The Muchnik Lattice and Intuitionistic Logic

Radboud University Nijmegen

Rutger Kuyper

6 June 2013

Computational semantics for IPC

Brouwer–Heyting–Kolmogorov interpretation: a proof of $A \rightarrow B$ is a construction which transforms any proof of A into a proof of B.

This suggests there should be some computational semantics for IPC. Realisability is one such attempt, today we look at the Medvedev and Muchnik lattices. **Definition.** Let $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$. We say that \mathcal{A} Medvedev reduces to \mathcal{B} , denoted by $\mathcal{A} \leq_M \mathcal{B}$, if there exists a Turing functional Ψ such that $\psi(B) \subseteq A$.

Furthermore, we say that \mathcal{A} Muchnik reduces to \mathcal{B} , denoted by $\mathcal{A} \leq_w \mathcal{B}$, if for every $f \in \mathcal{B}$ there exists $g \in \mathcal{A}$ such that $g \leq_T f$.

Definition. A bounded distributive lattice is a poset with a least element 0, a largest element 1, finite least upper bounds $x \oplus y$ and finite greatest lower bounds $x \otimes y$, where \oplus and \otimes distribute over each other.

Definition. (McKinsey–Tarski) A *Brouwer algebra* is a bounded distributive lattice with a binary implication operator \rightarrow satisfying:

 $x \oplus z \ge y$ if and only if $z \ge x \to y$

i.e. $x \to y$ is the least element z satisfying $x \oplus z \ge y$.

The theory of a Brouwer algebra

Let *B* be a Brouwer algebra and let $\alpha : \text{Var} \to B$ be a valuation. Then α extends to all formulas by interpreting logical disjunction \vee as \otimes , logical conjunction \wedge as \oplus , logical implication as \rightarrow and falsum \perp as 1.

Definition. The propositional theory of a Brouwer algebra B, Th(B), is defined as

 $\{\phi \mid \alpha(\phi) = 0 \text{ for all valuations } \alpha \text{ of } B\}.$

Theorem. (McKinsey–Tarski) $\bigcap \{ Th(B) \mid B \text{ finite Brouwer algebra} \} = IPC$

Medvedev and Muchnik lattices

The equivalence classes of ω^{ω} under Medvedev equivalence form a Brouwer algebra \mathcal{M} , with operations given by:

$$\mathcal{A} \oplus \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A}, g \in B \},$$

$$\mathcal{A} \otimes \mathcal{B} = \{ 0 \star f \mid f \in \mathcal{A} \} \cup \{ 1 \star g \mid g \in \mathcal{B} \},$$

$$\mathcal{A} \to \mathcal{B} = \{ n \star f \mid \forall g \in \mathcal{A}. \Psi_n(f \oplus g) \in \mathcal{B} \}.$$

The equivalence classes of ω^{ω} under Muchnik equivalence also form a Brouwer algebra \mathcal{M}_{w} (in fact, they form a completely distributive lattice), with operations given by:

 $\mathcal{A} \oplus \mathcal{B} = \{ f \oplus g \mid f \in \mathcal{A}, g \in B \},$ $\mathcal{A} \otimes \mathcal{B} = \mathcal{A} \cup \mathcal{B},$ $\mathcal{A} \to \mathcal{B} = \{ f \mid \forall g \in \mathcal{A} \exists h \in \mathcal{B}. f \oplus g \geq_{\mathcal{T}} h \}.$

Theory of \mathcal{M} and \mathcal{M}_w

Theorem. (Medvedev, Muchnik, Sorbi) $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(\mathcal{M}_w) = \operatorname{IPC} + \neg A \lor \neg \neg A.$

Principal factors of Brouwer algebras

Given an element u of a distributive lattice B, the quotient of B by the principal filter $C(u) = \{x \in B \mid x \ge u\}$ is also a distributive lattice. In fact, if B is a Brouwer algebra, then B/C(u) is also a Brouwer algebra, with implication given by

$$[y] \rightarrow_{B/C(u)} [z] = [(y \otimes u) \rightarrow_B (z \otimes u)].$$

This quotient is isomorphic to $[0, u]_B = \{x \in B \mid x \le u\}$, where the implication is the implication of *B* restricted to $[0, u]_B$.

Principal factors of \mathcal{M} and \mathcal{M}_w

Theorem. (Skvortsova) There exists $\mathcal{A} \in \mathcal{M}$ such that $\operatorname{Th}(\mathcal{M}/\mathcal{C}(\mathcal{A})) = \operatorname{IPC}$.

Theorem. (Sorbi–Terwijn) There exists $\mathcal{A} \in \mathcal{M}_w$ such that $\operatorname{Th}(\mathcal{M}_w/\mathcal{A}) = \operatorname{IPC}$.

Principal factors of \mathcal{M} and \mathcal{M}_w

Theorem. (Skvortsova) There exists $\mathcal{A} \in \mathcal{M}$ such that $\operatorname{Th}(\mathcal{M}/\mathcal{C}(\mathcal{A})) = \operatorname{IPC}$.

Theorem. (Sorbi–Terwijn) There exists $\mathcal{A} \in \mathcal{M}_w$ such that $\operatorname{Th}(\mathcal{M}_w/\mathcal{A}) = \operatorname{IPC}$.

Goal: find natural examples of such \mathcal{A} .

