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Lebesgue density

Notation

For o € 2<% let p,(C) = M.

p(lo])

(Here, p is the standard Lebesgue measure on Cantor space.) So
1o (C) is the fraction of [o] occupied by C.

Definition
Let C' C 2¢ be measurable. The lower density' of C at X is

p(C | X) = liminf pix 1 (C).

Lebesgue Density Theorem
If C' C 2% is measurable, then p(C | X) =1 for almost every X € C.

1We use dyadic density throughout, not density on the real interval. This
simplifies the proofs considerably, but does not change the results.



Lebesgue density for I1Y classes

We want to understand the density points of I classes.

Definition
» X € 2% is a density-one point if p(C' | X) = 1 for every II{ class
C containing X.
» X € 2% is a positive density point if p(C' | X) > 0 for every I1{
class C' containing X.

Very basic observations:
1. Density-one = positive density.
2. Almost every X € 2% is a density-one point.

3. Every 1-generic is a density-one point, so it is not a randomness
notion.

We avoid 3 by restricting our attention to Martin-Lof random X.

N



What Noam told us

Let X be Martin-Lo6f random. The following implications hold:

X not superhigh

/
Xt W
\

X is Oberwolfach random <—>

!

Every c.e. martingale X is a density-
- > ;
converges on X one point

X does not compute
every K-trivial

X Fr 0

(X is difference random)



What I am planning to tell you

Let X be Martin-Lo6f random. The following implications hold:

X not superhigh

- ~

X Fyr W X is not (uniformly)

a.e. dominating
X } I hA/d <> X does not compute
is Oberwolfach random every K-trivial

T~

Every c.e. martingale 5 X is a density-

converges on X D — one point
X Fr W X is a positive

(X is difference random) density point



Bounding density drops

Lemma
Let C' C 2% be a closed set. Fix e € (0,1) and let

U= {X (E”i)) nx [k(C) < E}.

Then
1. w(UNC) <e, and

< 1=nO)

2. pU) < ——

Proof.
Let D be the minimal strings o such that u,(C) < e. Then D is
prefix-free and [D] = U.

For 1,

pUNC) =p((DINC) =" w(lo]NC) < Y ullo))e = p([D)e < e.

oceD ceD



Bounding density drops

For 2,

1= p(C) 2 (DI~ C) = p([o] . ©)

= ul o]nC) 2 3 ullo)) — ullo))e
= 3" ullo)) (1 — ) = (D) (1 — &) = p(U)(1 — &)

oeD

An application of 2:

Theorem (Bienvenu, Greenberg, Kucera, Nies, Turetsky)
If X € 2% is Oberwolfach random, then it is a density-one point.

Proof. ..



Difference randomness and positive density

Definition

» A difference test is a II{ class C' and an effective sequence
{Vi}new of 39 classes such that u(V,, NC) < 27"

> X € 2% ig difference random if for every difference test
C,{Vh}new, there is an n such that X ¢ V,, N C.

Theorem (Franklin, Ng)
X is difference random iff X is Martin-Lof random and X ;fT 0.

Proof. ..

Theorem (Bienvenu, Holzl, M., Nies)

X is difference random iff X is a ML-random positive density point.

Proof. ..



Aside: Cupping with incomplete random sets

Definition (Kucera 2004 )

A € 2% is weakly ML-cuppable if there is a Martin-Lof random
X #1 0 such that A® X >r 0. If one can choose X <r (', then A is
ML-cuppable.

Question (Kucera)

Can the K-trivial sets be characterized as either
1. not weakly ML-cuppable, or
2. <7 (" and not ML-cuppable?

Compare this to:

Theorem (Posner, Robinson)

For every A >7 () there is a 1-generic X such that A® X > (/. If
A <7 @, then also X <¢ @'.



Aside: Cupping with incomplete random sets

Question (Kucera 2004)

Can the K-trivial sets be characterized as either
1. not weakly ML-cuppable, or
2. <7 (" and not ML-cuppable?

Answer (Day, M.): Yes, both.

Theorem (Day, M.)

If A is not K-trivial, then it is weakly ML-cuppable. If A <7 (' is not
K-trivial, then it is ML-cuppable.

These are proved by straightforward constructions. It is the other
direction I want to focus on.

Theorem (Day, M.)
If A is K-trivial, then it is not weakly ML-cuppable.



