Coarse Computability and Algorithmic Randomness

Denis R. Hirschfeldt

The University of Chicago

Joint work with Carl Jockusch and Paul Schupp

Coarse reducibility

Upper density: $\bar{\rho}(S)=\limsup n \frac{|S \cap[0, n)|}{n}$.
Lower density: $\underline{\rho}(S)=\liminf _{n} \frac{|S \cap[0, n)|}{n}$.
Density: If $\bar{\rho}(S)=\underline{\rho}(S)$ then $\rho(S)=\bar{\rho}(S)$.
A coarse description of X is a D s.t. $\rho(X \triangle D)=0$.

Coarse reducibility

Upper density: $\bar{\rho}(S)=\limsup _{n} \frac{|S \cap[0, n)|}{n}$.
Lower density: $\underline{\rho}(S)=\liminf _{n} \frac{|S \cap[0, n)|}{n}$.
Density: If $\bar{\rho}(S)=\underline{\rho}(S)$ then $\rho(S)=\bar{\rho}(S)$.
A coarse description of X is a D s.t. $\rho(X \triangle D)=0$.
$Y \leqslant_{c} X$ if there is a Γ s.t. for any coarse description D of X, Γ^{D} is a coarse description of Y.
A is coarsely computable if $A \leqslant_{c} \emptyset$, i.e., if A has a computable coarse description.

Algorithmic randomness and Turing reducibility

Let A be noncomputable.

If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.

Algorithmic randomness and Turing reducibility

Let A be noncomputable.
If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.
Thm (Kučera). If $X, Y \leqslant_{\mathrm{r}} \emptyset^{\prime}$ are relatively 1 -random then they do not form a minimal pair.

If $A \leqslant_{\mathrm{r}} X, Y$ then X is A - 1 -random but computes A.

Algorithmic randomness and Turing reducibility

Let A be noncomputable.

If X is A-random then X should not compute A.

If X, Y are relatively random, they should form a minimal pair.

Thm (Kučera). If $X, Y \leqslant_{\mathrm{r}} \emptyset^{\prime}$ are relatively 1 -random then they do not form a minimal pair.

If $A \leqslant_{\mathrm{r}} X, Y$ then X is A - 1 -random but computes A.

If X is A-weakly 2 -random then X does not compute A.

If X, Y are relatively weakly 2 -random, they form a minimal pair.

K-triviality

A is low for 1-randomness if every 1-random set is A-1-random.

Such sets are usually called K-trivial. (Nies)

Let \mathcal{K} be the class of K-trivials.

Thm (Nies).

1. Every K-trivial is (super)low.
2. \mathcal{K} is a Turing ideal.
3. Every K-trivial is computable in a c.e. K-trivial.
A is a base for 1 -randomness if there is an A-1-random $X \geqslant_{\mathrm{T}} A$.

By Kučera-Gács, every K-trivial is a base for 1-randomness.
A is a base for 1 -randomness if there is an A-1-random $X \geqslant_{\mathbf{T}} A$.

By Kučera-Gács, every K-trivial is a base for 1-randomness.

Thm (Hirschfeldt, Nies, and Stephan). Every base for
1 -randomness is K-trivial.
A is a base for 1 -randomness if there is an A-1-random $X \geqslant_{\mathrm{T}} A$.

By Kučera-Gács, every K--rivial is a base for 1 -randomness.

Thm (Hirschfeldt, Nies, and Stephan). Every base for
1 -randomness is K-trivial.

Cor. If X, Y are relatively 1-random and $A \leqslant_{\mathrm{T}} X, Y$ then A is K-trivial.

Embedding the Turing degrees into the coarse degrees

Let $I_{n}=\left[2^{n}, 2^{n+1}\right)$ and let $I(S)=\bigcup_{n \in S} I_{n}$.
Let $F(A)=\{\langle n, i\rangle: n \in A \wedge i \in \omega\}$.
Let $E(A)=I(F(A))$.
$A \leqslant_{\mathrm{r}} B$ iff $E(A) \leqslant_{\mathrm{c}} E(B)$.