Splitting classes

Definition. Let $\mathcal{A} \subseteq \omega^{\omega}$ be a non-empty countable class which is downwards closed under Turing reducibility. We say that \mathcal{A} is a *splitting class* if for every $f \in \mathcal{A}$ and every finite subset $\mathcal{B} \subseteq \{g \in \mathcal{A} \mid g \not\leq_T f\}$ there exist $h_0, h_1 \in \mathcal{A}$ such that $h_0, h_1 \geq_T f$, $h_0 \oplus h_1 \notin \mathcal{A}$ and for all $g \in \mathcal{B}$: $g \oplus h_0, g \oplus h_1 \notin \mathcal{A}$.

Theorem. Let \mathcal{A} be a splitting class. Then $\operatorname{Th}(\mathcal{M}_w/\overline{\mathcal{A}}) = \operatorname{IPC}$.

Splitting classes

Definition. Let $\mathcal{A} \subseteq \omega^{\omega}$ be a non-empty class of cardinality \aleph_1 which is downwards closed under Turing reducibility. We say that \mathcal{A} is an \aleph_1 *splitting class* if for every $f \in \mathcal{A}$ and every countable subset $\mathcal{B} \subseteq \{g \in \mathcal{A} \mid g \not\leq_T f\}$ there exist $h_0, h_1 \in \mathcal{A}$ such that $h_0, h_1 \geq_T f$, $h_0 \oplus h_1 \notin \mathcal{A}$ and for all $g \in \mathcal{B}$: $g \oplus h_0, g \oplus h_1 \notin \mathcal{A}$.

Theorem. Let \mathcal{A} be an \aleph_1 splitting class. Then $\operatorname{Th}(\mathcal{M}_w/\overline{\mathcal{A}}) = \operatorname{IPC}$.

Examples

The following are splitting classes:

- { $f \in \omega^{\omega} \mid f \text{ low}$ } (using a modification of Posner–Robinson);
- {f ∈ ω^ω | f ≤_T Ø' 1-generic degree} ∪ {f ∈ ω^ω | f computable} (also using Posner–Robinson, and using Haught);
- {f ∈ ω^ω | f hyperimmune-free and low₂} (using a Miller–Martin tree construction);
- $\{f \in \omega^{\omega} \mid f \text{ computably traceable and low}_2\}.$

Assuming the continuum hypothesis, the following are \aleph_1 splitting classes:

- $\{f \in \omega^{\omega} \mid f \text{ hyperimmune-free}\};$
- $\{f \in \omega^{\omega} \mid f \text{ computably traceable}\}.$

Theorem. The Muchnik lattice \mathcal{M}_w is isomorphic to the lattice of upsets of the Turing degrees.

Theorem. For any downwards closed class $\mathcal{A} \subseteq \omega^{\omega}$, the theory of $\mathcal{M}_w/\overline{\mathcal{A}}$ is equal to the theory of \mathcal{A} as a Kripke frame.

Definition. (De Jongh and Troelstra) Let $(X_1, \leq_1), (X_2, \leq_2)$ be Kripke frames. A surjective function $\alpha : X_1 \to X_2$ is called a *p*-morphism if

1. *f* is an order homomorphism: $x \leq_1 y \to f(x) \leq_2 f(y)$,

2. $\forall x \in X_1 \forall y \in X_2(f(x) \leq_2 y \rightarrow \exists z \in X_1(x \leq_1 x \land f(z) = y)).$

Proposition. If there exists a *p*-morphism from (X_1, \leq_1) to (X_2, \leq_2) , then $\text{Th}(X_1, \leq_1) \subseteq \text{Th}(X_2, \leq_2)$.

Theorem. Th($2^{<\omega}$) = IPC.

Therefore: if \mathcal{A} is a downwards closed class such that there exists a *p*-morphism onto $2^{<\omega}$, then $\operatorname{Th}(\mathcal{M}_w/\overline{\mathcal{A}}) = \operatorname{IPC}$.

Why splitting classes yield IPC

Therefore: if \mathcal{A} is a downwards closed class such that there exists a *p*-morphism onto $2^{<\omega}$, then $\operatorname{Th}(\mathcal{M}_w/\overline{\mathcal{A}}) = \operatorname{IPC}$.

Our definition of a splitting class exactly allows us to do that.

Definition. Let $\mathcal{A} \subseteq \omega^{\omega}$ be a non-empty countable class which is downwards closed under Turing reducibility. We say that \mathcal{A} is a *splitting class* if for every $f \in \mathcal{A}$ and every finite subset $\mathcal{B} \subseteq \{g \in \mathcal{A} \mid g \not\leq_T f\}$ there exist $h_0, h_1 \in \mathcal{A}$ such that $h_0, h_1 \geq_T f$, $h_0 \oplus h_1 \notin \mathcal{A}$ and for all $g \in \mathcal{B}$: $g \oplus h_0, g \oplus h_1 \notin \mathcal{A}$.

The idea is to build a *p*-morphism α step by step. We can use \mathcal{B} to avoid the points on which we already defined α previously, while we can use h_0 and h_1 to split into two branches.

Open questions

- Does $\operatorname{Th}(\mathcal{M}_w/\overline{\{f \mid f \text{ hyperimmune-free}\}}) = \operatorname{IPC}$ follow from ZFC?
- Can something similar be done for the Medvedev lattice?