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Computational semantics for IPC

Brouwer–Heyting–Kolmogorov interpretation: a proof of A→ B is a
construction which transforms any proof of A into a proof of B.

This suggests there should be some computational semantics for IPC.
Realisability is one such attempt, today we look at the Medvedev and
Muchnik lattices.



Medvedev and Muchnik reducibility

Definition. Let A ,B ⊆ ωω. We say that A Medvedev reduces to B ,
denoted by A ≤M B , if there exists a Turing functional Ψ such that
ψ(B) ⊆ A.

Furthermore, we say that A Muchnik reduces to B , denoted by
A ≤w B , if for every f ∈ B there exists g ∈ A such that g ≤T f .



Brouwer algebras

Definition. A bounded distributive lattice is a poset with a least
element 0, a largest element 1, finite least upper bounds x ⊕ y and
finite greatest lower bounds x ⊗ y , where ⊕ and ⊗ distribute over
each other.

Definition. (McKinsey–Tarski) A Brouwer algebra is a bounded
distributive lattice with a binary implication operator → satisfying:

x ⊕ z ≥ y if and only if z ≥ x → y

i.e. x → y is the least element z satisfying x ⊕ z ≥ y .



The theory of a Brouwer algebra

Let B be a Brouwer algebra and let α : Var→ B be a valuation.
Then α extends to all formulas by interpreting logical disjunction ∨ as
⊗, logical conjunction ∧ as ⊕, logical implication as → and falsum ⊥
as 1.

Definition. The propositional theory of a Brouwer algebra B, Th(B),
is defined as

{φ | α(φ) = 0 for all valuations α of B}.

Theorem. (McKinsey–Tarski)⋂
{Th(B) | B finite Brouwer algebra} = IPC



Medvedev and Muchnik lattices

The equivalence classes of ωω under Medvedev equivalence form a
Brouwer algebra M , with operations given by:

A ⊕ B = {f ⊕ g | f ∈ A , g ∈ B},
A ⊗ B = {0 ? f | f ∈ A} ∪ {1 ? g | g ∈ B},

A → B = {n ? f | ∀g ∈ A .Ψn(f ⊕ g) ∈ B}.

The equivalence classes of ωω under Muchnik equivalence also form a
Brouwer algebra Mw (in fact, they form a completely distributive
lattice), with operations given by:

A ⊕ B = {f ⊕ g | f ∈ A , g ∈ B},
A ⊗ B = A ∪ B ,

A → B = {f | ∀g ∈ A∃h ∈ B .f ⊕ g ≥T h}.



Theory of M and Mw

Theorem. (Medvedev, Muchnik, Sorbi)
Th(M ) = Th(Mw ) = IPC + ¬A ∨ ¬¬A.



Principal factors of Brouwer algebras

Given an element u of a distributive lattice B, the quotient of B by
the principal filter C (u) = {x ∈ B | x ≥ u} is also a distributive
lattice. In fact, if B is a Brouwer algebra, then B/C (u) is also a
Brouwer algebra, with implication given by

[y ]→B/C(u) [z ] = [(y ⊗ u)→B (z ⊗ u)].

This quotient is isomorphic to [0, u]B = {x ∈ B | x ≤ u}, where the
implication is the implication of B restricted to [0, u]B .



Principal factors of M and Mw

Theorem. (Skvortsova) There exists A ∈M such that
Th(M /C (A)) = IPC.

Theorem. (Sorbi–Terwijn) There exists A ∈Mw such that
Th(Mw/A) = IPC.

Goal: find natural examples of such A .
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Th(M /C (A)) = IPC.

Theorem. (Sorbi–Terwijn) There exists A ∈Mw such that
Th(Mw/A) = IPC.

Goal: find natural examples of such A .



Splitting classes

Definition. Let A ⊆ ωω be a non-empty countable class which is
downwards closed under Turing reducibility. We say that A is a
splitting class if for every f ∈ A and every finite subset
B ⊆ {g ∈ A | g 6≤T f } there exist h0, h1 ∈ A such that h0, h1 ≥T f ,
h0 ⊕ h1 6∈ A and for all g ∈ B : g ⊕ h0, g ⊕ h1 6∈ A .

Theorem. Let A be a splitting class. Then Th(Mw/A) = IPC.



Splitting classes

Definition. Let A ⊆ ωω be a non-empty class of cardinality ℵ1 which
is downwards closed under Turing reducibility. We say that A is an ℵ1
splitting class if for every f ∈ A and every countable subset
B ⊆ {g ∈ A | g 6≤T f } there exist h0, h1 ∈ A such that h0, h1 ≥T f ,
h0 ⊕ h1 6∈ A and for all g ∈ B : g ⊕ h0, g ⊕ h1 6∈ A .

Theorem. Let A be an ℵ1 splitting class. Then Th(Mw/A) = IPC.



Examples

The following are splitting classes:

• {f ∈ ωω | f low} (using a modification of Posner–Robinson);

• {f ∈ ωω | f ≤T ∅′ 1-generic degree} ∪ {f ∈ ωω | f computable}
(also using Posner–Robinson, and using Haught);

• {f ∈ ωω | f hyperimmune-free and low2} (using a Miller–Martin
tree construction);

• {f ∈ ωω | f computably traceable and low2}.
Assuming the continuum hypothesis, the following are ℵ1 splitting
classes:

• {f ∈ ωω | f hyperimmune-free};
• {f ∈ ωω | f computably traceable}.



Why splitting classes yield IPC

Theorem. The Muchnik lattice Mw is isomorphic to the lattice of
upsets of the Turing degrees.

Theorem. For any downwards closed class A ⊆ ωω, the theory of
Mw/A is equal to the theory of A as a Kripke frame.



Why splitting classes yield IPC

Definition. (De Jongh and Troelstra) Let (X1,≤1), (X2,≤2) be
Kripke frames. A surjective function α : X1 → X2 is called a
p-morphism if
1. f is an order homomorphism: x ≤1 y → f (x) ≤2 f (y),

2. ∀x ∈ X1∀y ∈ X2(f (x) ≤2 y → ∃z ∈ X1(x ≤1 x ∧ f (z) = y)).

Proposition. If there exists a p-morphism from (X1,≤1) to (X2,≤2),
then Th(X1,≤1) ⊆ Th(X2,≤2).

Theorem. Th(2<ω) = IPC.

Therefore: if A is a downwards closed class such that there exists a
p-morphism onto 2<ω, then Th(Mw/A) = IPC.



Why splitting classes yield IPC

Therefore: if A is a downwards closed class such that there exists a
p-morphism onto 2<ω, then Th(Mw/A) = IPC.

Our definition of a splitting class exactly allows us to do that.

Definition. Let A ⊆ ωω be a non-empty countable class which is
downwards closed under Turing reducibility. We say that A is a
splitting class if for every f ∈ A and every finite subset
B ⊆ {g ∈ A | g 6≤T f } there exist h0, h1 ∈ A such that h0, h1 ≥T f ,
h0 ⊕ h1 6∈ A and for all g ∈ B : g ⊕ h0, g ⊕ h1 6∈ A .

The idea is to build a p-morphism α step by step. We can use B to
avoid the points on which we already defined α previously, while we
can use h0 and h1 to split into two branches.



Open questions

• Does Th(Mw/{f | f hyperimmune-free}) = IPC follow from ZFC?

• Can something similar be done for the Medvedev lattice?