We need a Lemma

Assume that A is K-trivial, X is ML-random, and C' C 2¢ is a T19[A]
class containing X. Then there is a II{ class D C C' containing X.

Proof.

Let F C 2<% be an A-c.e. set such that 2¥ \ C' = [F]. We may
assume that F is prefix-free, so by the optimality of K4, there is a ¢
such that K4(o) < |o| +cfor all ¢ € F. But A is low for K, so there
is a d such that K (o) < |o|+d for all 0 € F.

Let G ={o: K(0) < |o| 4+ d}. Note that

1. Gis c.e.,
2. GO F, and
3.3 a2l < o o)td < 27 < o,

Because X is Martm—Lof random and G is a Solovay test, there are
only finitely many o € G such that ¢ < X. No such o is in F, so we
may remove them from G while preserving 1-3. Let D = 2¢ < [G].
Note that D is a I class, D C C, X € D. O



Aside: Cupping with incomplete random sets

Theorem (Day, M.)
If A is K-trivial, then it is not weakly ML-cuppable.

Proof.
Let A be K-trivial, X Martin-Lof random, and A ® X >7 0. We will
show that X >¢ (/.

Because A is K-trivial it is low ((/ >7 A’), hence A X > A'. Tt is
also low for random, so X is Martin-Lof random relative to A.
Therefore, by the Bienvenu et al. result relativized to A, there is a
19[A] class C containing X such that p(C' | X) = 0.

By the lemma, there is a II{ class D C C' containing X. But then
p(D | X) =0, so by the Bienvenu et al. result, X >r (/. In other
words, X does not witness the weak ML-cuppability of A. O
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Where are we now?

Let X be Martin-Lo6f random. The following implications hold:

X not superhigh

- ~

X Fyr W X is not (uniformly)

a.e. dominating
X } I hA/d <> X does not compute
is Oberwolfach random every K-trivial

T~

Every c.e. martingale 5 X is a density-

converges on X D — one point
X Fr W X is a positive

(X is difference random) density point



Madison tests

Andrews, Cai, Diamondstone, Lempp and M. gave a test
characterization of Martin-Lo6f random density-one points.

Definition
The weight of U € 2<% is wt(U) = 3, 27171,

Notation: For o € 2<%, [g]"={r €2<¥ | o < 7}.

Definition
A Madison test is a finite weight AY set U C 2<% with a distinguished
sequence {Us }se,, of finite approximations such that

1. 7€UsNUsp1 = (o <7)0 € Usy1 N\ Us, and

2. wt(Us N [o]%) > 271l — 5 e U,.
X € 2% passes a Madison test U if at most finitely many prefixes of X
are in U.



Madison tests and density

Theorem (Andrews, et al.)

The following are equivalent for X € 2¢:
1. X is a Martin-Lof random density-one point,
2. X passes all Madison tests,

3. Every c.e. martingale converges on X.

Proof.

1 = 2: Suppose that X is ML-random but fails the Madison test U.
Uniformly in n, build a £¢ class S,, such that u(S,) < 27" wt(U) and
for each o € U we have u,(S,) > 27". To do this, associate every

7 € Us N\ Uy with a prefix o € Ugy1 \ Us. When o enters U1, it
inherits the part of S, that is owned by each associated 7. Then add
more to S, until p,(S,) > 27"

Because {5, }new is a Martin-Lof test, there is an n such that
X ¢85, SoC=2%~5, is all} class containing X and such that
p(ClX)<1-—2""



Madison tests and martingale convergence

2 = 3: Assume that X passes all Madison tests.
Claim: X is Martin-Lof random.

To see this, let {U,,} be a Martin-Lof test covering X. We may
assume that each U, is given in the form [D,], where D, is c.e. and
prefix-free. Let Vo = Dy. If 7 € V,, enumerate Dy, N [7]™ into
Vig1. Then V = V, is a Madison test covering X.

new

Now let d be a c.e. martingale that diverges along X. Fix a rational

e > 0 such that € < limsup,, d(X [n) — liminf, d(X [n). Let {ds}scw
be a nondecreasing sequence of computable martingales with limit d,
and let d° = d — d,. Assume dy is the zero martingale, so d° = d.

Fact: Computable martingales converge on computably random reals.

Therefore, £ < limsup,, d*(X [ n) — liminf,, d*(X [n). So for every s
there are arbitrarily long & such that d*(X [ k) > e.



