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Linear extensions preserving finiteness properties

Some finiteness properties

Definition

Let P be a countable partial order.

We say that P is

• ω-like if every element of P has finitely many predecessors;

• ω∗-like if every element of P has finitely many successors;

• ω + ω∗-like if every element of P has finitely many predecessors
or finitely many successors;

• ζ-like if for every pair of elements x, y ∈ P there exist finitely many z
such that x <P z <P y.
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Linear extensions preserving finiteness properties

Linear extensions preserving finiteness properties

Theorem (Milner-Pouzet)

Every ω-like partial order has a linear extension which is also ω-like.
The same for ω∗-like and for ω + ω∗-like.

Theorem

Every ζ-like partial order has a linear extension which is also ζ-like.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 5 / 29



Linear extensions preserving finiteness properties

Linear extensions preserving finiteness properties

Theorem (Milner-Pouzet)

Every ω-like partial order has a linear extension which is also ω-like.
The same for ω∗-like and for ω + ω∗-like.

Theorem

Every ζ-like partial order has a linear extension which is also ζ-like.
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Linear extensions preserving finiteness properties

Reverse mathematics results: I

Theorem

Over RCA0, the following are pairwise equivalent:

1 BΣ0
2: ∀i < n∃mϕ(i, n,m) =⇒ ∃k ∀i < n∃m < kϕ(i, n,m)

where ϕ is any Σ0
2 formula;

2 RT1
<∞, the infinite pigeonhole principle for an arbitrary number of

colors;

3 FUF: ∀i < nXi is finite =⇒
⋃
i<nXi is finite;

4 every ω-like partial order has a linear extension which is ω-like;

5 every ω∗-like partial order has a linear extension which is ω∗-like;

6 every ζ-like partial order has a linear extension which is ζ-like.

RCA0 0 BΣ0
2 Σ0

2 − IND =⇒ BΣ0
2

WKL0 and BΣ0
2 are incomparable RT2

2 =⇒ BΣ0
2
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 6 / 29



Linear extensions preserving finiteness properties

Reverse mathematics results: I

Theorem

Over RCA0, the following are pairwise equivalent:

1 BΣ0
2: ∀i < n∃mϕ(i, n,m) =⇒ ∃k ∀i < n∃m < kϕ(i, n,m)

where ϕ is any Σ0
2 formula;

2 RT1
<∞, the infinite pigeonhole principle for an arbitrary number of

colors;

3 FUF: ∀i < nXi is finite =⇒
⋃
i<nXi is finite;

4 every ω-like partial order has a linear extension which is ω-like;

5 every ω∗-like partial order has a linear extension which is ω∗-like;

6 every ζ-like partial order has a linear extension which is ζ-like.

RCA0 0 BΣ0
2 Σ0

2 − IND =⇒ BΣ0
2

WKL0 and BΣ0
2 are incomparable RT2

2 =⇒ BΣ0
2
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Linear extensions preserving finiteness properties

Reverse mathematics results: II

Theorem

Over RCA0, the following are equivalent:

1 ACA0;

2 every ω + ω∗-like partial order has a linear extension which is
ω + ω∗-like.

Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 7 / 29



Decomposing initial intervals

Decomposing initial intervals

1 Linear extensions preserving finiteness properties

2 Decomposing initial intervals

3 Counting initial intervals

4 Open problems
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Decomposing initial intervals

Initial intervals and ideals

Definition

Let P be a partial order.

• D ⊆ P is an antichain if ∀x, y ∈ D(x 6= y =⇒ x ⊥ y);
• P is FAC if it has no infinite antichains;

• S ⊆ P is a strong antichain in P if
∀x, y ∈ S(x 6= y =⇒ ¬∃z ∈ P x, y ≤P z);

• I ⊆ P is an initial interval of P if
∀x, y ∈ P (x ≤P y ∧ y ∈ I =⇒ x ∈ I);

• An initial interval A of P is an ideal if
∀x, y ∈ A∃z ∈ A(x ≤P z ∧ y ≤P z).
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Decomposing initial intervals

Three theorems

Theorem (Bonnet, 1975)

A partial order P is FAC if and only if
every initial interval of P is a finite union of ideals.

