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Units and Associates

Definition
An integral domain is a commutative ring with identity such that
whenever ab = 0, either a = 0 or b = 0.

Definition
Let A be an integral domain. An element u ∈ A is called a unit if
there exists w ∈ A with uw = 1. We let U(A) be the set of units
of A.

Definition
Let A be an integral domain and let a, b ∈ A. We say that a and b
are associates if there exists u ∈ U(A) with au = b. Equivalently,
both a | b and b | a.



Units

Proposition

Let A be an integral domain.

I U(A) is a multiplicative group.

I If a ∈ U(A) and b | a, then b ∈ U(A).

For example, consider the integral domain Z[
√

2]. Notice that
1 +
√

2 ∈ U(Z[
√

2]) because (1 +
√

2)(−1 +
√

2) = 1. Taking
powers of 1 +

√
2, the following are units:

I 3 + 2
√

2

I 7 + 5
√

2

I 17 + 12
√

2

In fact, U(Z[
√

2]) = {±(1 +
√

2)n : n ∈ Z}.



Primes and Irreducibles

Definition
Let A be an integral domain. Let p ∈ A\U(A) be nonzero.

I p is irreducible if whenever p = ab, either a is a unit or b is a
unit.

I p is prime if whenever p | ab, either p | a or p | b.

In an integral domain, primes are always irreducible but the
converse need not hold. In Z[

√
−5] we have

2 · 3 = (1 +
√
−5)(1−

√
−5)

All factors are irreducible but none are prime.



UFDs

Definition
A unique factorization domain or UFD is an integral domain A
such that:

I Every (nonzero nonunit) element of A can be written as a
product of irreducibles.

I Any representation of an element as a product of irreducibles
is unique up to order and associates.

In Z[i ], we have

(2 + i)(2− i) = 5 = (1 + 2i)(1− 2i)

but 2 + i = i · (1− 2i) and 2− i = (−i) · (1 + 2i).



UFDs

Proposition

In a UFD, every irreducible is prime.

Proposition

Let A be an integral domain. The following are equivalent.

I A is a UFD.

I Every element is a product of irreducibles, and every
irreducible is prime.

I The strict divisibility relation is well-founded, and every
irreducible is prime.



Examples of UFDs

Theorem
Z is a UFD.

To prove this, one shows that every element is a product of
irreducibles by induction. One then develops enough properties of
GCD’s (i.e. that they exist and can be written as a linear
combination of the elements) to prove that irreducibles are prime.
These arguments carry over to the following.

Theorem

I In a Euclidean domain, all irreducible elements are prime.

I In a PID, all irreducible elements are prime.



Noetherian Rings

Definition
A ring is Noetherian if it has no strictly ascending sequence of
ideals. This is equivalent to the statement that every ideal is
finitely generated.

Since a | b if and only if 〈b〉 ⊆ 〈a〉, the strict divisibility relation is
well-founded in any Noetherian integral domain.

Corollary

Let A be a Noetherian integral domain. If every irreducible element
is prime, then A is a UFD.

Corollary

Euclidean domains and PIDs are UFDs.



Structure of Z[
√

q]

Theorem
Z[i ] is a UFD and U(Z[i ]) = {1,−1, i ,−i}.

Theorem
Let q ∈ Z be prime.

I If q < 0, then U(Z[
√

q]) = {1,−1}.
I If q > 0, then U(Z[

√
q]) is infinite.

Theorem
Z[
√
−2] is a UFD, but Z[

√
q] is not a UFD whenever q < −2 is

prime.

The situation for q > 0 is much more complicated.



Primes in Z[i ]

Theorem
Let p ∈ Z be an odd prime. The following are equivalent:

I p is not prime in Z[i ].

I −1 is a square modulo p.

I p ≡ 1 (mod 4).

Furthermore, these are all equivalent to p being a sum of two
squares in Z.

For example,

I 13 | (5 + i)(5− i) or 13 = (3 + 2i)(3− 2i).

I 52 ≡ −1 (mod 13).

I 13 ≡ 1 (mod 4).

and 13 = 32 + 22.



