Families of sets and their degree spectra

Kalimullin I.Sh.

Kazan Federal University e-mail:Iskander.Kalimullin@ksu.ru

Computability, Complexity and Randomness, Buenos Aires, June 10, 2013

The degree spectra for families

A countable family of sets *F* ⊆ 2^ω is (uniformly) **x**-c.e. if for *X* ∈ **x** and some computable function *f* we have

$$\mathcal{F} = \{ W_{f(n)}^{X} | n \in \omega \}.$$

The degree spectra for families

A countable family of sets *F* ⊆ 2^ω is (uniformly) **x**-c.e. if for *X* ∈ **x** and some computable function *f* we have

$$\mathcal{F} = \{ W_{f(n)}^X | n \in \omega \}.$$

▶ The degree spectrum of \mathcal{F} is the collection $\mathsf{Sp}(\mathcal{F})$ of all Turing degrees **x** such that \mathcal{F} is **x**-c.e.

The Degree Spectra for families

A general lemma The non-superlow degrees The non-K-trivial degrees

The results

▶ There is a family \mathcal{F} such that **Sp**(\mathcal{F}) = the non-superlow degrees(K., 2007).

(4) (3) (4) (4) (4)

< 一型

The Degree Spectra for families

A general lemma The non-superlow degrees The non-K-trivial degrees

The results

- ▶ There is a family \mathcal{F} such that **Sp**(\mathcal{F}) = the non-superlow degrees(\mathcal{K} ., 2007).
- ▶ There is a family \mathcal{F} such that **Sp**(\mathcal{F}) = the non-K-trivial degrees(*Faizrahmanov*, 2012).

A general lemma

Lemma. Let

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } \Phi^{F \oplus \emptyset'}(n) \downarrow \}.$$

Let Y be an X-c.e. set such that for every $Z =^* Y$ we have

$$(\forall n)[\Phi^{Z\oplus\emptyset'}(n)\downarrow].$$

Then \mathcal{F} is X-c.e.

(日) (四) (日) (日)

3

An easy example

Theorem (Wehner). If

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq W_n\}.$$

Then \mathcal{F} is X-c.e \iff X is not computable, i.e.

$$\textbf{Sp}\left(\mathcal{F}\right)=\{\textbf{x}|\textbf{x}>\textbf{0}\}.$$

An easy example

Theorem (Wehner). If

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq W_n\}.$$

Then \mathcal{F} is X-c.e $\iff X$ is not computable, i.e.

$$\operatorname{Sp}(\mathcal{F}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}.$$

Proof (\Leftarrow). If X is not computable then there is a Y such that Y is X-c.e. but Y is not c.e. so that for each $Z = {}^* Y$ we have

 $(\forall n)[Z \neq W_n].$

An easy example

Theorem (Wehner). If

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq W_n\}.$$

Then \mathcal{F} is X-c.e \iff X is not computable, i.e.

$$\textbf{Sp}\left(\mathcal{F}\right)=\{\textbf{x}|\textbf{x}>\textbf{0}\}.$$

An easy example

Theorem (Wehner). If

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq W_n\}.$$

Then \mathcal{F} is X-c.e $\iff X$ is not computable, i.e.

$$\operatorname{Sp}(\mathcal{F}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}.$$

Proof (\Longrightarrow) . If X is computable and \mathcal{F} is X-c.e. then for every n we can uniformly enumerate a set $W_{f(n)}$ such that

$$W_{f(n)} \neq W_n$$
.

.

The non-superlow degrees, a difficult way

$$\blacktriangleright X \text{ is not superlow} \iff X' >_{tt} \emptyset'$$

→ Ξ → -

The non-superlow degrees, a difficult way

► X is not superlow $\iff X' >_{tt} \emptyset' \iff \iff$ there is an X-c.e. $Y \notin \Delta_{\omega}^{-1}$.

The non-superlow degrees, a difficult way

- ► X is not superlow $\iff X' >_{tt} \emptyset' \iff \iff$ there is an X-c.e. $Y \notin \Delta_{\omega}^{-1}$.
- ▶ Let $\{V_n\}_{n \in \omega}$ be a \emptyset' -computable listing of all Δ_{ω}^{-1} sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

• • = • • = •

The non-superlow degrees, a difficult way

- ► X is not superlow $\iff X' >_{tt} \emptyset' \iff \iff$ there is an X-c.e. $Y \notin \Delta_{\omega}^{-1}$.
- \blacktriangleright Let $\{V_n\}_{n\in\omega}$ be a $\emptyset'\text{-computable listing of all }\Delta_\omega^{-1}$ sets. Set

$$\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$$

▶ By the general lemma we have X is non-superlow $\implies \mathcal{F}$ is X-c.e.