Theorem (Erdös-Tarski, 1943)

If a partial order P has no infinite strong antichains
then there is a finite bound on the size of strong antichains in P .

Theorem

A partial order has no infinite strong antichains if and only if
it is a finite union of ideals.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 10 / 29



Decomposing initial intervals

Reverse mathematics results

Theorem

Over RCA0, the following are pairwise equivalent:

1 ACA0;

2 every partial order with no infinite strong antichains has a finite
bound on the size of strong antichains;

3 every partial order with no infinite strong antichains is a finite union
of ideals;

4 if a partial order is FAC then every initial interval is a finite union of
ideals.
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Decomposing initial intervals

Initial interval separation

Lemma

Over RCA0, the following are equivalent:

1 WKL0;

2 Σ0
1 initial interval separation Let P be a partial order and ϕ(x), ψ(x)

be Σ0
1 formulas with one distinguished free number variable.

If (∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y �P x), then there exists an initial
interval I of P such that

(∀x ∈ P )(ϕ(x) =⇒ x ∈ I) and (∀x ∈ P )(ψ(x) =⇒ x /∈ I).

3 initial interval separation Let P be a partial order and suppose
A,B ⊆ P are such that (∀x ∈ A)(∀y ∈ B)(y �P x). Then there
exists an initial interval I of P such that A ⊆ I and B ∩ I = ∅.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 12 / 29



Decomposing initial intervals

Provability in WKL0

ACA0 proves that every partial order which is not FAC
contains an initial interval that cannot be written as a finite union of ideals.

RCA0 proves that every partial order with a maximal infinite antichain
contains an initial interval that cannot be written as a finite union of ideals.

Theorem

WKL0 proves that every partial order which is not FAC
contains an initial interval that cannot be written as a finite union of ideals.

Lemma

Over RCA0, the following are equivalent:

1 WKL0;

2 every antichain D of a partial order P is contained in an initial
interval I such that ∀x ∈ D ∀y ∈ I x ≮P y.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 13 / 29



Decomposing initial intervals

Unprovability in RCA0

Theorem

RCA0 does not prove that if a partial order is not FAC then
it contains an initial interval which is not finite union of ideals.

Lemma

There exists a computable partial order P with an infinite computable
antichain such that any infinite computable initial interval of P contains
an element y such that P \ ↓ y is finite.

Proof of Theorem from Lemma.

Let I be a computable initial interval of P .
If I is finite then I =

⋃
x∈I ↓x.

If I is infinite then fix y ∈ I as in Lemma: then I = ↓ y ∪
⋃
x∈I\↓ y ↓x.
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Counting initial intervals

1 Linear extensions preserving finiteness properties

2 Decomposing initial intervals

3 Counting initial intervals

4 Open problems
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Counting initial intervals

I(P ) and its size

Let I(P ) the collection of initial intervals of P .

P has countably many initial intervals
if there exists {In : n ∈ N} such that ∀I ∈ I(P )∃n ∈ N I = In.

P has uncountably many initial intervals
if it does not have countably many initial intervals.

P has perfectly many initial intervals
if there exists a nonempty perfect tree T ⊆ 2<N such that [T ] ⊆ I(P ).
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Counting initial intervals

The tree T (P )

The tree of finite approximations of initial intervals of P is T (P ) ⊆ 2<N:
σ ∈ T (P ) iff for all x, y < |σ|:
• σ(x) = 1 implies x ∈ P ;

• σ(y) = 1 and x ≤P y imply σ(x) = 1.

RCA0 proves:

P has countably many initial intervals iff T (P ) has countably many paths;

P has perfectly many initial intervals iff T (P ) contains a perfect subtree.

