Complex isomorphisms of simple computable structures

Alexander Melnikov

(Joint work with Rod Downey and Keng Meng Ng)

Victoria University of Wellington

Buenos Aires, 2013.

In this talk:

- all structures are computable,
- 2 all isomorphisms are Δ_2^0 ,
- all our structures are algebraically simple (not far from being sets).

A computable structure A is Δ_n^0 -categorical if for every computable $B \cong A$ there exists a Δ_n^0 -isomorphism from B to A.

A computable structure A is Δ_n^0 -categorical if for every computable $B \cong A$ there exists a Δ_n^0 -isomorphism from B to A.

If n = 1 then A is *computably categorical*. There are also variations of the definition above (to be discussed).

A computable structure A is Δ_n^0 -categorical if for every computable $B \cong A$ there exists a Δ_n^0 -isomorphism from B to A.

If n = 1 then A is *computably categorical*. There are also variations of the definition above (to be discussed).

Problem (1960's for n = 1, 1980's for arbitrary n)

Describe Δ_n^0 -categorical members of a given class K of computable structures.

A computable structure A is Δ_n^0 -categorical if for every computable $B \cong A$ there exists a Δ_n^0 -isomorphism from B to A.

If n = 1 then A is *computably categorical*. There are also variations of the definition above (to be discussed).

Problem (1960's for n = 1, 1980's for arbitrary n)

Describe Δ_n^0 -categorical members of a given class K of computable structures.

Even for n = 1 the problem is too hard in general (Downey, Kach, Lempp, Lewis, Montalban, and Turetsky).

Theorem (Goncharov, Remmel, Nurtazin, LaRoche, Smith et al.)

Computably categorical members can be characterized in the following classes of computable structures:

- Boolean algebras,
- linear orderings,
- abelian *p*-groups and torsion-free abelian groups (mixed case is open),
- ordered abelian groups,
- some other specific classes.

Theorem (Goncharov, Remmel, Nurtazin, LaRoche, Smith et al.)

Computably categorical members can be characterized in the following classes of computable structures:

- Boolean algebras,
- linear orderings,
- abelian *p*-groups and torsion-free abelian groups (mixed case is open),
- ordered abelian groups,
- some other specific classes.

Not much is known about Δ_2^0 -categorical members of these classes.

Ash classified Δ_n^0 -categorical well-orderings.

Ash classified Δ_n^0 -categorical well-orderings.

McCoy studied Δ_2^0 - and Δ_3^0 -categorical linear orders and Boolean algebras.

Ash classified Δ_n^0 -categorical well-orderings.

McCoy studied Δ_2^0 - and Δ_3^0 -categorical linear orders and Boolean algebras.

Harris announced a characterization of Boolean algebras which are Δ_n^0 -categorical for *some* $n \in \omega$.

Ash classified Δ_n^0 -categorical well-orderings.

McCoy studied Δ_2^0 - and Δ_3^0 -categorical linear orders and Boolean algebras.

Harris announced a characterization of Boolean algebras which are Δ_n^0 -categorical for *some* $n \in \omega$.

Miller investigated the question in the class of algebraic fields.

Downey and M. characterized Δ_2^0 -categorical completely decomposable groups in terms of semi-low sets.

Downey and M. characterized Δ_2^0 -categorical completely decomposable groups in terms of semi-low sets.

Calvert, Cenzer, Harizanov, and Morozov were the first to look at Δ_2^0 -categorical equivalence structures and multi-cyclic groups (to be defined shortly).

Downey and M. characterized Δ_2^0 -categorical completely decomposable groups in terms of semi-low sets.

Calvert, Cenzer, Harizanov, and Morozov were the first to look at Δ_2^0 -categorical equivalence structures and multi-cyclic groups (to be defined shortly).

Definition

An equivalence structure is a domain with an equivalence relation on it.

Downey and M. characterized Δ_2^0 -categorical completely decomposable groups in terms of semi-low sets.

Calvert, Cenzer, Harizanov, and Morozov were the first to look at Δ_2^0 -categorical equivalence structures and multi-cyclic groups (to be defined shortly).

Definition

An equivalence structure is a domain with an equivalence relation on it.

Definition

A multi-ciclic group is a direct sum of cyclic and quasi-cyclic abelian p-groups.

CCHM observed that every computable equivalence structure and each multi-cyclic group is Δ_3^0 -categorical. They left open:

Problem

Which computable equivalence structures are Δ_2^0 -categorical?

CCHM observed that every computable equivalence structure and each multi-cyclic group is Δ_3^0 -categorical. They left open:

Problem

Which computable equivalence structures are Δ_2^0 -categorical?

Problem

Is there a Δ_2^0 -categorical multi-cyclic group which does not fall into trivial cases?

