Partial orders and reverse mathematics

Alberto Marcone

(joint work with Emanuele Frittaion)

Buenos Aires Semester in Computability, Complexity and Randomness January 30, 2013

Outline

(1) Linear extensions preserving finiteness properties

Outline

(1) Linear extensions preserving finiteness properties
(2) Decomposing initial intervals

Outline

(1) Linear extensions preserving finiteness properties
(2) Decomposing initial intervals
(3) Counting initial intervals

Outline

(1) Linear extensions preserving finiteness properties
(2) Decomposing initial intervals
(3) Counting initial intervals
(4) Open problems

Linear extensions preserving finiteness properties

(1) Linear extensions preserving finiteness properties
(2) Decomposing initial intervals
(3) Counting initial intervals
(4) Open problems

Some finiteness properties

Definition

Let P be a countable partial order.

Some finiteness properties

Definition

Let P be a countable partial order. We say that P is

- ω-like if every element of P has finitely many predecessors;

Some finiteness properties

Definition

Let P be a countable partial order. We say that P is

- ω-like if every element of P has finitely many predecessors;
- ω^{*}-like if every element of P has finitely many successors;

Some finiteness properties

Definition

Let P be a countable partial order. We say that P is

- ω-like if every element of P has finitely many predecessors;
- ω^{*}-like if every element of P has finitely many successors;
- $\omega+\omega^{*}$-like if every element of P has finitely many predecessors or finitely many successors;

Some finiteness properties

Definition

Let P be a countable partial order. We say that P is

- ω-like if every element of P has finitely many predecessors;
- ω^{*}-like if every element of P has finitely many successors;
- $\omega+\omega^{*}$-like if every element of P has finitely many predecessors or finitely many successors;
- ζ-like if for every pair of elements $x, y \in P$ there exist finitely many z such that $x<_{P} z<_{P} y$.

Linear extensions preserving finiteness properties

Linear extensions preserving finiteness properties

Theorem (Milner-Pouzet)

Every ω-like partial order has a linear extension which is also ω-like.

Linear extensions preserving finiteness properties

Theorem (Milner-Pouzet)

Every ω-like partial order has a linear extension which is also ω-like. The same for ω^{*}-like and for $\omega+\omega^{*}$-like.

Linear extensions preserving finiteness properties

Theorem (Milner-Pouzet)

Every ω-like partial order has a linear extension which is also ω-like. The same for ω^{*}-like and for $\omega+\omega^{*}$-like.

Theorem

Every ζ-like partial order has a linear extension which is also ζ-like.

Reverse mathematics results: I

Theorem

Over RCA_{0}, the following are pairwise equivalent:

$$
\text { (1) } \begin{aligned}
& \mathrm{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m) \\
& \text { where } \varphi \text { is any } \boldsymbol{\Sigma}_{2}^{0} \text { formula; }
\end{aligned}
$$

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathrm{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathrm{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
3 FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.

$$
\mathrm{RCA}_{0} \nvdash \mathrm{~B} \boldsymbol{\Sigma}_{2}^{0}
$$

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.

$$
\mathrm{RCA}_{0} \nvdash \mathrm{~B} \Sigma_{2}^{0}
$$

$$
\Sigma_{2}^{0}-\mathrm{IND} \Longrightarrow \mathrm{~B} \Sigma_{2}^{0}
$$

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathbf{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
3 FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.