• • = • • = •

The non-superlow degrees, a difficult way

- ► X is not superlow $\iff X' >_{tt} \emptyset' \iff \iff$ there is an X-c.e. $Y \notin \Delta_{\omega}^{-1}$.
- \blacktriangleright Let $\{V_n\}_{n\in\omega}$ be a $\emptyset'\text{-computable listing of all }\Delta_\omega^{-1}$ sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

- ▶ By the general lemma we have X is non-superlow $\implies \mathcal{F}$ is X-c.e.
- ▶ For the reverse implication we need have a Recursion Theorem for $\{V_n\}_{n \in \omega}$ which can do not hold.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

The non-superlow degrees, a difficult way

- ► X is not superlow $\iff X' >_{tt} \emptyset' \iff \iff$ there is an X-c.e. $Y \notin \Delta_{\omega}^{-1}$.
- \blacktriangleright Let $\{V_n\}_{n\in\omega}$ be a $\emptyset'\text{-computable listing of all }\Delta_\omega^{-1}$ sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

- ▶ By the general lemma we have X is non-superlow $\implies \mathcal{F}$ is X-c.e.
- ▶ For the reverse implication we need have a Recursion Theorem for $\{V_n\}_{n \in \omega}$ which can do not hold.
- ► For a specific $\{V_n\}_{n \in \omega}$ some weak version of Recursion Theorem holds that allows to prove the reverse implication.

The non-superlow degrees, an easy way

► (Faizrahmanov, 2010) $X' \in \Pi_{\omega}^{-1} \iff X' \in \Delta_{\omega}^{-1}$, so that X is not superlow \iff there is an X-c.e. $Y \notin \Pi_{\omega}^{-1}$.

The non-superlow degrees, an easy way

- ► (Faizrahmanov, 2010) $X' \in \Pi_{\omega}^{-1} \iff X' \in \Delta_{\omega}^{-1}$, so that X is not superlow \iff there is an X-c.e. $Y \notin \Pi_{\omega}^{-1}$.
- ▶ Let $\{V_n\}_{n \in \omega}$ be the Gödel \emptyset' -numbering of all Π_{ω}^{-1} sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

.

The non-superlow degrees, an easy way

- ► (Faizrahmanov, 2010) $X' \in \Pi_{\omega}^{-1} \iff X' \in \Delta_{\omega}^{-1}$, so that X is not superlow \iff there is an X-c.e. $Y \notin \Pi_{\omega}^{-1}$.
- \blacktriangleright Let $\{V_n\}_{n\in\omega}$ be the Gödel $\emptyset'\text{-numbering of all }\Pi_\omega^{-1}$ sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

▶ By the general lemma we have X is non-superlow $\implies \mathcal{F}$ is X-c.e.

• • = • • = •

The non-superlow degrees, an easy way

- ► (Faizrahmanov, 2010) $X' \in \Pi_{\omega}^{-1} \iff X' \in \Delta_{\omega}^{-1}$, so that X is not superlow \iff there is an X-c.e. $Y \notin \Pi_{\omega}^{-1}$.
- \blacktriangleright Let $\{V_n\}_{n\in\omega}$ be the Gödel $\emptyset'\text{-numbering of all }\Pi_\omega^{-1}$ sets. Set

 $\mathcal{F} = \{\{n\} \oplus F | F \text{ is finite and } F \neq V_n\}.$

- ▶ By the general lemma we have X is non-superlow $\implies \mathcal{F}$ is X-c.e.
- ▶ Suppose X is superlow and \mathcal{F} is X-c.e. Then for every n we can uniformly enumerate $W_{f(n)}^X$ such that $W_{f(n)}^X \neq V_n$. But since X is superlow we can effectively translate $W_{f(n)}^X$ to $V_{g(n)}$ so that

$$V_{g(n)} \neq V_n.$$

For Gödel numbering this is impossible

The non-K-trivial degrees

► X is not K-trivial \iff for each $n \in \omega$ we have

$(\exists m)[K(X \upharpoonright m) > K(m) + n].$

Kalimullin I.Sh. Families of sets and their degree spectra

→ Ξ → - +

The non-K-trivial degrees

► X is not K-trivial \iff for each $n \in \omega$ we have $(\exists m)[K(X \upharpoonright m) > K(m) + n].$