Madison tests and martingale convergence

We build a Madison test V' = J, ., Va, where Vj consists of the
minimal strings o where d°(o) > €. If 7 is in V,,, then it satisfied some
condition of the form d*(7) = d(7) — ds(7) > €. Let t be least such
that di(7) — ds(7) > € and let V41 N [7]™ consist of the minimal
strings o = 7 where d(o) > €.

We claim that V', with the natural sequence of approximations, is a
Madison test. We only remove a string o from V[s] because we
realized that it, or some prefix, is not minimal, in which case a prefix
of o appears in V[s + 1]. So V satisfies condition 1.

Assume 7 € V,, as witnessed by d;(7) — ds(7) > €. If p = 7, then
d'(p)271°l > ewt(Vi,41 N [p]<). Applying this inductively, for any

p = 7 we have d*(p)271°l > ewt(V N [p]~¥). Assume that 7 is the
longest proper prefix of p in V. Then if wt(V N [p]<) > 2717, we have
dt(p) > €, 50 p € V,41. (The same reasoning holds for the finite
approximations.) This proves that V satisfies condition 2, so it is a
Madison test.

We have already argued that X fails V', which is a contradiction.



More about martingale convergence

3 = 1: (Noam gave this proof.) Assume every c.e. martingale

converges on X. Clearly, X is ML-random. Let S be a %{ class. Then
m(o) = e (S) is a c.e. martingale, so it converges on X. If X ¢ S and
m(X [n) = e > 0, we can build a Martin-Lof test covering X. O

Lemma (Andrews, et al.)

Let X be Martin-Lof random and let dq, ds be c.e. martingales such
that dy + do converges on X. Then both d; and ds converge on X.

Lemma (Andrews, et al.)

There is a c.e. martingale d that is universal for convergence. lLe., if d
converges on X € 2“, then every c.e. martingale converges on X.

Idea.

Let d be the sum of a universal c.e. martingale and a weighted sum,
taken over all ¥¥ classes S, of the martingales ds(o) = p,(S5).
Together, these ensure that X is Martin-Lof random and a
density-one point. O



Separating density-one and positive density

Theorem (Day, M.)

There is a Martin-Lof random X that is a positive density point but
not a density-one point.

Together with previously discussed work:
> X #r 0,
» X is not Oberwolfach random, and so

» X computes every K-trivial.

This solves the covering problem.

Theorem (Day, M.; Bienvenu, Greenberg, Kucera, Nies, Turetsky)
There is a Martin-Lof random X #7 (' that computes every K-trivial.



The forcing partial order

Let P C 2 be a nonempty II{ class that contains only Martin-Lof
random sets. The forcing partial order P consists of conditions of the
form (o, @), where

> g E€2¥,

» Q C Pisallf class.

> [o]NQ # 0.

» There is a § < 1/2 such that

(Vp=o) [plNQ#0 = p,(Q) + 6 > pp(P).

We say that (7, R) extends (0,Q) if 7 = 0 and R C Q. Let A be the
empty string. Note that (A, P) € P, with 6 = 0, so P is nonempty.

If G C Pis afilter, let Xg = U<U’Q>€G .



Properties of the forcing partial order

It is enough to prove that if G C P is sufficiently generic, then
1. X¢ € 2¥. In this case, X¢ € P (hence it is Martin-Lof random).
2. p(P| X¢g) <1/2, s0 X¢ is not a density-one point.
3. X¢ is a positive density point.

Proof of 1.
Note that if (o, Q) € P and 7 > o is such that [7] N Q # 0, then

(1,Q) € P. |



Proof of 2: p(P | X¢) < 1/2

Fix n. We will show that the conditions forcing
(3> n) px 11(P) < 1/2 (1)

are dense in P. Let (0, Q) be any condition and let § witness that

(0,Q) € P.

Take m such that 2™ < 1/2 — ¢§. Let Z be the left-most path of
[6] N Q. The set Z is Martin-Lof random and consequently contains
arbitrarily long intervals of 1’s. Take 7 = o such that 71™ < Z and
|7] > n. Because Z is the left-most path in @ it follows that

1 (Q) <27™ and so

1
pr(P) S pe(Q)+6 <27 +6 < 5.

Hence the condition (7, Q) extends (o, Q) and forces (1). O



Proof of 3: X is a positive density point

Claim
Let S C 2% be a IIY class and let (o,Q) € P. There is an € > 0 and a
condition (7, R) extending (o, Q) such that either
» [7]NS =0, or
> If X € R, then p(S| X) > e.
Proof.