$\mathrm{RCA}_{0} \nvdash \mathrm{~B} \Sigma_{2}^{0}$

$$
\Sigma_{2}^{0}-\mathrm{IND} \Longrightarrow \mathrm{~B} \boldsymbol{\Sigma}_{2}^{0}
$$

$W \mathrm{KL}_{0}$ and $\mathrm{B} \boldsymbol{\Sigma}_{2}^{0}$ are incomparable

Reverse mathematics results:

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) $\mathrm{B} \boldsymbol{\Sigma}_{2}^{0}: \forall i<n \exists m \varphi(i, n, m) \Longrightarrow \exists k \forall i<n \exists m<k \varphi(i, n, m)$ where φ is any $\boldsymbol{\Sigma}_{2}^{0}$ formula;
(2) $\mathrm{RT}_{<\infty}^{1}$, the infinite pigeonhole principle for an arbitrary number of colors;
(3) FUF: $\forall i<n X_{i}$ is finite $\Longrightarrow \bigcup_{i<n} X_{i}$ is finite;
(4) every ω-like partial order has a linear extension which is ω-like;
(5) every ω^{*}-like partial order has a linear extension which is ω^{*}-like;
(6) every ζ-like partial order has a linear extension which is ζ-like.
$\mathrm{RCA}_{0} \nvdash \mathrm{~B} \boldsymbol{\Sigma}_{2}^{0}$
$W \mathrm{KL}_{0}$ and $\mathrm{B} \boldsymbol{\Sigma}_{2}^{0}$ are incomparable

$$
\begin{aligned}
\Sigma_{2}^{0}-I N D & \Longrightarrow B \Sigma_{2}^{0} \\
\mathrm{RT}_{2}^{2} & \Longrightarrow \mathrm{~B} \Sigma_{2}^{0}
\end{aligned}
$$

Reverse mathematics results: II

Theorem

Over RCA_{0}, the following are equivalent:
(1) ACA_{0};
(2) every $\omega+\omega^{*}$-like partial order has a linear extension which is $\omega+\omega^{*}$-like.

Decomposing initial intervals

(1) Linear extensions preserving finiteness properties

(2) Decomposing initial intervals

(3) Counting initial intervals

(4) Open problems

Initial intervals and ideals

Definition

Let P be a partial order.

Initial intervals and ideals

Definition

Let P be a partial order.

- $D \subseteq P$ is an antichain if $\forall x, y \in D(x \neq y \Longrightarrow x \perp y)$;

Initial intervals and ideals

Definition

Let P be a partial order.

- $D \subseteq P$ is an antichain if $\forall x, y \in D(x \neq y \Longrightarrow x \perp y)$;
- P is FAC if it has no infinite antichains;

Initial intervals and ideals

Definition

Let P be a partial order.

- $D \subseteq P$ is an antichain if $\forall x, y \in D(x \neq y \Longrightarrow x \perp y)$;
- P is FAC if it has no infinite antichains;
- $S \subseteq P$ is a strong antichain in P if

$$
\forall x, y \in S\left(x \neq y \Longrightarrow \neg \exists z \in P x, y \leq_{P} z\right)
$$

Initial intervals and ideals

Definition

Let P be a partial order.

- $D \subseteq P$ is an antichain if $\forall x, y \in D(x \neq y \Longrightarrow x \perp y)$;
- P is FAC if it has no infinite antichains;
- $S \subseteq P$ is a strong antichain in P if

$$
\forall x, y \in S\left(x \neq y \Longrightarrow \neg \exists z \in P x, y \leq_{P} z\right)
$$

- $I \subseteq P$ is an initial interval of P if

$$
\forall x, y \in P\left(x \leq_{P} y \wedge y \in I \Longrightarrow x \in I\right)
$$

Initial intervals and ideals

Definition

Let P be a partial order.

- $D \subseteq P$ is an antichain if $\forall x, y \in D(x \neq y \Longrightarrow x \perp y)$;
- P is FAC if it has no infinite antichains;
- $S \subseteq P$ is a strong antichain in P if

$$
\forall x, y \in S\left(x \neq y \Longrightarrow \neg \exists z \in P x, y \leq_{P} z\right)
$$

- $I \subseteq P$ is an initial interval of P if

$$
\forall x, y \in P\left(x \leq_{P} y \wedge y \in I \Longrightarrow x \in I\right)
$$

- An initial interval A of P is an ideal if

$$
\forall x, y \in A \exists z \in A\left(x \leq_{P} z \wedge y \leq_{P} z\right)
$$

Three theorems

Theorem (Bonnet, 1975)

A partial order P is FAC if and only if every initial interval of P is a finite union of ideals.

