trivial.



1-randomness, K -triviality, and Turing reducibility

A is a base for 1-randomness if there is an A-1-random X >T A.

By Kučera-Gács, every K -trivial is a base for 1-randomness.

Thm [Hirschfeldt, Nies, and Stephan]. Every base for
1-randomness is K -trivial.

Cor. If X , Y are relatively 1-random and A 6T X , Y then A is
K -trivial.
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Embedding the Turing degrees into the coarse degrees

Let In = [2n, 2n+1) and let I(S) =
⋃

n∈S In.

Let F(A) = {〈n, i〉 : n ∈ A ∧ i ∈ ω}.

Let E(A) = I(F(A)).

A 6T B iff E(A) 6c E(B).

If X is random then we should have E(A) 
c X for A 
T ∅.

Let X c = {A : ρ(X4D) = 0 → A 6T D}.

If X is random then we should have X c = 0.
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Algorithmic randomness, K -triviality, and coarse computability

Thm. If X is 1-random then X c ⊆ K.

Cor. If X is weakly 2-random then X c = 0.

Thm. Let X 6T ∅′ be 1-random. There is a noncomputable c.e. A
s.t. if ρ(X4D) < 1

4 then A 6T D. In particular, X c 6= 0.
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Thm. If X , Y 6T ∅′′ are relatively 2-random then their coarse
degrees do not form a minimal pair.

Thm. If X , Y are relatively weakly 3-random then their coarse
degrees form a minimal pair.
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Proving that if X is 1-random then X c ⊆ K

Let P0, . . . , Pk partition ω into infinite computable sets.

Write Xi for X � Pi and X6=i for X �
⋃

j 6=i Pi .

Lem. If each Xi is (X6=i ⊕ A)-1-random then X is A-1-random.

So if A 6T X6=i for all i then X is A-1-random.

Thus if A /∈ K then there is an i s.t. A 
T X6=i .

We build a coarse description D of X s.t. A 
T D in stages.

As we go along, we make ρ(X4D) smaller and smaller.

At stage e, we ensure that ∃n¬(ΦD
e (n)↓ = A(n)) by using a

sufficiently thin partition.
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Diamond classes and very coarse descriptions of ∆0
2 1-randoms

Thm. Let X 6T ∅′ be 1-random. There is a noncomputable c.e. A
s.t. if ρ(X4D) < 1

4 then A 6T D. In particular, X c 6= 0.

The proof is related to that of the following result:

For C ⊆ 2ω, let C� be the set of all A computable from every
1-random X ∈ C.

Thm [Hirschfeldt and Miller]. If C is Σ0
3 and µ(C) = 0 then there is a

noncomputable c.e. A ∈ C�.
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Minimal pairs in the coarse degrees revisited

Thm. If X , Y are relatively weakly 3-random then their coarse
degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to
A 
c ∅ then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If X , Y 6T ∅′′ are relatively 2-random then their coarse
degrees do not form a minimal pair.

Proof uses a connection between coarse computability and
lowness.
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Minimal pairs in the coarse degrees revisited

Thm. TFAE for a c.e. Turing degree a:
1. If A ∈ a is c.e. and ρ(A) = 1

2 then A 6c ∅.
2. a is low.

Let X , Y 6T ∅′′ be relatively 2-random.

Relativizing a previous construction, there is an ∅′-c.e. B >T ∅′ s.t.
the jump of any coarse description of X or Y computes B.

Let A be a c.e. set with A′ = B s.t. ρ(A) = 1
2 and A 
c ∅.

Then any coarse description of X or Y computes a coarse
description of A.
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ML-covering

Thm [Hirschfeldt, Nies, and Stephan]. If X �T ∅′ is 1-random and
A 6T X is c.e., then A is K -trivial.

Is every K -trivial computed by an incomplete 1-random?

Recall: If X , Y are relatively 1-random and A 6T X , Y , then A is
K -trivial.

Is every K -trivial computed by a pair of relatively 1-random sets?

Thm [Day and Miller / Bienvenu, Greenberg, Kučera, Nies, and
Turetsky]. There is an incomplete 1-random that computes every
K -trivial.

Thm [Bienvenu, Greenberg, Kučera, Nies, and Turetsky]. There is
a K -trivial that is not computable from any pair of relatively
1-random sets.
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Turetsky]. There is an incomplete 1-random that computes every
K -trivial.
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LR-hardness and coarse computability

X is LR-hard if ∅′ is low for 1-randomness relative to X , i.e., every
set that is X -1-random is 2-random.

Thm [Bienvenu, Greenberg, Kučera, Nies, and Turetsky]. There is
a K -trivial A s.t. every 1-random that computes A is LR-hard.

Suppose A ∈ X c for 1-random X .

Let P0 = {2n : n ∈ ω} and P1 = ω \ P0 partition ω.

Then A 6T X1, so X0 is 2-random. Thus:

Cor. There are K -trivials that are not in X c for any ∆0
2 1-random X .

Open Question. Is every K -trivial in X c for some 1-random X?
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Thm [Bienvenu, Greenberg, Kučera, Nies, and Turetsky]. There is
a K -trivial A s.t. every 1-random that computes A is LR-hard.

Suppose A ∈ X c for 1-random X .

Let P0 = {2n : n ∈ ω} and P1 = ω \ P0 partition ω.

Then A 6T X1, so X0 is 2-random. Thus:

Cor. There are K -trivials that are not in X c for any ∆0
2 1-random X .

Open Question. Is every K -trivial in X c for some 1-random X?



LR-hardness and coarse computability

X is LR-hard if ∅′ is low for 1-randomness relative to X , i.e., every
set that is X -1-random is 2-random.
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