Primes in Computable UFDs

Joe Mileti
Grinnell College

April 10, 2013

Units and Associates

Definition

An integral domain is a commutative ring with identity such that whenever $a b=0$, either $a=0$ or $b=0$.

Definition

Let A be an integral domain. An element $u \in A$ is called a unit if there exists $w \in A$ with $u w=1$. We let $U(A)$ be the set of units of A.

Definition

Let A be an integral domain and let $a, b \in A$. We say that a and b are associates if there exists $u \in U(A)$ with $a u=b$. Equivalently, both $a \mid b$ and $b \mid a$.

Units

Proposition

Let A be an integral domain.

- $U(A)$ is a multiplicative group.
- If $a \in U(A)$ and $b \mid a$, then $b \in U(A)$.

For example, consider the integral domain $\mathbb{Z}[\sqrt{2}]$. Notice that $1+\sqrt{2} \in U(\mathbb{Z}[\sqrt{2}])$ because $(1+\sqrt{2})(-1+\sqrt{2})=1$. Taking powers of $1+\sqrt{2}$, the following are units:

- $3+2 \sqrt{2}$
- $7+5 \sqrt{2}$
- $17+12 \sqrt{2}$

In fact, $U(\mathbb{Z}[\sqrt{2}])=\left\{ \pm(1+\sqrt{2})^{n}: n \in \mathbb{Z}\right\}$.

Primes and Irreducibles

Definition

Let A be an integral domain. Let $p \in A \backslash U(A)$ be nonzero.

- p is irreducible if whenever $p=a b$, either a is a unit or b is a unit.
- p is prime if whenever $p \mid a b$, either $p \mid a$ or $p \mid b$.

In an integral domain, primes are always irreducible but the converse need not hold. In $\mathbb{Z}[\sqrt{-5}]$ we have

$$
2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

All factors are irreducible but none are prime.

UFDs

Definition

A unique factorization domain or UFD is an integral domain A such that:

- Every (nonzero nonunit) element of A can be written as a product of irreducibles.
- Any representation of an element as a product of irreducibles is unique up to order and associates.

In $\mathbb{Z}[i]$, we have

$$
(2+i)(2-i)=5=(1+2 i)(1-2 i)
$$

but $2+i=i \cdot(1-2 i)$ and $2-i=(-i) \cdot(1+2 i)$.

UFDs

Proposition

In a UFD, every irreducible is prime.

Proposition
Let A be an integral domain. The following are equivalent.

- A is a UFD.
- Every element is a product of irreducibles, and every irreducible is prime.
- The strict divisibility relation is well-founded, and every irreducible is prime.

Examples of UFDs

Theorem

\mathbb{Z} is a UFD.

To prove this, one shows that every element is a product of irreducibles by induction. One then develops enough properties of GCD's (i.e. that they exist and can be written as a linear combination of the elements) to prove that irreducibles are prime. These arguments carry over to the following.

Theorem

- In a Euclidean domain, all irreducible elements are prime.
- In a PID, all irreducible elements are prime.

Noetherian Rings

Definition

A ring is Noetherian if it has no strictly ascending sequence of ideals. This is equivalent to the statement that every ideal is finitely generated.

Since $a \mid b$ if and only if $\langle b\rangle \subseteq\langle a\rangle$, the strict divisibility relation is well-founded in any Noetherian integral domain.

Corollary

Let A be a Noetherian integral domain. If every irreducible element is prime, then A is a UFD.

Corollary

Euclidean domains and PIDs are UFDs.

Structure of $\mathbb{Z}[\sqrt{q}]$

Theorem
$\mathbb{Z}[i]$ is a $U F D$ and $U(\mathbb{Z}[i])=\{1,-1, i,-i\}$.
Theorem
Let $q \in \mathbb{Z}$ be prime.

- If $q<0$, then $U(\mathbb{Z}[\sqrt{q}])=\{1,-1\}$.
- If $q>0$, then $U(\mathbb{Z}[\sqrt{ } \bar{q}])$ is infinite.

Theorem
$\mathbb{Z}[\sqrt{-2}]$ is a UFD, but $\mathbb{Z}[\sqrt{q}]$ is not a UFD whenever $q<-2$ is prime.

The situation for $q>0$ is much more complicated.

Primes in $\mathbb{Z}[i]$

Theorem

Let $p \in \mathbb{Z}$ be an odd prime. The following are equivalent:

- p is not prime in $\mathbb{Z}[i]$.
- -1 is a square modulo p.
- $p \equiv 1(\bmod 4)$.

Furthermore, these are all equivalent to p being a sum of two squares in \mathbb{Z}.

For example,

- $13 \mid(5+i)(5-i)$ or $13=(3+2 i)(3-2 i)$.
- $5^{2} \equiv-1(\bmod 13)$.
- $13 \equiv 1(\bmod 4)$.
and $13=3^{2}+2^{2}$.