Three theorems

Theorem (Bonnet, 1975)

A partial order P is FAC if and only if every initial interval of P is a finite union of ideals.

Theorem (Erdös-Tarski, 1943)

If a partial order P has no infinite strong antichains then there is a finite bound on the size of strong antichains in P.

Three theorems

Theorem (Bonnet, 1975)

A partial order P is FAC if and only if every initial interval of P is a finite union of ideals.

Theorem (Erdös-Tarski, 1943)

If a partial order P has no infinite strong antichains
then there is a finite bound on the size of strong antichains in P.

Theorem

A partial order has no infinite strong antichains if and only if it is a finite union of ideals.

Reverse mathematics results

Theorem

Over RCA_{0}, the following are pairwise equivalent:
(1) ACA_{0};
(2) every partial order with no infinite strong antichains has a finite bound on the size of strong antichains;
(3) every partial order with no infinite strong antichains is a finite union of ideals;
(4) if a partial order is FAC then every initial interval is a finite union of ideals.

Initial interval separation

Initial interval separation

Lemma

Over RCA_{0}, the following are equivalent:
(1) WKL_{0};
(2) Σ_{1}^{0} initial interval separation Let P be a partial order and $\varphi(x), \psi(x)$ be Σ_{1}^{0} formulas with one distinguished free number variable.
If $(\forall x, y \in P)\left(\varphi(x) \wedge \psi(y) \Longrightarrow y \not \mathbb{L}_{P} x\right)$, then there exists an initial interval I of P such that

$$
(\forall x \in P)(\varphi(x) \Longrightarrow x \in I) \text { and }(\forall x \in P)(\psi(x) \Longrightarrow x \notin I)
$$

(3) initial interval separation Let P be a partial order and suppose $A, B \subseteq P$ are such that $(\forall x \in A)(\forall y \in B)\left(y \not \leq_{P} x\right)$. Then there exists an initial interval I of P such that $A \subseteq I$ and $B \cap I=\emptyset$.

Provability in WKL ${ }_{0}$

Provability in WKL

ACA_{0} proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals.

Provability in WKL_{0}

ACA $_{0}$ proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals. RCA_{0} proves that every partial order with a maximal infinite antichain contains an initial interval that cannot be written as a finite union of ideals.

Provability in WKL_{0}

ACA $_{0}$ proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals.
$R^{R C A} A_{0}$ proves that every partial order with a maximal infinite antichain contains an initial interval that cannot be written as a finite union of ideals.

Theorem

WKL_{0} proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals.

Provability in WKL_{0}

ACA_{0} proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals.
$R^{2} A_{0}$ proves that every partial order with a maximal infinite antichain contains an initial interval that cannot be written as a finite union of ideals.

Theorem

WKL_{0} proves that every partial order which is not FAC contains an initial interval that cannot be written as a finite union of ideals.

Lemma

Over RCA_{0}, the following are equivalent:
(1) WKL_{0};
(2) every antichain D of a partial order P is contained in an initial interval I such that $\forall x \in D \forall y \in I x \not{ }_{P} y$.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order is not FAC then it contains an initial interval which is not finite union of ideals.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order is not FAC then it contains an initial interval which is not finite union of ideals.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order is not FAC then it contains an initial interval which is not finite union of ideals.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Proof of Theorem from Lemma.

Let I be a computable initial interval of P.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order is not FAC then it contains an initial interval which is not finite union of ideals.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Proof of Theorem from Lemma.

Let I be a computable initial interval of P.
If I is finite then $I=\bigcup_{x \in I} \downarrow x$.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order is not FAC then it contains an initial interval which is not finite union of ideals.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Proof of Theorem from Lemma.