Primes in Z[
√

q]

Theorem
Let q ∈ Z be prime. Let p ∈ Z be an odd prime with p 6= q. The
following are equivalent:

I p is not prime in Z[
√

q].

I q is a square modulo p.

In particular, by introducing a simple factorization for q, we may
do the following:

I Lose the property of being a UFD.

I Destroy other primes.

I Introduce new units.



Primes in Computable UFDs

Let pi be the i th prime in N.

Theorem (Dzhafarov, Mileti)

Let Q be a Π0
2 set. There exists a computable UFD A such that:

I Z is a subring of A.

I pi is prime in A if and only if i ∈ Q.

Corollary

There exists a computable UFD A such that the set of primes is
Π0

2-complete in every computable presentation of A (even
uniformly in an index for the presentation).



Bad Presentations

Many constructions in computable algebra build a “bad”
computable copy of a “nice” ring where the objects one is
considering are complicated.

Theorem (Friedman, Simpson, Smith)

I There is a computable local ring such that the unique
maximal ideal M satisfies M ≥T 0′.

I There is a computable ring such that P has PA-degree for
every prime ideal P.

These constructions start in Q[x1, x2, x3, . . . ] and use the
algebraically independent elements to do the coding. Infinitely
many xi do some coding, and infinitely many do not.



Idea

We want to turn primes on and off based on a Π0
2 occurrence. So

if i acts infinitely often, we want pi to be prime in the end. If i
acts finitely often, we want it not to be prime.

To work for i , we assume finite action, and introduce a
factorization pi = xy for new elements x and y . If i acts at a later
stage, we want to destroy this factorization. To do this, we make y
a unit.

We then introduce another factorization pi = x ′y ′ for new x ′ and
y ′, and continue, destroying it if i acts again.



Ring Theoretic Operations

In the above sketch, we start with Z, and repeatedly expand it
through the following two operations:

I Localization: This process embeds an integral domain into a
larger one making some prescribed elements units.

I Introduce a Factorization: This consists of adjoining elements
x and y and then introducing a relation xy − pi , i.e. taking a
quotient.

Ideally, we hope that these operations preserve nice algebraic
properties of the ring, and do not disturb individual elements in
significant ways.



Preserving Structure

Questions:

I Do these operations preserve important algebraic structure?

I Does introducing a new factorization for pi destroy other
primes? Does it introduce new units?

I Does making y a unit destroy other primes? Return the
corresponding pi to being prime (how do we know there aren’t
other factorizations)? Turn distinct primes into associates?

I What happens in the limit?



Adjoining an Element: Gauss and Hilbert

Theorem (Gauss)

If A is a UFD, then A[x ] is a UFD.

Theorem (Hilbert Basis Theorem)

If A is Noetherian, then A[x ] is Noetherian.

Corollary

If A is a Noetherian UFD, then A[x ] is a Noetherian UFD, as is
A[x , y ], A[x , y , z ], . . . .



Making Something a Unit

Recall that products of units are units, and divisors of units are
units.

In Z[
√
−14], we have

3 · 3 · 3 · 3 = (5 + 2
√
−14)(5− 2

√
−14)

Each factor is irreducible, but none of the irreducibles are
associates. If we turn 3 into a unit, then we automatically turn
both 5 + 2

√
−14 and 5− 2

√
−14 into units.



Localization

Let A be an integral domain and let S be a multiplicatively closed
subset of A. There is an integral domain S−1A, called the
localization of A at S , with the following properties:

I A embeds into S−1A in such a way that every element of S is
a unit in S−1A.

I S−1A is the smallest integral domain with this property.

One can construct S−1A as the set of pairs (a, s) modulo the
equivalence relation (a, s) ∼ (b, t) if ta = sb. Addition and
multiplication behave as for fractions.



Localization Preserves Structure

Proposition

A localization of a UFD is a UFD.

Proposition

A localization of a Noetherian ring is Noetherian.

Corollary

A localization of a Noetherian UFD is a Noetherian UFD.



Turning a Prime into a Unit

Let A be a UFD and let q ∈ A be prime. Let S = {1, q, q2, . . . },
and consider the integral domain B = S−1A.

Proposition

I If A is a computable and {a ∈ A : q | a} is computable, then
we can build B as a computable extension of A.