Embedding the Turing degrees into the coarse degrees

Let $I_{n}=\left[2^{n}, 2^{n+1}\right)$ and let $I(S)=\bigcup_{n \in S} I_{n}$.
Let $F(A)=\{\langle n, i\rangle: n \in A \wedge i \in \omega\}$.
Let $E(A)=I(F(A))$.
$A \leqslant_{\mathrm{r}} B$ iff $E(A) \leqslant_{\mathrm{c}} E(B)$.
If X is random then we should have $E(A) \not \star_{\mathrm{c}} X$ for $A \not_{\mathrm{T}} \emptyset$.

Embedding the Turing degrees into the coarse degrees

Let $I_{n}=\left[2^{n}, 2^{n+1}\right)$ and let $I(S)=\bigcup_{n \in S} I_{n}$.
Let $F(A)=\{\langle n, i\rangle: n \in A \wedge i \in \omega\}$.
Let $E(A)=I(F(A))$.
$A \leqslant_{\mathrm{r}} B$ iff $E(A) \leqslant_{\mathrm{c}} E(B)$.
If X is random then we should have $E(A) \not \not_{\mathrm{c}} X$ for $A \not \not_{\mathrm{T}} \emptyset$.
Let $X^{c}=\left\{A: \rho(X \triangle D)=0 \rightarrow A \leqslant_{T} D\right\}$.
If X is random then we should have $X^{\mathfrak{c}}=\mathbf{0}$.

Thm. If X is 1 -random then $X^{\mathfrak{c}} \subseteq \mathcal{K}$.

Cor. If X is weakly 2 -random then $X^{\mathfrak{c}}=\mathbf{0}$.

Thm. If X is 1 -random then $X^{c} \subseteq \mathcal{K}$.

Cor. If X is weakly 2 -random then $X^{\mathfrak{c}}=\mathbf{0}$.

Thm. Let $X \leqslant_{\mathrm{T}} \emptyset^{\prime}$ be 1-random. There is a noncomputable c.e. A s.t. if $\bar{\rho}(X \triangle D)<\frac{1}{4}$ then $A \leqslant_{\mathrm{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

Minimal pairs in the coarse degrees

If X, Y are relatively random, their coarse degrees should form a minimal pair.

```
If X,Y are relatively random, their coarse degrees should form a minimal pair.
```

Thm. If $X, Y \leqslant_{\mathrm{T}} \emptyset^{\prime \prime}$ are relatively 2-random then their coarse degrees do not form a minimal pair.

If X, Y are relatively random, their coarse degrees should form a minimal pair.

Thm. If $X, Y \leqslant_{\mathrm{T}} \emptyset^{\prime \prime}$ are relatively 2-random then their coarse degrees do not form a minimal pair.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Proving that if X is 1 -random then $X^{c} \subseteq \mathcal{K}$

Let P_{0}, \ldots, P_{k} partition ω into infinite computable sets.
Write X_{i} for $X \upharpoonright P_{i}$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_{i}$.
Lem. If each X_{i} is $\left(X_{\neq i} \oplus A\right)$-1-random then X is A-1-random.

Proving that if X is 1 -random then $X^{c} \subseteq \mathcal{K}$

Let P_{0}, \ldots, P_{k} partition ω into infinite computable sets.
Write X_{i} for $X \upharpoonright P_{i}$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_{i}$.
Lem. If each X_{i} is $\left(X_{\neq i} \oplus A\right)$-1-random then X is A-1-random.
So if $A \leqslant_{\mathrm{r}} X_{\neq i}$ for all i then X is A-1-random.

Proving that if X is 1 -random then $X^{c} \subseteq \mathcal{K}$

Let P_{0}, \ldots, P_{k} partition ω into infinite computable sets.
Write X_{i} for $X \upharpoonright P_{i}$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_{i}$.
Lem. If each X_{i} is $\left(X_{\neq i} \oplus A\right)$-1-random then X is A-1-random.
So if $A \leqslant_{\mathrm{T}} X_{\neq i}$ for all i then X is A-1-random.
Thus if $A \notin \mathcal{K}$ then there is an is.t. $A \not \star_{\mathrm{T}} X_{\neq i}$.