CCHM observed that every computable equivalence structure and each multi-cyclic group is Δ_3^0 -categorical. They left open:

Problem

Which computable equivalence structures are Δ_2^0 -categorical?

Problem

Is there a Δ_2^0 -categorical multi-cyclic group which does not fall into trivial cases?

In contrast to linear orders and Boolean algebras, both equivalence structures and multi-cyclic groups have nice and simple algebraic classifications.

Definition

For a set $X \subset \omega$, let E(X) be an equivalence structure with ω -many infinite classes and exactly one class of size *n* for each $n \in X$.

Say that an infinite Σ_2^0 set X is categorical if the computable E(X) is Δ_2^0 -categorical.

Definition

For a set $X \subset \omega$, let E(X) be an equivalence structure with ω -many infinite classes and exactly one class of size *n* for each $n \in X$.

Say that an infinite Σ_2^0 set X is categorical if the computable E(X) is Δ_2^0 -categorical.

Recall a Σ_2^0 set $S \subseteq \omega$ is semi-low_{1.5} if $\{e : |W_e \cap S| < \infty\} \le 1$ $\{e : |range \varphi_e| < \infty\}$

Definition

For a set $X \subset \omega$, let E(X) be an equivalence structure with ω -many infinite classes and exactly one class of size *n* for each $n \in X$.

Say that an infinite Σ_2^0 set X is categorical if the computable E(X) is Δ_2^0 -categorical.

Recall a
$$\Sigma_2^0$$
 set $S \subseteq \omega$ is semi-low_{1.5} if
 $\{e : |W_e \cap S| < \infty\} \leq_1 \{e : |range \varphi_e| < \infty\}$

Theorem

- Each infinite d.c.e. semi-low_{1.5} set is not categorical.
- Some infinite semi-low_{1.5} set is categorical. Some d-c.e. set is categorical.

Recall a set $X \subseteq \omega$ is limitwise monotonic if there is a recursive f such that

 $X = range sup_y f(x, y)$

Recall a set $X \subseteq \omega$ is limitwise monotonic if there is a recursive f such that

 $X = range sup_y f(x, y)$

Theorem

- If an infinite Σ_2^0 set X is limitwise monotonic then X is not categorical.
- 2 There exists an infinite set which is not categorical and not limitwise monotonic.

Recall a set $X \subseteq \omega$ is limitwise monotonic if there is a recursive f such that

 $X = range sup_y f(x, y)$

Theorem

- If an infinite Σ_2^0 set X is limitwise monotonic then X is not categorical.
- There exists an infinite set which is not categorical and not limitwise monotonic.

The general intuition is that being not categorical is a "non-uniform version" of being limitwise monotonic.

Recall a set $X \subseteq \omega$ is limitwise monotonic if there is a recursive f such that

 $X = range sup_y f(x, y)$

Theorem

- If an infinite Σ_2^0 set X is limitwise monotonic then X is not categorical.
- There exists an infinite set which is not categorical and not limitwise monotonic.

The general intuition is that being not categorical is a "non-uniform version" of being limitwise monotonic.

How much do these notions differ?

Categoricity bounding vs. (none-)I.m. bounding

Being limitwise monotonic is not a degree-invariant property. The same is true about being categorical.

Categoricity bounding vs. (none-)I.m. bounding

Being limitwise monotonic is not a degree-invariant property. The same is true about being categorical.

Which c.e. degrees bound a categorical set?

Categoricity bounding vs. (none-)I.m. bounding

Being limitwise monotonic is not a degree-invariant property. The same is true about being categorical.

Which c.e. degrees bound a categorical set?

Theorem

For a c.e. degree **a**, the following are equivalent:

- a is high.
- 2 There exists an infinite categorical set $X \leq_T a$.
- (Downey, Kach, Turetsky) There exists an infinite $X \leq_T a$ such that X is not limitwise monotonic.

Thus, c.e. degrees do not see the difference. The proof of $1 \Leftrightarrow 2$ has nothing to do with limitwise monotonicity.

Can we at least reduce the general problem to the set case (remove repetitions)?

Can we at least reduce the general problem to the set case (remove repetitions)?

Given an equivalence structure E, remove repetitions of finite classes from E. Call the resulting E_0 the condensation of E.

Can we at least reduce the general problem to the set case (remove repetitions)?

Given an equivalence structure E, remove repetitions of finite classes from E. Call the resulting E_0 the condensation of E.

Proposition

If E is Δ_2^0 -categorical, then its condensation is Δ_2^0 -categorical as well.

Problem

Is there a computable E which is *not* Δ_2^0 -categorical but whose condensation *is* Δ_2^0 -categorical?