“P has perfectly many initial intervals” is provably Σ1
1 within RCA0;

“P has uncountably many initial intervals” is provably Σ1
1 within ATR0.
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Counting initial intervals

The main theorem

Theorem (Bonnet, 1973)

If an infinite partial order P is scattered (no copy of Q in P ) and FAC,
then | I(P )| = |P |.

Theorem

A countable partial order P is scattered and FAC
if and only if I(P ) is countable.
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Counting initial intervals

Provability in WKL0

Lemma

RCA0 proves that both Q and the infinite antichain
have perfectly many initial intervals.

Lemma

Over RCA0, the following are equivalent:

1 WKL0;

2 If Q ⊆ P then I(Q) = {J ∩Q : J ∈ I(P )}.

Theorem

WKL0 proves that if a partial order has countably many initial intervals,
then it is scattered and FAC.
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Counting initial intervals

Unprovability in RCA0

Theorem

RCA0 does not prove that if a partial order has countably many initial
intervals, then it is FAC.

Lemma

There exists a computable partial order P with an infinite computable
antichain such that any infinite computable initial interval of P contains
an element y such that P \ ↓ y is finite.

Proof of Theorem from Lemma.

Any computable initial interval of P is either finite or cofinite in P .
Let {In : n ∈ N} computably list all finite and cofinite subsets of P .
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Counting initial intervals

A classic reverse mathematics result

Theorem (Clote, 1989)

Over ACA0, the following are equivalent:

1 ATR0;

2 linear orders have either countably many or perfectly many initial
intervals;

3 scattered linear orders have countably many initial intervals.

Thus “FAC scattered partial orders have countably many initial intervals”
implies ATR0.
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Counting initial intervals

A preliminary lemma

Lemma

ACA0 proves that if P has perfectly many initial intervals,
then there exists x ∈ P such that either

• x⊥ has uncountably many initial intervals, or

• both ↓x and ↑x have uncountably many initial intervals.
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Counting initial intervals

A tree construction

Suppose P has uncountably many initial intervals.
Let Fin(P ) the set of finite subsets of P . If F,G,H ∈ Fin(P ), let

PF,G,H =
⋂
x∈F
↓x ∩

⋂
x∈G
↑x ∩

⋂
x∈H

x⊥.

We define a pruned tree T ⊆ 3<N and f : T → Fin(P )3 such that,
writing f(σ) = (Fσ, Gσ, Hσ) and Pσ = Pf(σ):

1 Pσ has uncountably many initial intervals;

2 f(〈〉) = (∅, ∅, ∅);
3 for all σ ∈ T , either exactly σa〈0〉 and σa〈1〉 belong to T , or only
σa〈2〉 ∈ T ;

4 if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ ∪ {xσ}, Gσ, Hσ) and
f(σa〈1〉) = (Fσ, Gσ ∪ {xσ}, Hσ) for some xσ ∈ Pσ;

5 if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {xσ}) for some
xσ ∈ Pσ.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 23 / 29



Counting initial intervals

A tree construction

Suppose P has uncountably many initial intervals.
Let Fin(P ) the set of finite subsets of P . If F,G,H ∈ Fin(P ), let

PF,G,H =
⋂
x∈F
↓x ∩

⋂
x∈G
↑x ∩

⋂
x∈H

x⊥.

We define a pruned tree T ⊆ 3<N and f : T → Fin(P )3 such that,
writing f(σ) = (Fσ, Gσ, Hσ) and Pσ = Pf(σ):

1 Pσ has uncountably many initial intervals;

2 f(〈〉) = (∅, ∅, ∅);
3 for all σ ∈ T , either exactly σa〈0〉 and σa〈1〉 belong to T , or only
σa〈2〉 ∈ T ;

4 if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ ∪ {xσ}, Gσ, Hσ) and
f(σa〈1〉) = (Fσ, Gσ ∪ {xσ}, Hσ) for some xσ ∈ Pσ;

5 if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {xσ}) for some
xσ ∈ Pσ.
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Counting initial intervals

A proof in Π1
1-CA0

In Π1
1-CA0 we build T and f using the preliminary lemma

(and recalling that in ATR0 uncountably many = perfectly many).