Let I be a computable initial interval of P.
If I is finite then $I=\bigcup_{x \in I} \downarrow x$.
If I is infinite then fix $y \in I$ as in Lemma: then $I=\downarrow y \cup \bigcup_{x \in I \backslash \downarrow y} \downarrow x$.

Counting initial intervals

(1) Linear extensions preserving finiteness properties

(2) Decomposing initial intervals
(3) Counting initial intervals
(4) Open problems

$\mathcal{I}(P)$ and its size

Let $\mathcal{I}(P)$ the collection of initial intervals of P.

$\mathcal{I}(P)$ and its size

Let $\mathcal{I}(P)$ the collection of initial intervals of P.
P has countably many initial intervals
if there exists $\left\{I_{n}: n \in \mathbb{N}\right\}$ such that $\forall I \in \mathcal{I}(P) \exists n \in \mathbb{N} I=I_{n}$.

$\mathcal{I}(P)$ and its size

Let $\mathcal{I}(P)$ the collection of initial intervals of P.
P has countably many initial intervals
if there exists $\left\{I_{n}: n \in \mathbb{N}\right\}$ such that $\forall I \in \mathcal{I}(P) \exists n \in \mathbb{N} I=I_{n}$.
P has uncountably many initial intervals
if it does not have countably many initial intervals.

$\mathcal{I}(P)$ and its size

Let $\mathcal{I}(P)$ the collection of initial intervals of P.
P has countably many initial intervals
if there exists $\left\{I_{n}: n \in \mathbb{N}\right\}$ such that $\forall I \in \mathcal{I}(P) \exists n \in \mathbb{N} I=I_{n}$.
P has uncountably many initial intervals
if it does not have countably many initial intervals.
P has perfectly many initial intervals
if there exists a nonempty perfect tree $T \subseteq 2^{<\mathbb{N}}$ such that $[T] \subseteq \mathcal{I}(P)$.

The tree $T(P)$

The tree of finite approximations of initial intervals of P is $T(P) \subseteq 2^{<\mathbb{N}}$: $\sigma \in T(P)$ iff for all $x, y<|\sigma|$:

- $\sigma(x)=1$ implies $x \in P$;
- $\sigma(y)=1$ and $x \leq_{P} y$ imply $\sigma(x)=1$.

The tree $T(P)$

The tree of finite approximations of initial intervals of P is $T(P) \subseteq 2^{<\mathbb{N}}$: $\sigma \in T(P)$ iff for all $x, y<|\sigma|$:

- $\sigma(x)=1$ implies $x \in P$;
- $\sigma(y)=1$ and $x \leq_{P} y$ imply $\sigma(x)=1$.
RCA_{0} proves:
P has countably many initial intervals iff $T(P)$ has countably many paths;

The tree $T(P)$

The tree of finite approximations of initial intervals of P is $T(P) \subseteq 2^{<\mathbb{N}}$: $\sigma \in T(P)$ iff for all $x, y<|\sigma|$:

- $\sigma(x)=1$ implies $x \in P$;
- $\sigma(y)=1$ and $x \leq_{P} y$ imply $\sigma(x)=1$.
RCA_{0} proves:
P has countably many initial intervals iff $T(P)$ has countably many paths;
P has perfectly many initial intervals iff $T(P)$ contains a perfect subtree.

The tree $T(P)$

The tree of finite approximations of initial intervals of P is $T(P) \subseteq 2^{<\mathbb{N}}$: $\sigma \in T(P)$ iff for all $x, y<|\sigma|$:

- $\sigma(x)=1$ implies $x \in P$;
- $\sigma(y)=1$ and $x \leq_{P} y$ imply $\sigma(x)=1$.
RCA_{0} proves:
P has countably many initial intervals iff $T(P)$ has countably many paths;
P has perfectly many initial intervals iff $T(P)$ contains a perfect subtree.
" P has perfectly many initial intervals" is provably $\boldsymbol{\Sigma}_{1}^{1}$ within RCA_{0};

