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Lebesgue density

Notation

For σ ∈ 2<ω, let µσ(C) =
µ([σ] ∩ C)

µ([σ])
.

(Here, µ is the standard Lebesgue measure on Cantor space.) So
µσ(C) is the fraction of [σ] occupied by C.

Definition
Let C ⊆ 2ω be measurable. The lower density1 of C at X is

ρ(C | X) = lim inf
n

µX �n(C).

Lebesgue Density Theorem
If C ⊆ 2ω is measurable, then ρ(C | X) = 1 for almost every X ∈ C.

1We use dyadic density throughout, not density on the real interval. This
simplifies the proofs considerably, but does not change the results.
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Lebesgue density for Π0
1 classes

We want to understand the density points of Π0
1 classes.

Definition

I X ∈ 2ω is a density-one point if ρ(C | X) = 1 for every Π0
1 class

C containing X.

I X ∈ 2ω is a positive density point if ρ(C | X) > 0 for every Π0
1

class C containing X.

Very basic observations:

1. Density-one =⇒ positive density.

2. Almost every X ∈ 2ω is a density-one point.

3. Every 1-generic is a density-one point, so it is not a randomness
notion.

We avoid 3 by restricting our attention to Martin-Löf random X.
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What Noam told us

Let X be Martin-Löf random. The following implications hold:

X not superhigh

X �JT ∅′

X is Oberwolfach random
X does not compute

every K-trivial

Every c.e. martingale
converges on X

X is a density-
one point

X �T ∅′
(X is difference random)
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What I am planning to tell you

Let X be Martin-Löf random. The following implications hold:

X not superhigh

X �JT ∅′
X is not (uniformly)

a.e. dominating

X is Oberwolfach random
X does not compute

every K-trivial

Every c.e. martingale
converges on X

X is a density-
one point

X �T ∅′
(X is difference random)

X is a positive
density point

6
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Bounding density drops

Lemma
Let C ⊆ 2ω be a closed set. Fix ε ∈ (0, 1) and let

U = {X : (∃k) µX � k(C) < ε}.

Then

1. µ(U ∩ C) ≤ ε, and

2. µ(U) ≤ 1− µ(C)

1− ε
.

Proof.
Let D be the minimal strings σ such that µσ(C) < ε. Then D is
prefix-free and [D] = U .

For 1,

µ(U ∩ C) = µ([D] ∩ C) =
∑
σ∈D

µ([σ] ∩ C) ≤
∑
σ∈D

µ([σ])ε = µ([D])ε ≤ ε.
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Bounding density drops

For 2,

1− µ(C) ≥ µ([D]r C) =
∑
σ∈D

µ([σ]r C)

=
∑
σ∈D

µ([σ])− µ([σ] ∩ C) ≥
∑
σ∈D

µ([σ])− µ([σ])ε

=
∑
σ∈D

µ([σ])(1− ε) = µ([D])(1− ε) = µ(U)(1− ε).

An application of 2:

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If X ∈ 2ω is Oberwolfach random, then it is a density-one point.

Proof. . .
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Difference randomness and positive density

Definition

I A difference test is a Π0
1 class C and an effective sequence

{Vn}n∈ω of Σ0
1 classes such that µ(Vn ∩ C) ≤ 2−n.

I X ∈ 2ω is difference random if for every difference test
C, {Vn}n∈ω, there is an n such that X /∈ Vn ∩ C.

Theorem (Franklin, Ng)
X is difference random iff X is Martin-Löf random and X �T ∅′.

Proof. . .

Theorem (Bienvenu, Hölzl, M., Nies)
X is difference random iff X is a ML-random positive density point.

Proof. . .
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Aside: Cupping with incomplete random sets

Definition (Kučera 2004)
A ∈ 2ω is weakly ML-cuppable if there is a Martin-Löf random
X �T ∅′ such that A⊕X ≥T ∅′. If one can choose X <T ∅′, then A is
ML-cuppable.

Question (Kučera)
Can the K-trivial sets be characterized as either

1. not weakly ML-cuppable, or

2. ≤T ∅′ and not ML-cuppable?

