Primes in Computable UFDs

Joe Mileti Grinnell College

April 10, 2013

Units and Associates

Definition An integral domain is a commutative ring with identity such that whenever ab = 0, either a = 0 or b = 0.

Definition

Let A be an integral domain. An element $u \in A$ is called a unit if there exists $w \in A$ with uw = 1. We let U(A) be the set of units of A.

Definition

Let A be an integral domain and let $a, b \in A$. We say that a and b are associates if there exists $u \in U(A)$ with au = b. Equivalently, both $a \mid b$ and $b \mid a$.

Units

Proposition

Let A be an integral domain.

- U(A) is a multiplicative group.
- If $a \in U(A)$ and $b \mid a$, then $b \in U(A)$.

For example, consider the integral domain $\mathbb{Z}[\sqrt{2}]$. Notice that $1 + \sqrt{2} \in U(\mathbb{Z}[\sqrt{2}])$ because $(1 + \sqrt{2})(-1 + \sqrt{2}) = 1$. Taking powers of $1 + \sqrt{2}$, the following are units:

- ► $3 + 2\sqrt{2}$
- ▶ $7 + 5\sqrt{2}$
- ► $17 + 12\sqrt{2}$

In fact, $U(\mathbb{Z}[\sqrt{2}]) = \{\pm (1+\sqrt{2})^n : n \in \mathbb{Z}\}.$

Primes and Irreducibles

Definition

Let A be an integral domain. Let $p \in A \setminus U(A)$ be nonzero.

- p is irreducible if whenever p = ab, either a is a unit or b is a unit.
- p is prime if whenever $p \mid ab$, either $p \mid a$ or $p \mid b$.

In an integral domain, primes are always irreducible but the converse need not hold. In $\mathbb{Z}[\sqrt{-5}]$ we have

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

All factors are irreducible but none are prime.

UFDs

Definition

A unique factorization domain or UFD is an integral domain A such that:

- Every (nonzero nonunit) element of A can be written as a product of irreducibles.
- Any representation of an element as a product of irreducibles is unique up to order and associates.

In $\mathbb{Z}[i]$, we have

$$(2+i)(2-i) = 5 = (1+2i)(1-2i)$$

but $2+i = i \cdot (1-2i)$ and $2-i = (-i) \cdot (1+2i)$.

UFDs

Proposition

In a UFD, every irreducible is prime.

Proposition

Let A be an integral domain. The following are equivalent.

- A is a UFD.
- Every element is a product of irreducibles, and every irreducible is prime.
- The strict divisibility relation is well-founded, and every irreducible is prime.

Examples of UFDs

Theorem \mathbb{Z} is a UFD.

To prove this, one shows that every element is a product of irreducibles by induction. One then develops enough properties of GCD's (i.e. that they exist and can be written as a linear combination of the elements) to prove that irreducibles are prime. These arguments carry over to the following.

Theorem

- ► In a Euclidean domain, all irreducible elements are prime.
- ▶ In a PID, all irreducible elements are prime.

Noetherian Rings

Definition

A ring is Noetherian if it has no strictly ascending sequence of ideals. This is equivalent to the statement that every ideal is finitely generated.

Since $a \mid b$ if and only if $\langle b \rangle \subseteq \langle a \rangle$, the strict divisibility relation is well-founded in any Noetherian integral domain.

Corollary

Let A be a Noetherian integral domain. If every irreducible element is prime, then A is a UFD.

Corollary Euclidean domains and PIDs are UFDs.

Structure of $\mathbb{Z}[\sqrt{q}]$

Theorem $\mathbb{Z}[i]$ is a UFD and $U(\mathbb{Z}[i]) = \{1, -1, i, -i\}.$

Theorem Let $q \in \mathbb{Z}$ be prime.

- If q < 0, then $U(\mathbb{Z}[\sqrt{q}]) = \{1, -1\}$.
- If q > 0, then $U(\mathbb{Z}[\sqrt{q}])$ is infinite.

Theorem

 $\mathbb{Z}[\sqrt{-2}]$ is a UFD, but $\mathbb{Z}[\sqrt{q}]$ is not a UFD whenever q<-2 is prime.

The situation for q > 0 is much more complicated.

Primes in $\mathbb{Z}[i]$

Theorem

Let $p \in \mathbb{Z}$ be an odd prime. The following are equivalent:

- p is not prime in $\mathbb{Z}[i]$.
- ▶ −1 is a square modulo p.
- ▶ $p \equiv 1 \pmod{4}$.

Furthermore, these are all equivalent to p being a sum of two squares in \mathbb{Z} .