The tree $T(P)$

The tree of finite approximations of initial intervals of P is $T(P) \subseteq 2^{<\mathbb{N}}$. $\sigma \in T(P)$ iff for all $x, y<|\sigma|$:

- $\sigma(x)=1$ implies $x \in P$;
- $\sigma(y)=1$ and $x \leq_{P} y$ imply $\sigma(x)=1$.
RCA_{0} proves:
P has countably many initial intervals iff $T(P)$ has countably many paths;
P has perfectly many initial intervals iff $T(P)$ contains a perfect subtree.
" P has perfectly many initial intervals" is provably $\boldsymbol{\Sigma}_{1}^{1}$ within RCA_{0}; " P has uncountably many initial intervals" is provably $\boldsymbol{\Sigma}_{1}^{1}$ within ATR $_{0}$.

The main theorem

Theorem (Bonnet, 1973)

If an infinite partial order P is scattered (no copy of \mathbb{Q} in P) and FAC, then $|\mathcal{I}(P)|=|P|$.

The main theorem

Theorem (Bonnet, 1973)

If an infinite partial order P is scattered (no copy of \mathbb{Q} in P) and FAC, then $|\mathcal{I}(P)|=|P|$.

Theorem

A countable partial order P is scattered and FAC if and only if $\mathcal{I}(P)$ is countable.

Provability in WKL_{0}

> Lemma
> RCA_{0} proves that both \mathbb{Q} and the infinite antichain
> have perfectly many initial intervals.

Provability in WKL_{0}

Lemma

RCA_{0} proves that both \mathbb{Q} and the infinite antichain
have perfectly many initial intervals.

Lemma

Over RCA_{0}, the following are equivalent:
(1) WKL_{0};
(2) If $Q \subseteq P$ then $\mathcal{I}(Q)=\{J \cap Q: J \in \mathcal{I}(P)\}$.

Provability in WKL_{0}

Lemma

RCA_{0} proves that both \mathbb{Q} and the infinite antichain
have perfectly many initial intervals.

Lemma

Over RCA_{0}, the following are equivalent:
(1) WKL_{0};
(2) If $Q \subseteq P$ then $\mathcal{I}(Q)=\{J \cap Q: J \in \mathcal{I}(P)\}$.

Theorem

WKL_{0} proves that if a partial order has countably many initial intervals, then it is scattered and FAC.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order has countably many initial intervals, then it is FAC.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order has countably many initial intervals, then it is FAC.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order has countably many initial intervals, then it is FAC.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Proof of Theorem from Lemma.

Any computable initial interval of P is either finite or cofinite in P.

Unprovability in RCA_{0}

Theorem

RCA_{0} does not prove that if a partial order has countably many initial intervals, then it is FAC.

Lemma

There exists a computable partial order P with an infinite computable antichain such that any infinite computable initial interval of P contains an element y such that $P \backslash \downarrow y$ is finite.

Proof of Theorem from Lemma.

Any computable initial interval of P is either finite or cofinite in P. Let $\left\{I_{n}: n \in N\right\}$ computably list all finite and cofinite subsets of P.

A classic reverse mathematics result

Theorem (Clote, 1989)

Over ACA_{0}, the following are equivalent:
(1) ATR_{0};
(2) linear orders have either countably many or perfectly many initial intervals;
(3) scattered linear orders have countably many initial intervals.

A classic reverse mathematics result

Theorem (Clote, 1989)

Over ACA_{0}, the following are equivalent:
(1) ATR_{0};
(2) linear orders have either countably many or perfectly many initial intervals;
(3) scattered linear orders have countably many initial intervals.

Thus "FAC scattered partial orders have countably many initial intervals" implies ATR $_{0}$.