Compare this to:

Theorem (Posner, Robinson)
For every A >T ∅ there is a 1-generic X such that A⊕X ≥T ∅′. If
A ≤T ∅′, then also X ≤T ∅′.
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Aside: Cupping with incomplete random sets

Question (Kučera 2004)
Can the K-trivial sets be characterized as either

1. not weakly ML-cuppable, or

2. ≤T ∅′ and not ML-cuppable?

Answer (Day, M.): Yes, both.

Theorem (Day, M.)
If A is not K-trivial, then it is weakly ML-cuppable. If A <T ∅′ is not
K-trivial, then it is ML-cuppable.

These are proved by straightforward constructions. It is the other
direction I want to focus on.

Theorem (Day, M.)
If A is K-trivial, then it is not weakly ML-cuppable.
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We need a Lemma

Assume that A is K-trivial, X is ML-random, and C ⊆ 2ω is a Π0
1[A]

class containing X. Then there is a Π0
1 class D ⊆ C containing X.

Proof.
Let F ⊆ 2<ω be an A-c.e. set such that 2ω r C = [F ]. We may
assume that F is prefix-free, so by the optimality of KA, there is a c
such that KA(σ) ≤ |σ|+ c for all σ ∈ F . But A is low for K, so there
is a d such that K(σ) ≤ |σ|+ d for all σ ∈ F .

Let G = {σ : K(σ) ≤ |σ|+ d}. Note that

1. G is c.e.,

2. G ⊇ F , and

3.
∑
σ∈G 2−|σ| ≤

∑
σ∈G 2−K(σ)+d ≤ 2d <∞.

Because X is Martin-Löf random and G is a Solovay test, there are
only finitely many σ ∈ G such that σ ≺ X. No such σ is in F , so we
may remove them from G while preserving 1-3. Let D = 2ω r [G].
Note that D is a Π0

1 class, D ⊆ C, X ∈ D.
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Aside: Cupping with incomplete random sets

Theorem (Day, M.)
If A is K-trivial, then it is not weakly ML-cuppable.

Proof.
Let A be K-trivial, X Martin-Löf random, and A⊕X ≥T ∅′. We will
show that X ≥T ∅′.

Because A is K-trivial it is low (∅′ ≥T A′), hence A⊕X ≥T A′. It is
also low for random, so X is Martin-Löf random relative to A.
Therefore, by the Bienvenu et al. result relativized to A, there is a
Π0

1[A] class C containing X such that ρ(C | X) = 0.

By the lemma, there is a Π0
1 class D ⊆ C containing X. But then

ρ(D | X) = 0, so by the Bienvenu et al. result, X ≥T ∅′. In other
words, X does not witness the weak ML-cuppability of A.
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Day 2



Where are we now?

Let X be Martin-Löf random. The following implications hold:

X not superhigh

X �JT ∅′
X is not (uniformly)

a.e. dominating

X is Oberwolfach random
X does not compute

every K-trivial

Every c.e. martingale
converges on X

X is a density-
one point

X �T ∅′
(X is difference random)

X is a positive
density point

6
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Madison tests

Andrews, Cai, Diamondstone, Lempp and M. gave a test
characterization of Martin-Löf random density-one points.

Definition
The weight of U ⊆ 2<ω is wt(U) =

∑
σ∈U 2−|σ|.

Notation: For σ ∈ 2<ω, [σ]≺= {τ ∈ 2<ω | σ ≺ τ}.

Definition
A Madison test is a finite weight ∆0

2 set U ⊆ 2<ω with a distinguished
sequence {Us}s∈ω of finite approximations such that

1. τ ∈ Us r Us+1 =⇒ (∃σ ≺ τ) σ ∈ Us+1 r Us, and

2. wt(Us ∩ [σ]≺) > 2−|σ| =⇒ σ ∈ Us.
X ∈ 2ω passes a Madison test U if at most finitely many prefixes of X
are in U .
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Madison tests and density

Theorem (Andrews, et al.)
The following are equivalent for X ∈ 2ω:

1. X is a Martin-Löf random density-one point,

2. X passes all Madison tests,

3. Every c.e. martingale converges on X.

Proof.
1 =⇒ 2: Suppose that X is ML-random but fails the Madison test U .
Uniformly in n, build a Σ0

1 class Sn such that µ(Sn) ≤ 2−n wt(U) and
for each σ ∈ U we have µσ(Sn) ≥ 2−n. To do this, associate every
τ ∈ Us r Us+1 with a prefix σ ∈ Us+1 r Us. When σ enters Us+1, it
inherits the part of Sn that is owned by each associated τ . Then add
more to Sn until µσ(Sn) ≥ 2−n.