Problem

Is there a computable E which is *not* Δ_2^0 -categorical but whose condensation *is* Δ_2^0 -categorical?

Strong Conjecture

Yes!

Problem

Is there a computable E which is *not* Δ_2^0 -categorical but whose condensation *is* Δ_2^0 -categorical?

Strong Conjecture

Yes!

Proof.

A 0''' argument, to be written up.

Uniform versions of Δ_2^0 -categoricity

So, (plain) Δ_2^0 -categoricity is very difficult to capture in the class of (computable) equivalence structures.

So, (plain) Δ_2^0 -categoricity is very difficult to capture in the class of (computable) equivalence structures.

There are also uniform versions of Δ_2^0 -categoricity such as:

- relative Δ_2^0 -categoricity,
- 2 uniform Δ_2^0 -categoricity,
- Seffective Δ_2^0 -categoricity (a Σ_2^0 -index of an isomorphism can be computed from indices of two given computable copies).

So, (plain) Δ_2^0 -categoricity is very difficult to capture in the class of (computable) equivalence structures.

There are also uniform versions of Δ_2^0 -categoricity such as:

- relative Δ_2^0 -categoricity,
- 2 uniform Δ_2^0 -categoricity,
- Seffective Δ_2^0 -categoricity (a Σ_2^0 -index of an isomorphism can be computed from indices of two given computable copies).

Theorem (CCHM; Kach and Turetsky; Downey, M., Ng)

All these notions are different in the context of equivalence relations, and all are not the same as (plain) Δ_2^0 -categoricity.

Multi-cyclic groups

Recall the definition of a multi-cyclic group.

Recall the definition of a multi-cyclic group.

Theorem

A multi-cyclic group with infinitely many infinite quasi-cyclic summands is effectively Δ_2^0 -categorical if, and only if, the naturally associated equivalence structure is effectively Δ_2^0 -categorical.

Recall the definition of a multi-cyclic group.

Theorem

A multi-cyclic group with infinitely many infinite quasi-cyclic summands is effectively Δ_2^0 -categorical if, and only if, the naturally associated equivalence structure is effectively Δ_2^0 -categorical.

Corollary

There exists a Δ_2^0 -categorical multi-cyclic group having infinitely many quasi-cyclic summands. (Answers a question left open by CCHM)

Comments on the proof:

- (Effective) Δ_2^0 -categoricity in such groups is regulated by the complexity of height-function. (The proof uses a refinement of the first half of Kaplansky's book.)
- 2 We don't know if the theorem holds for plain Δ_2^0 -categoricity (conjecture: no).
- A direct proof of the Corollary, without using the Theorem, would be problematic.

We conclude by giving some further properties of effective Δ_2^0 -categoricity in the context of equivalence structures and comparing them to the plain case.

Multi-cyclic groups

Effectively Δ_2^0 -categorical equivalence structures possess much more nice structural properties. For instance:

There is an equivalent property which is much easier to use than just the definition (we skip it).

There is an equivalent property which is much easier to use than just the definition (we skip it).

Repetitions of finite classes do not effect the property.

There is an equivalent property which is much easier to use than just the definition (we skip it).

Repetitions of finite classes do not effect the property.

In the context of c.e. degrees, effective Δ_2^0 -categoricity bounding is equivalent to being complete (a pretty proof).

There is an equivalent property which is much easier to use than just the definition (we skip it).

Repetitions of finite classes do not effect the property.

In the context of c.e. degrees, effective Δ_2^0 -categoricity bounding is equivalent to being complete (a pretty proof).

There are some further nice results that we skip.

Summary

We obtained several (mostly negative) results towards

Problem

Which computable equivalence classes are Δ_2^0 -categorical?

which is still open.

Summary

We obtained several (mostly negative) results towards

Problem

Which computable equivalence classes are Δ_2^0 -categorical?

which is still open.

We applied our results to solve Problem 5.1 from (CCHM) about computable groups.

We obtained several (mostly negative) results towards

Problem

Which computable equivalence classes are Δ_2^0 -categorical?

which is still open.

We applied our results to solve Problem 5.1 from (CCHM) about computable groups.

We can also solve Problem 5.2 from (CCHM) using stripping functions, in the context of the Ash-Knight-Oates conjecture...

We obtained several (mostly negative) results towards

Problem

Which computable equivalence classes are Δ_2^0 -categorical?

which is still open.

We applied our results to solve Problem 5.1 from (CCHM) about computable groups.

We can also solve Problem 5.2 from (CCHM) using stripping functions, in the context of the Ash-Knight-Oates conjecture...

... but it is a different paper and a different story.

Thanks (in Russian)

SPASIBO

Alexander Melnikov (Joint work with Rod Downey and Keng Men, Complex isomorphisms of simple computable structures