Primes in $\mathbb{Z}[\sqrt{q}]$

Theorem
Let $q \in \mathbb{Z}$ be prime. Let $p \in \mathbb{Z}$ be an odd prime with $p \neq q$. The following are equivalent:

- p is not prime in $\mathbb{Z}[\sqrt{q}]$.
- q is a square modulo p.

In particular, by introducing a simple factorization for q, we may do the following:

- Lose the property of being a UFD.
- Destroy other primes.
- Introduce new units.

Primes in Computable UFDs

Let p_{i} be the $i^{t h}$ prime in \mathbb{N}.

Theorem (Dzhafarov, Mileti)
Let Q be a Π_{2}^{0} set. There exists a computable UFD A such that:

- \mathbb{Z} is a subring of A.
- p_{i} is prime in A if and only if $i \in Q$.

Corollary

There exists a computable UFD A such that the set of primes is Π_{2}^{0}-complete in every computable presentation of A (even uniformly in an index for the presentation).

Bad Presentations

Many constructions in computable algebra build a "bad" computable copy of a "nice" ring where the objects one is considering are complicated.

Theorem (Friedman, Simpson, Smith)

- There is a computable local ring such that the unique maximal ideal M satisfies $M \geq T 0^{\prime}$.
- There is a computable ring such that P has PA-degree for every prime ideal P.

These constructions start in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ and use the algebraically independent elements to do the coding. Infinitely many x_{i} do some coding, and infinitely many do not.

Idea

We want to turn primes on and off based on a Π_{2}^{0} occurrence. So if i acts infinitely often, we want p_{i} to be prime in the end. If i acts finitely often, we want it not to be prime.

To work for i, we assume finite action, and introduce a factorization $p_{i}=x y$ for new elements x and y. If i acts at a later stage, we want to destroy this factorization. To do this, we make y a unit.

We then introduce another factorization $p_{i}=x^{\prime} y^{\prime}$ for new x^{\prime} and y^{\prime}, and continue, destroying it if i acts again.

Ring Theoretic Operations

In the above sketch, we start with \mathbb{Z}, and repeatedly expand it through the following two operations:

- Localization: This process embeds an integral domain into a larger one making some prescribed elements units.
- Introduce a Factorization: This consists of adjoining elements x and y and then introducing a relation $x y-p_{i}$, i.e. taking a quotient.

Ideally, we hope that these operations preserve nice algebraic properties of the ring, and do not disturb individual elements in significant ways.

Preserving Structure

Questions:

- Do these operations preserve important algebraic structure?
- Does introducing a new factorization for p_{i} destroy other primes? Does it introduce new units?
- Does making y a unit destroy other primes? Return the corresponding p_{i} to being prime (how do we know there aren't other factorizations)? Turn distinct primes into associates?
- What happens in the limit?

Adjoining an Element: Gauss and Hilbert

Theorem (Gauss)
If A is a UFD, then $A[x]$ is a UFD.

Theorem (Hilbert Basis Theorem)
If A is Noetherian, then $A[x]$ is Noetherian.

Corollary
If A is a Noetherian UFD, then $A[x]$ is a Noetherian UFD, as is $A[x, y], A[x, y, z], \ldots$.

Making Something a Unit

Recall that products of units are units, and divisors of units are units.

In $\mathbb{Z}[\sqrt{-14}]$, we have

$$
3 \cdot 3 \cdot 3 \cdot 3=(5+2 \sqrt{-14})(5-2 \sqrt{-14})
$$

Each factor is irreducible, but none of the irreducibles are associates. If we turn 3 into a unit, then we automatically turn both $5+2 \sqrt{-14}$ and $5-2 \sqrt{-14}$ into units.

Localization

Let A be an integral domain and let S be a multiplicatively closed subset of A. There is an integral domain $S^{-1} A$, called the localization of A at S, with the following properties:

- A embeds into $S^{-1} A$ in such a way that every element of S is a unit in $S^{-1} A$.
- $S^{-1} A$ is the smallest integral domain with this property.

One can construct $S^{-1} A$ as the set of pairs (a, s) modulo the equivalence relation $(a, s) \sim(b, t)$ if $t a=s b$. Addition and multiplication behave as for fractions.

Localization Preserves Structure

Proposition
A localization of a UFD is a UFD.

Proposition
A localization of a Noetherian ring is Noetherian.

Corollary
A localization of a Noetherian UFD is a Noetherian UFD.

Turning a Prime into a Unit

Let A be a UFD and let $q \in A$ be prime. Let $S=\left\{1, q, q^{2}, \ldots\right\}$, and consider the integral domain $B=S^{-1} A$.