I If p ∈ A is prime and is not an associate of q in A, then p is
prime in B.

I If p1, p2 ∈ A are primes that are not associates in A, then they
are not associates in B.

I If p ∈ A is prime and {a ∈ A : p | a} is computable, then
{b ∈ S−1A : p | b} is computable (uniformly from an index).



Quotients

Unfortunately, quotients destroy many algebraic properties. For
example:

Z[x ]/〈x2 + 5〉 ∼= Z[
√
−5]

is a quotient of a UFD, but is not itself a UFD. Furthermore, in
this quotient, 2 remains irreducible but we have destroyed the
property of primeness.

We’ve also seen that quotients can introduce many unexpected
units, as in:

Z[x ]/〈x2 − 2〉 ∼= Z[
√

2]



Introducing a Factorization

Let A be a Noetherian UFD and let q ∈ A be prime. Let

B = A[x , y ]/〈xy − q〉

Elements of B can be represented uniquely in the form

amxm + · · ·+ a1x + c + b1y + · · ·+ bnyn

where the coefficients are from A and we multiply using the
relation xy = q.



Introducing a Factorization

Proposition

I If A is a computable, then we can build B as a computable
extension of A.

I B is an integral domain.

I If σ, τ ∈ B and στ ∈ A, then either both are in A, one is 0, or
one is axn while the other is byn.

Corollary

I U(B) = U(A).

I If p1, p2 ∈ A are primes that are not associates in A, then they
are not associates in B.

I x and y are not associates in B.

I Neither x nor y is an associate of any element in A.



Introducing a Factorization

Theorem

I If p ∈ A is prime and is not an associate of q in A, then p is
prime in B.

I x and y are primes in B.

Proposition

I If p ∈ A is prime and {a ∈ A : p | a} is computable, then
{σ ∈ B : p | σ} is computable (uniformly from an index).

I If {a ∈ A : q | a} is computable, then the sets {b ∈ B : x | σ}
and {b ∈ B : y | σ} are computable (again uniformly).



Proving UFD

Recall that B = A[x , y ]/〈xy − q〉. Working with B directly is
difficult, but we can understand it more easily if we invert an
element. Let S be the multiplicative set generated by x . We prove
that S−1B is a UFD.

Theorem (Nagata’s Criterion)

Let B be a Noetherian integral domain. Let Γ be a set of prime
elements of B, and let S be the multiplicative set generated by Γ.
If S−1B is a UFD, then so is B.



Proving UFD

Theorem
B is a Noetherian UFD.

Proof Sketch.
Elements of B look like A-linear combinations of powers of x and
powers of y . Localization commutes with quotients, so inverting x
is the same as inverting x in A[x , y ] and then taking the quotient.
Now once we invert x we have 〈xy − q〉 = 〈y − q

x 〉, so essentially
we are just inverting x in A[x ]. But this is a localization of a UFD,
hence a UFD.



Construction

To work for i , we assume finite action, and introduce a new
factorization pi = xy for new elements x and y . If i acts at a later
stage, we want to destroy this factorization. To do this, we make y
a unit, thus making pi and x associates. Since x will remain prime
in the extension, pi will return to being prime. We then introduce
a new factorization for pi .

In this way, we build a sequence of Noetherian UFDs

Z = A0 ⊆ A1 ⊆ A2 ⊆ . . .

where we introduce factorizations and destroy them in response to
our Π0

2 set. Let A∞ =
⋃

n∈ω An.



The Limit

Proposition

Let a ∈ A∞, so a ∈ Am for some m. The following are equivalent:

1. a ∈ U(A∞).

2. a ∈ U(An) for all sufficiently large n ≥ m.

3. a ∈ U(An) for some n ≥ m.

Proposition

Let p ∈ A∞, so p ∈ Am for some m. If there are infinitely many
n ≥ m such that p is prime in An, then p is prime in A∞.

Corollary

pi is prime in A∞ if and only if i ∈ Q.



The Limit

Theorem
A∞ is a UFD.

In general, the union of an ω-sequence of UFDs is not a UFD.
However, the preservation of primes together with the previous
corollary allow this to go through.