A preliminary lemma

Lemma

ACA_{0} proves that if P has perfectly many initial intervals, then there exists $x \in P$ such that either

- x^{\perp} has uncountably many initial intervals, or
- both $\downarrow x$ and $\uparrow x$ have uncountably many initial intervals.

A tree construction

Suppose P has uncountably many initial intervals. Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:
(1) P_{σ} has uncountably many initial intervals;

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:
(1) P_{σ} has uncountably many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:
(1) P_{σ} has uncountably many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\curvearrowright}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:
(1) P_{σ} has uncountably many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\curvearrowright}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;
(4) if $\sigma^{\sim}\langle 0\rangle \in T$, then $f\left(\sigma^{\sim}\langle 0\rangle\right)=\left(F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}\right)$ and $f\left(\sigma^{\curvearrowright}\langle 1\rangle\right)=\left(F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}\right)$ for some $x_{\sigma} \in P_{\sigma} ;$

A tree construction

Suppose P has uncountably many initial intervals.
Let $\operatorname{Fin}(P)$ the set of finite subsets of P. If $F, G, H \in \operatorname{Fin}(P)$, let

$$
P_{F, G, H}=\bigcap_{x \in F} \downarrow x \cap \bigcap_{x \in G} \uparrow x \cap \bigcap_{x \in H} x^{\perp} .
$$

We define a pruned tree $T \subseteq 3^{<\mathbb{N}}$ and $f: T \rightarrow \operatorname{Fin}(P)^{3}$ such that, writing $f(\sigma)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma}\right)$ and $P_{\sigma}=P_{f(\sigma)}$:
(1) P_{σ} has uncountably many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\curvearrowright}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;
(4) if $\sigma^{\curvearrowright}\langle 0\rangle \in T$, then $f\left(\sigma^{\curvearrowright}\langle 0\rangle\right)=\left(F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}\right)$ and $f\left(\sigma^{\wedge}\langle 1\rangle\right)=\left(F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}\right)$ for some $x_{\sigma} \in P_{\sigma}$;
(5) if $\sigma^{\curvearrowright}\langle 2\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 2\rangle\right)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}\right)$ for some $x_{\sigma} \in P_{\sigma}$.

A proof in $\Pi_{1}^{1}-\mathrm{CA}_{0}$

In $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we build T and f using the preliminary lemma (and recalling that in ATR $_{0}$ uncountably many $=$ perfectly many).

A proof in $\Pi_{1}^{1}-\mathrm{CA}_{0}$

In $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we build T and f using the preliminary lemma (and recalling that in ATR ${ }_{0}$ uncountably many $=$ perfectly many). Given σ and P_{σ} we find $x_{\sigma} \in P_{\sigma}$ and Π_{1}^{1} - CA_{0} tells us whether $P_{F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}}$ has uncountably many initial intervals, or both $P_{F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}}$ and $P_{F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}}$ have uncountably many initial intervals.

A proof in $\Pi_{1}^{1}-\mathrm{CA}_{0}$

In $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we build T and f using the preliminary lemma (and recalling that in ATR ${ }_{0}$ uncountably many $=$ perfectly many). Given σ and P_{σ} we find $x_{\sigma} \in P_{\sigma}$ and Π_{1}^{1} - CA_{0} tells us whether $P_{F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}}$ has uncountably many initial intervals, or both $P_{F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}}$ and $P_{F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}}$ have uncountably many initial intervals.

Thus Π_{1}^{1}-CA A_{0} proves " $F A C$ scattered partial orders have countably many initial intervals", which implies ATR $_{0}$.

A proof in $\Pi_{1}^{1}-\mathrm{CA}_{0}$

In $\Pi_{1}^{1}-\mathrm{CA}_{0}$ we build T and f using the preliminary lemma (and recalling that in ATR ${ }_{0}$ uncountably many $=$ perfectly many).
Given σ and P_{σ} we find $x_{\sigma} \in P_{\sigma}$ and Π_{1}^{1} - CA_{0} tells us whether $P_{F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}}$ has uncountably many initial intervals, or both $P_{F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}}$ and $P_{F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}}$ have uncountably many initial intervals.