If there is a 7 = o such that [7] NS =0 and [7] N Q # 0, then let
(7,Q) be our condition.

Otherwise, SN [o] 2 @ N [o]. In this case, let § witness that
(0,Q) € P. Take € to be a rational greater than 0 and less than
min{1/2 — §, 4, (Q)}. (Note that u,(Q) > 0 because [0] N Q is a
non-empty I1{ class containing only Martin-Lf random sets. )

Let Q¢ be the I1Y class {X € QN o] | (Vn > |o]) px 1n(Q) > e} We
will show that (o, Q¢) is the required condition.

N}



Proof of 3, continued

Let M be the set of minimal strings in {p = o: £1,(Q) < €}. Then M
is prefix-free and Q¢ = Q N [o] ~ @ N [M]. Summing over M gives us
1o (Q N [M]) < e. Hence p,(Q°) > pe(Q) — e > 0. This proves that
[o] N Q° # 0.

If 7 > o and [7] N Q° # 0, we can use the same argument to show that

12 (@) > 12(Q) — . Because [r] 1 Q 0,
pr(P) < pr(Q) +6 < pr(QF) +e+6.

Hence € + § < 1/2 witnesses that (o, Q) is a condition.

Note that if X € Q¢, then p(Q | X) > e. This implies that
p(S | X) > € because SN [o] 2 QN [o], proving the claim. O

It is immediate from the claim that sufficient genericity ensures that
Xq is a positive density point. O



Variations

We have finished the proof of:

Theorem
There is a Martin-Lof random X #7 (' that computes every K-trivial.

The forcing partial order actually allows us to avoid computing
(countably many) non-K-trivials. Hence:

Theorem
There is a Martin-Lof random X such that the hyperarithmetical sets
below X are exactly the K-trivials.

Proof. ..

On the other hand, by carefully effectivizing the forcing;:

Theorem
There is a Martin-Lof random X <7 @’ that computes every K-trivial.
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Where are we now?

Let X be Martin-Lo6f random. The following implications hold:

X not superhigh

- ~

X Fyr W X is not (uniformly)

a.e. dominating
X } I hA/d <> X does not compute
is Oberwolfach random every K-trivial

T~

Every c.e. martingale 5 X is a density-

converges on X <——  one point
X Fr W X is a positive

(X is difference random) density point



Random reals that are not Oberwolfach random

Lemma (Various?)

Let X € 2¢ be Martin-Lo6f random but not Oberwolfach random.
Then X computes a function f: w — w such that for every oracle A,
if X is Martin-Lof random relative to A, then f dominates every
A-computable function.

Taking A = (), the lemma says that if X is ML-random but not
Oberwolfach random, then f <p X dominates every computable
function. In other words, X is high.

We can do significantly better.

Definition (Dobrinen, Simpson)

X is uniformly almost everywhere dominating if there is a function
f <7 X such that for almost every A € 2¢, f dominates every
A-computable function.

2Bienvenu, Holzl, M., Nies proved this assuming that X is not a density-one
point. Bienvenu, Greenberg, Kucera, Nies, Turetsky applied essentially the same
proof assuming that X is not Oberwolfach random.



Random reals that are not Oberwolfach random

Theorem (Various)

If X € 2% is Martin-Lo6f random but not Oberwolfach random, then X
is uniformly almost everywhere dominating.

Proof.

Let f <7 X be the function from the lemma. Since X is ML-random,
it is ML-random relative to almost every A. For such an A,

f dominates all A-computable functions. O

We call X LR-hard if every set that is Martin-Lo6f random relative to
X is 2-random (i.e., Martin-Lof random relative to ('). Kjos-Hanssen,
M. and Solomon proved that X is (uniformly) almost everywhere
dominating if and only if it is LR-hard. Simpson showed that such an
X is superhigh (X' >4 07).

Corollary

If a ML-random X € 2“ is not superhigh, then X is Oberwolfach
random.



Random reals that are not Oberwolfach random

Theorem (Bienvenu, Greenberg, Kucera, Nies, Turetsky)

If X € 2% is Martin-Lof random but not Oberwolfach random, then X
computes every K-trivial.

Proof.

Assume that A is a c.e. K-trivial set. Then A computes a function g
(its settling-time function) such that any function dominating g
computes A. Since A is K-trivial and therefore low for
ML-randomness, X is Martin-Lof random relative to A. By the
lemma, X computes a function dominating g, hence X >p A.