Proving that if X is 1 -random then $X^{c} \subseteq \mathcal{K}$

Let P_{0}, \ldots, P_{k} partition ω into infinite computable sets.
Write X_{i} for $X \upharpoonright P_{i}$ and $X_{\neq i}$ for $X \upharpoonright \bigcup_{j \neq i} P_{i}$.
Lem. If each X_{i} is $\left(X_{\neq i} \oplus A\right)$-1-random then X is A-1-random.
So if $A \leqslant_{\mathrm{T}} X_{\neq i}$ for all i then X is A-1-random.
Thus if $A \notin \mathcal{K}$ then there is an i s.t. $A \not \nless \mathrm{~T} X_{\neq i}$.
We build a coarse description D of X s.t. $A \not \not_{\mathrm{T}} D$ in stages.
As we go along, we make $\bar{\rho}(X \triangle D)$ smaller and smaller.
At stage e, we ensure that $\exists n \neg\left(\Phi_{e}^{D}(n) \downarrow=A(n)\right)$ by using a sufficiently thin partition.

Thm. Let $X \leqslant_{\mathrm{T}} \emptyset^{\prime}$ be 1-random. There is a noncomputable c.e. A s.t. if $\bar{\rho}(X \triangle D)<\frac{1}{4}$ then $A \leqslant_{\mathrm{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

Diamond classes and very coarse descriptions of $\Delta_{2}^{0} 1$-randoms

Thm. Let $X \leqslant_{\mathrm{T}} \emptyset^{\prime}$ be 1-random. There is a noncomputable c.e. A s.t. if $\bar{\rho}(X \triangle D)<\frac{1}{4}$ then $A \leqslant_{\mathrm{T}} D$. In particular, $X^{\mathfrak{c}} \neq \mathbf{0}$.

The proof is related to that of the following result:

For $\mathcal{C} \subseteq 2^{\omega}$, let \mathcal{C}° be the set of all A computable from every 1-random $X \in \mathcal{C}$.

Thm (Hirschfeldt and Miller). If \mathcal{C} is Σ_{3}^{0} and $\mu(\mathcal{C})=0$ then there is a noncomputable c.e. $A \in \mathcal{C}^{\curvearrowright}$.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to $A \not \chi_{c} \emptyset$ then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If X, Y are relatively weakly 3-random then their coarse degrees form a minimal pair.

Follows from the fact that if X is weakly 3-random relative to $A \not \star_{c} \emptyset$ then X cannot compute a coarse description of A.

Proof is by a version of majority voting.

Thm. If $X, Y \leqslant_{\mathrm{T}} \emptyset^{\prime \prime}$ are relatively 2-random then their coarse degrees do not form a minimal pair.

Proof uses a connection between coarse computability and lowness.

Thm. TFAE for a c.e. Turing degree a:

1. If $A \in \mathbf{a}$ is c.e. and $\rho(A)=\frac{1}{2}$ then $A \leqslant_{c} \emptyset$.
2. \mathbf{a} is low.

Thm. TFAE for a c.e. Turing degree a:

1. If $A \in \mathbf{a}$ is c.e. and $\rho(A)=\frac{1}{2}$ then $A \leqslant_{c} \emptyset$.
2. \mathbf{a} is low.

Let $X, Y \leqslant \mathrm{\emptyset} \emptyset^{\prime \prime}$ be relatively 2 -random.

Relativizing a previous construction, there is an \emptyset^{\prime}-c.e. $B>_{\mathrm{T}} \emptyset^{\prime}$ s.t. the jump of any coarse description of X or Y computes B.

Minimal pairs in the coarse degrees revisited

Thm. TFAE for a c.e. Turing degree a:

1. If $A \in \mathbf{a}$ is c.e. and $\rho(A)=\frac{1}{2}$ then $A \leqslant \mathrm{c} \emptyset$.
2. \boldsymbol{a} is low.

Let $X, Y \leqslant_{\mathrm{r}} \emptyset^{\prime \prime}$ be relatively 2-random.

Relativizing a previous construction, there is an \emptyset^{\prime}-c.e. $B>_{\mathrm{T}} \emptyset^{\prime}$ s.t. the jump of any coarse description of X or Y computes B.