Thus $\Pi_{1}^{1}-$ CA $_{0}$ proves "FAC scattered partial orders have countably many initial intervals", which implies ATR $_{0}$.

The statement is Π_{2}^{1} and cannot imply $\boldsymbol{\Pi}_{1}^{1}-C A_{0}$.

$\operatorname{ATR}_{0}^{X}$

ATR_{0} is equivalent over ACA_{0} to $(\forall X)\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$.

ATR_{0}^{X}

ATR_{0} is equivalent over ACA_{0} to $(\forall X)\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$. $\operatorname{ATR}_{0}^{X}$ is $\mathrm{ACA}_{0}+\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$.

$\operatorname{ATR}_{0}^{X}$

ATR_{0} is equivalent over ACA_{0} to $(\forall X)\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$. $\operatorname{ATR}_{0}^{X}$ is $\mathrm{ACA}_{0}+\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$.

Theorem

$\operatorname{ATR}_{0}^{X}$ proves that every X-computable tree with uncountably many paths contains a perfect subtree.

ATR_{0}^{X}

ATR_{0} is equivalent over ACA_{0} to $(\forall X)\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$. $\operatorname{ATR}_{0}^{X}$ is $\mathrm{ACA}_{0}+\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$.

Theorem

$\operatorname{ATR}_{0}^{X}$ proves that every X-computable tree with uncountably many paths contains a perfect subtree.

The main axiom of $\operatorname{ATR}_{0}^{X}$ is provably $\boldsymbol{\Sigma}_{1}^{1}$ within $\boldsymbol{\Sigma}_{1}^{1}-\mathrm{AC}_{0}$.

ATR_{0}^{X}

ATR_{0} is equivalent over ACA_{0} to $(\forall X)\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$. $\operatorname{ATR}_{0}^{X}$ is $\mathrm{ACA}_{0}+\left(\forall a \in \mathcal{O}^{X}\right)\left(H_{a}^{X}\right.$ exists $)$.

Theorem

$\operatorname{ATR}_{0}^{X}$ proves that every X-computable tree with uncountably many paths contains a perfect subtree.

The main axiom of $\operatorname{ATR}_{0}^{X}$ is provably $\boldsymbol{\Sigma}_{1}^{1}$ within $\boldsymbol{\Sigma}_{1}^{1}-\mathrm{AC}_{0}$.

Theorem

ATR $_{0}$ proves that for all X and Y there exists a countable coded ω-model M such that $X, Y \in M$, and M satisfies both $\Sigma_{1}^{1}-\mathrm{DC}_{0}$ and ATR_{0}^{X}.

A proof in ATR_{0}

If P has uncountably many initial intervals, fix $U \subseteq T(P)$ perfect.

A proof in $A T R_{0}$

If P has uncountably many initial intervals, fix $U \subseteq T(P)$ perfect. Let M be an ω-model such that $P, U \in M$ and M satisfies $\boldsymbol{\Sigma}_{1}^{1}$ - DC_{0} and ATR_{0}^{P}.

A proof in ATR $_{0}$

If P has uncountably many initial intervals, fix $U \subseteq T(P)$ perfect.
Let M be an ω-model such that $P, U \in M$ and M satisfies $\boldsymbol{\Sigma}_{1}^{1}$ - DC_{0} and ATR_{0}^{P}.
(1) P_{σ} has uncountably many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\wedge}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;
(4) if $\sigma^{\sim}\langle 0\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 0\rangle\right)=\left(F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}\right)$ and $f\left(\sigma^{\wedge}\langle 1\rangle\right)=\left(F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}\right)$ for some $x_{\sigma} \in P_{\sigma}$;
(5) if $\sigma^{\wedge}\langle 2\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 2\rangle\right)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}\right)$ for some $x_{\sigma} \in P_{\sigma}$.