Because {Sn}n∈ω is a Martin-Löf test, there is an n such that
X /∈ Sn. So C = 2ω r Sn is a Π0

1 class containing X and such that
ρ(C | X) ≤ 1− 2−n.
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Madison tests and martingale convergence

2 =⇒ 3: Assume that X passes all Madison tests.

Claim: X is Martin-Löf random.

To see this, let {Un} be a Martin-Löf test covering X. We may
assume that each Un is given in the form [Dn], where Dn is c.e. and
prefix-free. Let V0 = D0. If τ ∈ Vn, enumerate D|τ |+1 ∩ [τ ]≺ into
Vn+1. Then V =

⋃
n∈ω Vn is a Madison test covering X.

Now let d be a c.e. martingale that diverges along X. Fix a rational
ε > 0 such that ε < lim supn d(X �n)− lim infn d(X �n). Let {ds}s∈ω
be a nondecreasing sequence of computable martingales with limit d,
and let ds = d− ds. Assume d0 is the zero martingale, so d0 = d.

Fact: Computable martingales converge on computably random reals.

Therefore, ε < lim supn d
s(X �n)− lim infn d

s(X �n). So for every s
there are arbitrarily long k such that ds(X � k) > ε.
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Madison tests and martingale convergence

We build a Madison test V =
⋃
n∈ω Vn, where V0 consists of the

minimal strings σ where d0(σ) > ε. If τ is in Vn, then it satisfied some
condition of the form ds(τ) = d(τ)− ds(τ) > ε. Let t be least such
that dt(τ)− ds(τ) > ε and let Vn+1 ∩ [τ ]≺ consist of the minimal
strings σ � τ where dt(σ) > ε.

We claim that V , with the natural sequence of approximations, is a
Madison test. We only remove a string σ from V [s] because we
realized that it, or some prefix, is not minimal, in which case a prefix
of σ appears in V [s+ 1]. So V satisfies condition 1.

Assume τ ∈ Vn as witnessed by dt(τ)− ds(τ) > ε. If ρ � τ , then
dt(ρ)2−|ρ| ≥ εwt(Vn+1 ∩ [ρ]≺). Applying this inductively, for any
ρ � τ we have dt(ρ)2−|ρ| ≥ εwt(V ∩ [ρ]≺). Assume that τ is the
longest proper prefix of ρ in V . Then if wt(V ∩ [ρ]≺) > 2−|ρ|, we have
dt(ρ) > ε, so ρ ∈ Vn+1. (The same reasoning holds for the finite
approximations.) This proves that V satisfies condition 2, so it is a
Madison test.

We have already argued that X fails V , which is a contradiction.
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More about martingale convergence

3 =⇒ 1: (Noam gave this proof.) Assume every c.e. martingale
converges on X. Clearly, X is ML-random. Let S be a Σ0

1 class. Then
m(σ) = µσ(S) is a c.e. martingale, so it converges on X. If X /∈ S and
m(X �n)→ ε > 0, we can build a Martin-Löf test covering X.

Lemma (Andrews, et al.)
Let X be Martin-Löf random and let d1, d2 be c.e. martingales such
that d1 + d2 converges on X. Then both d1 and d2 converge on X.

Lemma (Andrews, et al.)
There is a c.e. martingale d that is universal for convergence. I.e., if d
converges on X ∈ 2ω, then every c.e. martingale converges on X.

Idea.
Let d be the sum of a universal c.e. martingale and a weighted sum,
taken over all Σ0

1 classes S, of the martingales dS(σ) = µσ(S).
Together, these ensure that X is Martin-Löf random and a
density-one point.
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Separating density-one and positive density

Theorem (Day, M.)
There is a Martin-Löf random X that is a positive density point but
not a density-one point.