Let A be a c.e. set with $A^{\prime}=B$ s.t. $\rho(A)=\frac{1}{2}$ and $A \not \AA_{c} \emptyset$.

Then any coarse description of X or Y computes a coarse description of A.

ML-covering

Thm (Hirschfeldt, Nies, and Stephan). If $X \not ¥_{\mathrm{T}} \emptyset^{\prime}$ is 1 -random and $A \leqslant_{\mathrm{r}} X$ is c.e., then A is K-rivial.

Is every K-trivial computed by an incomplete 1-random?

ML-covering

Thm (Hirschfeldt, Nies, and Stephan). If $X \not ¥_{\mathrm{T}} \emptyset^{\prime}$ is 1 -random and $A \leqslant_{\mathrm{r}} X$ is c.e., then A is K-rivial.

Is every K-trivial computed by an incomplete 1-random?
Recall: If X, Y are relatively 1 -random and $A \leqslant_{\mathrm{r}} X, Y$, then A is K-trivial.

Is every K-trivial computed by a pair of relatively 1 -random sets?

ML-covering

Thm (Hirschfeldt, Nies, and Stephan). If $X \not ¥_{\mathrm{T}} \emptyset^{\prime}$ is 1 -random and $A \leqslant_{\mathrm{T}} X$ is c.e., then A is K-trivial.

Is every K-trivial computed by an incomplete 1-random?
Recall: If X, Y are relatively 1-random and $A \leqslant_{\boldsymbol{T}} X, Y$, then A is K-trivial.

Is every K-trivial computed by a pair of relatively 1-random sets?
Thm (Day and Miller / Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is an incomplete 1-random that computes every K-trivial.

ML-covering

Thm (Hirschfeldt, Nies, and Stephan). If $X \not ¥_{\mathrm{T}} \emptyset^{\prime}$ is 1 -random and $A \leqslant_{\mathrm{r}} X$ is c.e., then A is K-rivial.

Is every K-trivial computed by an incomplete 1-random?
Recall: If X, Y are relatively 1 -random and $A \leqslant_{\mathrm{r}} X, Y$, then A is K-trivial.

Is every K-trivial computed by a pair of relatively 1 -random sets?
Thm (Day and Miller / Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is an incomplete 1-random that computes every K-trivial.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a K-trivial that is not computable from any pair of relatively 1-random sets.

LR-hardness and coarse computability

X is LR-hard if \emptyset^{\prime} is low for 1 -randomness relative to X, i.e., every set that is X-1-random is 2 -random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a K-trivial A s.t. every 1 -random that computes A is $L R$-hard.

LR-hardness and coarse computability

X is LR-hard if \emptyset^{\prime} is low for 1-randomness relative to X, i.e., every set that is X-1-random is 2 -random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a K-trivial A s.t. every 1 -random that computes A is $L R$-hard.

Suppose $A \in X^{\mathfrak{c}}$ for 1 -random X.
Let $P_{0}=\left\{2^{n}: n \in \omega\right\}$ and $P_{1}=\omega \backslash P_{0}$ partition ω.
Then $A \leqslant_{T} X_{1}$, so X_{0} is 2 -random. Thus:
Cor. There are K-trivials that are not in X^{c} for any $\Delta_{2}^{0} 1$-random X.

LR-hardness and coarse computability

X is LR-hard if \emptyset^{\prime} is low for 1-randomness relative to X, i.e., every set that is X-1-random is 2 -random.

Thm (Bienvenu, Greenberg, Kučera, Nies, and Turetsky). There is a K-trivial A s.t. every 1 -random that computes A is $L R$-hard.

Suppose $A \in X^{\mathfrak{c}}$ for 1-random X.
Let $P_{0}=\left\{2^{n}: n \in \omega\right\}$ and $P_{1}=\omega \backslash P_{0}$ partition ω.
Then $A \leqslant_{T} X_{1}$, so X_{0} is 2 -random. Thus:
Cor. There are K-trivials that are not in X^{c} for any $\Delta_{2}^{0} 1$-random X.
Open Question. Is every K-trivial in X^{c} for some 1-random X ?