For example,

Primes in $\mathbb{Z}[\sqrt{q}]$

Theorem

Let $q \in \mathbb{Z}$ be prime. Let $p \in \mathbb{Z}$ be an odd prime with $p \neq q$. The following are equivalent:

- p is not prime in $\mathbb{Z}[\sqrt{q}]$.
- q is a square modulo p.

In particular, by introducing a simple factorization for q, we may do the following:

- Lose the property of being a UFD.
- Destroy other primes.
- Introduce new units.

Primes in Computable UFDs

Let p_i be the i^{th} prime in \mathbb{N} .

Theorem (Dzhafarov, Mileti)

Let Q be a Π_2^0 set. There exists a computable UFD A such that:

- $\triangleright \mathbb{Z}$ is a subring of A.
- p_i is prime in A if and only if $i \in Q$.

Corollary

There exists a computable UFD A such that the set of primes is Π_2^0 -complete in every computable presentation of A (even uniformly in an index for the presentation).

Bad Presentations

Many constructions in computable algebra build a "bad" computable copy of a "nice" ring where the objects one is considering are complicated.

Theorem (Friedman, Simpson, Smith)

- ► There is a computable local ring such that the unique maximal ideal M satisfies M ≥_T 0'.
- There is a computable ring such that P has PA-degree for every prime ideal P.

These constructions start in $\mathbb{Q}[x_1, x_2, x_3, ...]$ and use the algebraically independent elements to do the coding. Infinitely many x_i do some coding, and infinitely many do not.

We want to turn primes on and off based on a Π_2^0 occurrence. So if *i* acts infinitely often, we want p_i to be prime in the end. If *i* acts finitely often, we want it not to be prime.

To work for *i*, we assume finite action, and introduce a factorization $p_i = xy$ for new elements *x* and *y*. If *i* acts at a later stage, we want to destroy this factorization. To do this, we make *y* a unit.

We then introduce another factorization $p_i = x'y'$ for new x' and y', and continue, destroying it if *i* acts again.

Ring Theoretic Operations

In the above sketch, we start with $\mathbb{Z},$ and repeatedly expand it through the following two operations:

- Localization: This process embeds an integral domain into a larger one making some prescribed elements units.
- Introduce a Factorization: This consists of adjoining elements x and y and then introducing a relation xy p_i, i.e. taking a quotient.

Ideally, we hope that these operations preserve nice algebraic properties of the ring, and do not disturb individual elements in significant ways.

Preserving Structure

Questions:

- Do these operations preserve important algebraic structure?
- Does introducing a new factorization for p_i destroy other primes? Does it introduce new units?
- Does making y a unit destroy other primes? Return the corresponding p_i to being prime (how do we know there aren't other factorizations)? Turn distinct primes into associates?
- What happens in the limit?

Adjoining an Element: Gauss and Hilbert

```
Theorem (Gauss)
If A is a UFD, then A[x] is a UFD.
```

Theorem (Hilbert Basis Theorem) If A is Noetherian, then A[x] is Noetherian.

Corollary If A is a Noetherian UFD, then A[x] is a Noetherian UFD, as is $A[x, y], A[x, y, z], \ldots$ Recall that products of units are units, and divisors of units are units.

In $\mathbb{Z}[\sqrt{-14}]$, we have

$$3 \cdot 3 \cdot 3 \cdot 3 = (5 + 2\sqrt{-14})(5 - 2\sqrt{-14})$$

Each factor is irreducible, but none of the irreducibles are associates. If we turn 3 into a unit, then we automatically turn both $5 + 2\sqrt{-14}$ and $5 - 2\sqrt{-14}$ into units.

Localization

Let A be an integral domain and let S be a multiplicatively closed subset of A. There is an integral domain $S^{-1}A$, called the localization of A at S, with the following properties:

- A embeds into $S^{-1}A$ in such a way that every element of S is a unit in $S^{-1}A$.
- $S^{-1}A$ is the smallest integral domain with this property.

One can construct $S^{-1}A$ as the set of pairs (a, s) modulo the equivalence relation $(a, s) \sim (b, t)$ if ta = sb. Addition and multiplication behave as for fractions.

Localization Preserves Structure

Proposition A localization of a UFD is a UFD.

Proposition A localization of a Noetherian ring is Noetherian.

Corollary A localization of a Noetherian UFD is a Noetherian UFD.

Turning a Prime into a Unit

Let A be a UFD and let $q \in A$ be prime. Let $S = \{1, q, q^2, ...\}$, and consider the integral domain $B = S^{-1}A$.