► Set

 $\mathcal{F} = \{\{n\} \oplus \text{graph } (\sigma) | (\exists m \leq |\sigma|) [K(\sigma \upharpoonright m) > K(m) + n]\},\$

where σ runs over $2^{<\omega}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The non-K-trivial degrees

► X is not K-trivial \iff for each $n \in \omega$ we have $(\exists m)[K(X \upharpoonright m) > K(m) + n].$

► Set

 $\mathcal{F} = \{\{n\} \oplus \text{graph } (\sigma) | (\exists m \leq |\sigma|) [\mathcal{K}(\sigma \upharpoonright m) > \mathcal{K}(m) + n]\},\$

where σ runs over $2^{<\omega}$.

▶ By the general lemma we have X is non-K-trivial $\implies \mathcal{F}$ is X-c.e.

・ロト ・ 一下 ・ ・ ヨト・

The reverse direction

Suppose X is K-trivial and the family \mathcal{F} is X-c.e. Let σ_n be the first enumerated string such that

 $(\exists m \leq |\sigma_n|)[K(\sigma_n \upharpoonright m) > K(m) + n].$

The reverse direction

Suppose X is K-trivial and the family \mathcal{F} is X-c.e. Let σ_n be the first enumerated string such that

$$(\exists m \leq |\sigma_n|)[K(\sigma_n \upharpoonright m) > K(m) + n].$$

Then X is low for K so that for some $k \in \omega$ we have

$$K(\sigma) \leq K^X(\sigma) + k - 1.$$

The reverse direction

Suppose X is K-trivial and the family \mathcal{F} is X-c.e. Let σ_n be the first enumerated string such that

$$(\exists m \leq |\sigma_n|)[K(\sigma_n \upharpoonright m) > K(m) + n].$$

Then X is low for K so that for some $k \in \omega$ we have

$$K(\sigma) \leq K^X(\sigma) + k - 1.$$

Using Recursion Theorem we can find an index n such that

$$\Phi_n^X(\tau) = \begin{cases} \sigma_{n+k} \upharpoonright U(\tau), & \text{if } U(\tau) \downarrow \leq |\sigma_{n+k}|;\\ \uparrow & \text{otherwise,} \end{cases}$$

where U is the optimal prefix-free operator

→ 3 → 4 3

The reverse direction

Suppose X is K-trivial and the family \mathcal{F} is X-c.e. Let σ_n be the first enumerated string such that

$$(\exists m \leq |\sigma_n|)[K(\sigma_n \upharpoonright m) > K(m) + n].$$

Then X is low for K so that for some $k \in \omega$ we have

$$K(\sigma) \leq K^X(\sigma) + k - 1.$$

Using Recursion Theorem we can find an index n such that

$$\Phi_n^X(\tau) = \begin{cases} \sigma_{n+k} \upharpoonright U(\tau), & \text{if } U(\tau) \downarrow \leq |\sigma_{n+k}|; \\ \uparrow & \text{otherwise,} \end{cases}$$

where U is the optimal prefix-free operator, so that for every $m \leq |\sigma_{n+k}|$ we have

$$K_{\Phi_n}^X(\sigma_{n+k} \upharpoonright m) = K(m).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

The reverse direction

Now it follows

 $\mathcal{K}(\sigma_{n+k} \upharpoonright m) \leq \mathcal{K}^{X}(\sigma_{n+k} \upharpoonright m) + k - 1 \leq \mathcal{K}_{\Phi_{n}}^{X}(\sigma_{n+k} \upharpoonright m) + n + k$ for every $m \leq |\sigma_{n+k}|$.

The reverse direction

Now it follows

$$\begin{split} & \mathcal{K}(\sigma_{n+k} \upharpoonright m) \leq \mathcal{K}^{X}(\sigma_{n+k} \upharpoonright m) + k - 1 \leq \mathcal{K}(m) \\ & \text{for every } m \leq |\sigma_{n+k}|. \end{split}$$

- 문