Nies proved that every K-trivial is computed by a c.e. K-trivial,
which completes the proof. O

This is a very different proof than that given by Bienvenu, et al. In
particular, they did not use the fact that every K-trivial is low for
random.



Random but not Oberwolfach random: the Lemma

Lemma (Various)

Let X € 2“ be Martin-Lo6f random but not Oberwolfach random.
Then X computes a function f: w — w such that for every oracle A,
if X is Martin-Lof random relative to A, then f dominates every
A-computable function.

Proof.

Let {Un}new, {Bn}new be an Auckland test covering X. Let

B =1lim B,. (Recall that u(U,) < 8 — 5,.) We may assume that
{Un }new is nested.

We write {U,,s}secw for a fixed effective sequence of clopen
approximations to U,. We may assume that yu(Up s) < 8s — Bn. We
may also assume that {U,, s fnew is nested for each stage s.



Random but not Oberwolfach random: the Lemma

Let g(n) be the least s > n such that X € U, ;. Note that g is total,
X-computable, and non-decreasing. Define f <r X by f(n) = ¢°"(0).
(I.e., let f(0) = g(0) and, for all n € w, let f(n+1) =g(f(n)).)

We will show that f satisfies the lemma. To see this, assume that
there is an A-computable function h that is not dominated by f. We
will use h to build a Solovay test relative to A that captures X. There
are two cases.

Case 1: h dominates f. We may assume that (Vn) h(n) > f(n). Note
that (¥n) f(n) > g(n). It is true for n = 0. If it holds for n, then
fn)>gn)>n+1,s0 f(n+1)=g(f(n)) > g(n+1). Therefore,
(Vn) h(n) > g(n).



Random but not Oberwolfach random: the Lemma

Define k <p A by k(n) = h°"(0) and, for all n, let

Sn = Uk(n),k(n+1) = Uk(n),h(k(n)) 2 Uk(n).g(k(n))-
Therefore, X € S,,. Also, 1(Sn) < Brn+1) — Br(n)- Note that

Y new M(Sn) < cw Bemn+1) = Brm) < B. So {Sn}new is a Solovay
test relative to A that covers X.

Case 2: h does not dominate f. For all n, let S, = Up(n) n(n+1)- As in
Case 1, { Sy }new is Solovay test relative to A. We must show that it
captures X.

By our assumption, there are infinitely many n such that h(n) < f(n)
and h(n+1) > f(n+1). Fix such an n and note that

h(n+1)> f(n+1) =g(f(n)) > g(h(n)). Therefore,

X € Un(n),g(h(n)) S Un(n),h(n+1) = Sn- This is true for infinitely many
n, so X is not Martin-Lof random relative to A. O



— THANK YOU! —



Oberwolfach randoms are density-one points

Definition
An effective sequence {U,, }new of 39 classes is an Auckland test if
there is a left-c.e. real § with a computable nondecreasing sequence of
rational approximations {3, } ne. such that

> 3 =limy, e Bn, and

> M(Un) < ﬁ - ﬁn
X € 2% passes an Auckland test if X ¢ () . U,. We say that X is
Oberwolfach random if it passes all Auckland tests.

Theorem (Bienvenu, Greenberg, Kucera, Nies, Turetsky)
If X € 2% is Oberwolfach random, then it is a density-one point.



Oberwolfach randoms are density-one points

Proof.

We prove the contrapositive. Assume that X is not a density-one
point. There is a rational € € (0,1) and a IIY class C containing X
such that p(C' | X) <e < 1.

Let D be a prefix-free c.e. set such that C' = 2% \ [D]. Let
D" =D~ D,, and let U,, = {X: (3k) px (2% N [D"]) <e}. It is
clear that X € [, ,, Un. Note that

W(U,) < 2= p(2 ~ [D"]) _ p[D"] _ plD] = plDn]

1—¢ 1—¢ 1—¢
Therefore, {U, }new is an Auckland test, as witnessed by the c.e. real
_ D] . . . . p[Dy] .
8 = —— with approximations 3, = . Hence X is not
— e _
Oberwolfach random. O

(back)
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Characterizing difference randomness

Theorem (Franklin, Ng)
X is difference random iff X is Martin-Lof random and X #7 (.

Proof.

Assume that X fails the difference test consisting of C' and {V, }new.
We may slow down the enumeration of each V,, to ensure that

(Vs) u(V,, N C[s]) < 27", Define a function f <r X by letting f(n) be
the least s such that X € V,, N C[s].