Proposition

- If A is a computable and {a ∈ A : q | a} is computable, then we can build B as a computable extension of A.
- If p ∈ A is prime and is not an associate of q in A, then p is prime in B.
- If p₁, p₂ ∈ A are primes that are not associates in A, then they are not associates in B.
- If p ∈ A is prime and {a ∈ A : p | a} is computable, then {b ∈ S⁻¹A : p | b} is computable (uniformly from an index).

Quotients

Unfortunately, quotients destroy many algebraic properties. For example:

$$\mathbb{Z}[x]/\langle x^2+5\rangle\cong\mathbb{Z}[\sqrt{-5}]$$

is a quotient of a UFD, but is not itself a UFD. Furthermore, in this quotient, 2 remains irreducible but we have destroyed the property of primeness.

We've also seen that quotients can introduce many unexpected units, as in:

$$\mathbb{Z}[x]/\langle x^2-2\rangle\cong\mathbb{Z}[\sqrt{2}]$$

Introducing a Factorization

Let A be a Noetherian UFD and let $q \in A$ be prime. Let

 $B = A[x, y]/\langle xy - q \rangle$

Elements of B can be represented uniquely in the form

$$a_m x^m + \cdots + a_1 x + c + b_1 y + \cdots + b_n y^n$$

where the coefficients are from A and we multiply using the relation xy = q.

Introducing a Factorization

Proposition

- If A is a computable, then we can build B as a computable extension of A.
- B is an integral domain.
- If σ, τ ∈ B and στ ∈ A, then either both are in A, one is 0, or one is axⁿ while the other is byⁿ.

Corollary

- $\blacktriangleright U(B) = U(A).$
- If p₁, p₂ ∈ A are primes that are not associates in A, then they are not associates in B.
- x and y are not associates in B.
- Neither x nor y is an associate of any element in A.

Introducing a Factorization

Theorem

- If p ∈ A is prime and is not an associate of q in A, then p is prime in B.
- x and y are primes in B.

Proposition

- If $p \in A$ is prime and $\{a \in A : p \mid a\}$ is computable, then $\{\sigma \in B : p \mid \sigma\}$ is computable (uniformly from an index).
- If {a ∈ A : q | a} is computable, then the sets {b ∈ B : x | σ} and {b ∈ B : y | σ} are computable (again uniformly).

Proving UFD

Recall that $B = A[x, y]/\langle xy - q \rangle$. Working with *B* directly is difficult, but we can understand it more easily if we invert an element. Let *S* be the multiplicative set generated by *x*. We prove that $S^{-1}B$ is a UFD.

Theorem (Nagata's Criterion)

Let B be a Noetherian integral domain. Let Γ be a set of prime elements of B, and let S be the multiplicative set generated by Γ . If $S^{-1}B$ is a UFD, then so is B.

Proving UFD

Theorem B is a Noetherian UFD.

Proof Sketch.

Elements of *B* look like *A*-linear combinations of powers of *x* and powers of *y*. Localization commutes with quotients, so inverting *x* is the same as inverting *x* in A[x, y] and then taking the quotient. Now once we invert *x* we have $\langle xy - q \rangle = \langle y - \frac{q}{x} \rangle$, so essentially we are just inverting *x* in A[x]. But this is a localization of a UFD, hence a UFD.

Construction

To work for *i*, we assume finite action, and introduce a new factorization $p_i = xy$ for new elements *x* and *y*. If *i* acts at a later stage, we want to destroy this factorization. To do this, we make *y* a unit, thus making p_i and *x* associates. Since *x* will remain prime in the extension, p_i will return to being prime. We then introduce a new factorization for p_i .

In this way, we build a sequence of Noetherian UFDs

$$\mathbb{Z} = A_0 \subseteq A_1 \subseteq A_2 \subseteq \dots$$

where we introduce factorizations and destroy them in response to our Π_2^0 set. Let $A_{\infty} = \bigcup_{n \in \omega} A_n$.

The Limit

Proposition

Let $a \in A_{\infty}$, so $a \in A_m$ for some m. The following are equivalent:

1. $a \in U(A_{\infty})$. 2. $a \in U(A_n)$ for all sufficiently large $n \ge m$. 3. $a \in U(A_n)$ for some $n \ge m$.

Proposition

Let $p \in A_{\infty}$, so $p \in A_m$ for some m. If there are infinitely many $n \ge m$ such that p is prime in A_n , then p is prime in A_{∞} .

Corollary

 p_i is prime in A_∞ if and only if $i \in Q$.

The Limit

Theorem A_{∞} is a UFD.

In general, the union of an ω -sequence of UFDs is not a UFD. However, the preservation of primes together with the previous corollary allow this to go through.