Given σ and Pσ we find xσ ∈ Pσ and Π1
1-CA0 tells us whether

PFσ ,Gσ ,Hσ∪{xσ} has uncountably many initial intervals, or both
PFσ∪{xσ},Gσ ,Hσ

and PFσ ,Gσ∪{xσ},Hσ
have uncountably many initial

intervals.

Thus Π1
1-CA0 proves “FAC scattered partial orders have countably many

initial intervals”, which implies ATR0.

The statement is Π1
2 and cannot imply Π1

1-CA0.
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Counting initial intervals

ATRX
0

ATR0 is equivalent over ACA0 to (∀X)(∀a ∈ OX)(HX
a exists).

ATRX0 is ACA0 + (∀a ∈ OX)(HX
a exists).

Theorem

ATRX0 proves that every X-computable tree with uncountably many paths
contains a perfect subtree.

The main axiom of ATRX0 is provably Σ1
1 within Σ1

1-AC0.

Theorem

ATR0 proves that for all X and Y there exists a countable coded ω-model
M such that X,Y ∈M , and M satisfies both Σ1

1-DC0 and ATRX0 .
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Counting initial intervals

A proof in ATR0

If P has uncountably many initial intervals, fix U ⊆ T (P ) perfect.

Let M be an ω-model such that P,U ∈M and M satisfies Σ1
1-DC0 and

ATRP0 .

1

2 f(〈〉) = (∅, ∅, ∅);
3 for all σ ∈ T , either exactly σa〈0〉 and σa〈1〉 belong to T , or only
σa〈2〉 ∈ T ;

4 if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ ∪ {xσ}, Gσ, Hσ) and
f(σa〈1〉) = (Fσ, Gσ ∪ {xσ}, Hσ) for some xσ ∈ Pσ;

5 if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {xσ}) for some
xσ ∈ Pσ.

The key observation is that each T (Pσ) is P -computable.
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Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 26 / 29



Counting initial intervals

A proof in ATR0

If P has uncountably many initial intervals, fix U ⊆ T (P ) perfect.

Let M be an ω-model such that P,U ∈M and M satisfies Σ1
1-DC0 and

ATRP0 .

1 M |= Pσ has perfectly many initial intervals;

2 f(〈〉) = (∅, ∅, ∅);
3 for all σ ∈ T , either exactly σa〈0〉 and σa〈1〉 belong to T , or only
σa〈2〉 ∈ T ;

4 if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ ∪ {xσ}, Gσ, Hσ) and
f(σa〈1〉) = (Fσ, Gσ ∪ {xσ}, Hσ) for some xσ ∈ Pσ;

5 if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {xσ}) for some
xσ ∈ Pσ.

The key observation is that each T (Pσ) is P -computable.
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Counting initial intervals

The reverse mathematics result

Theorem

Over ACA0, the following are equivalent:

1 ATR0;

2 FAC scattered partial orders have countably many initial intervals;

3 scattered linear orders have countably many initial intervals.
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Open problems

Open problems

1 Linear extensions preserving finiteness properties

2 Decomposing initial intervals

3 Counting initial intervals

4 Open problems

Alberto Marcone (Università di Udine) Partial orders and reverse mathematics 28 / 29



Open problems

Open problems

Is “every partial order which is not FAC contains an initial interval which is
not finite union of ideals” equivalent to WKL0, or is it of intermediate
strength between RCA0 and WKL0?

Is “every partial order which is either is not scattered or not FAC has
uncountably many initial intervals” equivalent to WKL0, or is it of
intermediate strength between RCA0 and WKL0?

Is “every non-scattered partial order has uncountably many initial
intervals” provable in RCA0?
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