Now if n enters (' at stage s, let G,, =V, N C[s]. Otherwise, G,, = 0.
So {Gp}new is @ ML-test (that we treat as a Solovay test). If
(F*°n)neld [Z)'f(n), then this test covers X, so X is not
ML-random. Otherwise, X >7 .

For the other direction, first note that if X is difference random, then
it is Martin-Lof random. Assume that X >7 (/. Fix a Turing
functional T such that ' = (.



Characterizing difference randomness

We build a difference test C, {V,, }ne. as follows. Let
C=2"~{X:(3n)T*(n)l=0and n € ('}

By the recursion theorem, we control an infinite computable set R of
positions of (/. Partition R into finite sets Ry, R1, ... such that
|R,| =2" —1.
» Whenever we see I'? [ R,, |= 0" | R,[s], we put [o] into V},.
» Whenever we see 1(C NV, [s]) > 27", we enumerate an element
of R, into ('. (This has the effect of putting V,,[s] into the
complement of C, hence can only happen 2™ — 1 times.)

The construction ensures that X € (.., V, N C and
w(V, NC) <27 proving that X is not difference random. O

(back)
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Characterizing ML-random positive density points

Theorem (Bienvenu, Holzl, M., Nies)

X is difference random iff X is a ML-random positive density point.

Proof.

Assume that X is not a positive density point. Let C be a II{ class
containing X such that p(C | X) = 0. For each n, let

U, ={Z: (3k) puz,x(C) <27"}. Then u(CNU,) <27, so C' and
{Un}new form a difference test covering X.

For the other direction, let C, {V, }new be a difference test covering
X. Assume that X is ML-random and fix r € w. We will show that
there is a ¢ < X for which u(C) <27".

We define an effective sequence of X0 classes {G,, }mew with
w(Gm) < (1 —27""1™ Let Gy = 2¢. Suppose that G, has been
defined. Let B,, be a prefix-free c.e. set such that G,, = [Bp].



Characterizing ML-random positive density points

We define G,, 41 as follows. When a string o enters B,,, we put

(271127 )
(Viel+r+1 N [o])

into G, (If Wis a X9 class, W(=¢) is the same class except
restricted to measure £.) It is not hard to see that

(Gry1) < (1=27""Hp(Gp) < (1 =277t

Since X is ML-random, there is a minimal m such that X ¢ G,,. The
minimality of m implies that there is a ¢ € B,,,_1 with ¢ < X. Let

V' = Vig|4r+1. Note that pus(V) > 1— 2771 otherwise X would enter
G- Also 1, (CNV) <29l (C N V) <2771 by the definition of a
difference test. But py(C) + po (V) — 1o (C NV) < 1, which implies
that p(C) < 277, as required.

Since r was arbitrary, p(C | X) = 0. O
(back)
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If A is not K-trivial, we can force X¢ #1r A

Claim
Assume that A € 2¢ is not K-trivial, (o,Q) € P, and ® is a Turing
functional. There is a 7 € 2<% such that (7, Q) extends (o, Q) and

(VX € [7]NQ)[®* = A = X is not difference random ].

Proof.
If there is a p = o and an n such that ®°(n) |# A(n) and [p] N Q # 0,
then take 7 = p. Assume that no such p and n exist.

Define V,, = {X: X € U,[®¥]}, where U,[Z] is the nth level of the
universal Martin-Lof test relative to Z. If X € V,, N [o] N Q, then
because ®X is not incompatible with A, we have

X € U,[®¥] C U,[A]. Hence u(V,, N[o] N Q) < u(U,[A]) <27 In
other words, @ and {V;, N [0]}ncw form a difference test.



If A is not K-trivial, we can force X¢ #1r A

Now assume that X € [¢] N Q and X = A. Because A is not a base
for randomness, X € U,[A] = U,[®X] for all n. Therefore,

X €MNyew Va Nlo]NQ, so X is not difference random. Hence the
claim is satisfied by taking 7 = o. O

We have already shown that if G C P is sufficiently generic, then X¢
is a positive density point, hence it is difference random.

So the claim shown that if G C P is sufficiently generic relative to A,
then X does not compute A. We can build G to ensure that X¢g
does not compute any member of a countable set of non-K-trivials
(e.g., all non-K-trivial hyperarithmetical sets).
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