A proof in ATR $_{0}$

If P has uncountably many initial intervals, fix $U \subseteq T(P)$ perfect.
Let M be an ω-model such that $P, U \in M$ and M satisfies $\boldsymbol{\Sigma}_{1}^{1}$ - DC_{0} and ATR_{0}^{P}.
(1) $M \models P_{\sigma}$ has perfectly many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\wedge}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;
(4) if $\sigma^{\sim}\langle 0\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 0\rangle\right)=\left(F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}\right)$ and $f\left(\sigma^{\wedge}\langle 1\rangle\right)=\left(F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}\right)$ for some $x_{\sigma} \in P_{\sigma}$;
(5) if $\sigma^{\wedge}\langle 2\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 2\rangle\right)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}\right)$ for some $x_{\sigma} \in P_{\sigma}$.

A proof in ATR $_{0}$

If P has uncountably many initial intervals, fix $U \subseteq T(P)$ perfect.
Let M be an ω-model such that $P, U \in M$ and M satisfies $\boldsymbol{\Sigma}_{1}^{1}$ - DC_{0} and ATR_{0}^{P}.
(1) $M \models P_{\sigma}$ has perfectly many initial intervals;
(2) $f(\rangle)=(\emptyset, \emptyset, \emptyset)$;
(3) for all $\sigma \in T$, either exactly $\sigma^{\wedge}\langle 0\rangle$ and $\sigma^{\wedge}\langle 1\rangle$ belong to T, or only $\sigma^{\wedge}\langle 2\rangle \in T$;
(4) if $\sigma^{\sim}\langle 0\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 0\rangle\right)=\left(F_{\sigma} \cup\left\{x_{\sigma}\right\}, G_{\sigma}, H_{\sigma}\right)$ and $f\left(\sigma^{\wedge}\langle 1\rangle\right)=\left(F_{\sigma}, G_{\sigma} \cup\left\{x_{\sigma}\right\}, H_{\sigma}\right)$ for some $x_{\sigma} \in P_{\sigma}$;
(5) if $\sigma^{\wedge}\langle 2\rangle \in T$, then $f\left(\sigma^{\wedge}\langle 2\rangle\right)=\left(F_{\sigma}, G_{\sigma}, H_{\sigma} \cup\left\{x_{\sigma}\right\}\right)$ for some $x_{\sigma} \in P_{\sigma}$.

The key observation is that each $T\left(P_{\sigma}\right)$ is P-computable.

The reverse mathematics result

Theorem

Over ACA_{0}, the following are equivalent:
(1) ATR_{0};
(2) FAC scattered partial orders have countably many initial intervals;
(3) scattered linear orders have countably many initial intervals.

Open problems

(1) Linear extensions preserving finiteness properties

(2) Decomposing initial intervals
(3) Counting initial intervals

(4) Open problems

Open problems

Is "every partial order which is not FAC contains an initial interval which is not finite union of ideals" equivalent to WKL_{0}, or is it of intermediate strength between RCA_{0} and WKL_{0} ?

Open problems

Is "every partial order which is not FAC contains an initial interval which is not finite union of ideals" equivalent to WKL_{0}, or is it of intermediate strength between RCA_{0} and WKL_{0} ?

Is "every partial order which is either is not scattered or not FAC has uncountably many initial intervals" equivalent to WKL_{0}, or is it of intermediate strength between RCA_{0} and WKL_{0} ?

Open problems

Is "every partial order which is not FAC contains an initial interval which is not finite union of ideals" equivalent to WKL_{0}, or is it of intermediate strength between RCA_{0} and WKL_{0} ?

Is "every partial order which is either is not scattered or not FAC has uncountably many initial intervals" equivalent to WKL_{0}, or is it of intermediate strength between RCA_{0} and WKL_{0} ?

Is "every non-scattered partial order has uncountably many initial intervals" provable in RCA_{0} ?