Proposition

- If A is a computable and $\{a \in A: q \mid a\}$ is computable, then we can build B as a computable extension of A.
- If $p \in A$ is prime and is not an associate of q in A, then p is prime in B.
- If $p_{1}, p_{2} \in A$ are primes that are not associates in A, then they are not associates in B.
- If $p \in A$ is prime and $\{a \in A: p \mid a\}$ is computable, then $\left\{b \in S^{-1} A: p \mid b\right\}$ is computable (uniformly from an index).

Quotients

Unfortunately, quotients destroy many algebraic properties. For example:

$$
\mathbb{Z}[x] /\left\langle x^{2}+5\right\rangle \cong \mathbb{Z}[\sqrt{-5}]
$$

is a quotient of a UFD, but is not itself a UFD. Furthermore, in this quotient, 2 remains irreducible but we have destroyed the property of primeness.

We've also seen that quotients can introduce many unexpected units, as in:

$$
\mathbb{Z}[x] /\left\langle x^{2}-2\right\rangle \cong \mathbb{Z}[\sqrt{2}]
$$

Introducing a Factorization

Let A be a Noetherian UFD and let $q \in A$ be prime. Let

$$
B=A[x, y] /\langle x y-q\rangle
$$

Elements of B can be represented uniquely in the form

$$
a_{m} x^{m}+\cdots+a_{1} x+c+b_{1} y+\cdots+b_{n} y^{n}
$$

where the coefficients are from A and we multiply using the relation $x y=q$.

Introducing a Factorization

Proposition

- If A is a computable, then we can build B as a computable extension of A.
- B is an integral domain.
- If $\sigma, \tau \in B$ and $\sigma \tau \in A$, then either both are in A, one is 0 , or one is $a x^{n}$ while the other is by ${ }^{n}$.

Corollary

- $U(B)=U(A)$.
- If $p_{1}, p_{2} \in A$ are primes that are not associates in A, then they are not associates in B.
- x and y are not associates in B.
- Neither x nor y is an associate of any element in A.

Introducing a Factorization

Theorem

- If $p \in A$ is prime and is not an associate of q in A, then p is prime in B.
- x and y are primes in B.

Proposition

- If $p \in A$ is prime and $\{a \in A: p \mid a\}$ is computable, then $\{\sigma \in B: p \mid \sigma\}$ is computable (uniformly from an index).
- If $\{a \in A: q \mid a\}$ is computable, then the sets $\{b \in B: x \mid \sigma\}$ and $\{b \in B: y \mid \sigma\}$ are computable (again uniformly).

Proving UFD

Recall that $B=A[x, y] /\langle x y-q\rangle$. Working with B directly is difficult, but we can understand it more easily if we invert an element. Let S be the multiplicative set generated by x. We prove that $S^{-1} B$ is a UFD.

Theorem (Nagata's Criterion)
Let B be a Noetherian integral domain. Let Γ be a set of prime elements of B, and let S be the multiplicative set generated by Γ. If $S^{-1} B$ is a UFD, then so is B.

Proving UFD

Theorem
B is a Noetherian UFD.

Proof Sketch.
Elements of B look like A-linear combinations of powers of x and powers of y. Localization commutes with quotients, so inverting x is the same as inverting x in $A[x, y]$ and then taking the quotient. Now once we invert x we have $\langle x y-q\rangle=\left\langle y-\frac{q}{x}\right\rangle$, so essentially we are just inverting x in $A[x]$. But this is a localization of a UFD, hence a UFD.

Construction

To work for i, we assume finite action, and introduce a new factorization $p_{i}=x y$ for new elements x and y. If i acts at a later stage, we want to destroy this factorization. To do this, we make y a unit, thus making p_{i} and x associates. Since x will remain prime in the extension, p_{i} will return to being prime. We then introduce a new factorization for p_{i}.

In this way, we build a sequence of Noetherian UFDs

$$
\mathbb{Z}=A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \ldots
$$

where we introduce factorizations and destroy them in response to our Π_{2}^{0} set. Let $A_{\infty}=\bigcup_{n \in \omega} A_{n}$.

The Limit

Proposition

Let $a \in A_{\infty}$, so $a \in A_{m}$ for some m. The following are equivalent:

1. $a \in U\left(A_{\infty}\right)$.
2. $a \in U\left(A_{n}\right)$ for all sufficiently large $n \geq m$.
3. $a \in U\left(A_{n}\right)$ for some $n \geq m$.

Proposition

Let $p \in A_{\infty}$, so $p \in A_{m}$ for some m. If there are infinitely many $n \geq m$ such that p is prime in A_{n}, then p is prime in A_{∞}.

Corollary
p_{i} is prime in A_{∞} if and only if $i \in Q$.

The Limit

Theorem
A_{∞} is a UFD.

In general, the union of an ω-sequence of UFDs is not a UFD. However, the preservation of primes together with the previous corollary allow this to go through.