Together with previously discussed work:

I X �T ∅′,
I X is not Oberwolfach random, and so

I X computes every K-trivial.

This solves the covering problem.

Theorem (Day, M.; Bienvenu, Greenberg, Kučera, Nies, Turetsky)
There is a Martin-Löf random X �T ∅′ that computes every K-trivial.
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The forcing partial order

Let P ⊆ 2ω be a nonempty Π0
1 class that contains only Martin-Löf

random sets. The forcing partial order P consists of conditions of the
form 〈σ,Q〉, where

I σ ∈ 2<ω.

I Q ⊆ P is a Π0
1 class.

I [σ] ∩Q 6= ∅.
I There is a δ < 1/2 such that

(∀ρ � σ) [ρ] ∩Q 6= ∅ =⇒ µρ(Q) + δ ≥ µρ(P ).

We say that 〈τ,R〉 extends 〈σ,Q〉 if τ � σ and R ⊆ Q. Let λ be the
empty string. Note that 〈λ, P 〉 ∈ P, with δ = 0, so P is nonempty.

If G ⊆ P is a filter, let XG =
⋃
〈σ,Q〉∈G σ.
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Properties of the forcing partial order

It is enough to prove that if G ⊆ P is sufficiently generic, then

1. XG ∈ 2ω. In this case, XG ∈ P (hence it is Martin-Löf random).

2. ρ(P | XG) ≤ 1/2, so XG is not a density-one point.

3. XG is a positive density point.

Proof of 1.
Note that if 〈σ,Q〉 ∈ P and τ � σ is such that [τ ] ∩Q 6= ∅, then
〈τ,Q〉 ∈ P.
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Proof of 2: ρ(P | XG) ≤ 1/2

Fix n. We will show that the conditions forcing

(∃l ≥ n) µXĠ � l(P ) < 1/2 (1)

are dense in P. Let 〈σ,Q〉 be any condition and let δ witness that
〈σ,Q〉 ∈ P.

Take m such that 2−m < 1/2− δ. Let Z be the left-most path of
[σ] ∩Q. The set Z is Martin-Löf random and consequently contains
arbitrarily long intervals of 1’s. Take τ � σ such that τ1m ≺ Z and
|τ | ≥ n. Because Z is the left-most path in Q it follows that
µτ (Q) ≤ 2−m and so

µτ (P ) ≤ µτ (Q) + δ ≤ 2−m + δ <
1

2
.

Hence the condition 〈τ,Q〉 extends 〈σ,Q〉 and forces (1).
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Proof of 3: XG is a positive density point

Claim
Let S ⊆ 2ω be a Π0

1 class and let 〈σ,Q〉 ∈ P. There is an ε > 0 and a
condition 〈τ,R〉 extending 〈σ,Q〉 such that either

I [τ ] ∩ S = ∅, or

I If X ∈ R, then ρ(S | X) ≥ ε.

Proof.
If there is a τ � σ such that [τ ] ∩ S = ∅ and [τ ] ∩Q 6= ∅, then let
〈τ,Q〉 be our condition.

Otherwise, S ∩ [σ] ⊇ Q ∩ [σ]. In this case, let δ witness that
〈σ,Q〉 ∈ P. Take ε to be a rational greater than 0 and less than
min{1/2− δ, µσ(Q)}. (Note that µσ(Q) > 0 because [σ] ∩Q is a
non-empty Π0

1 class containing only Martin-Löf random sets.)

Let Qε be the Π0
1 class {X ∈ Q ∩ [σ] | (∀n ≥ |σ|) µX �n(Q) ≥ ε}. We

will show that 〈σ,Qε〉 is the required condition.
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Proof of 3, continued

Let M be the set of minimal strings in {ρ � σ : µρ(Q) < ε}. Then M
is prefix-free and Qε = Q ∩ [σ]rQ ∩ [M ]. Summing over M gives us
µσ(Q ∩ [M ]) < ε. Hence µσ(Qε) > µσ(Q)− ε > 0. This proves that
[σ] ∩Qε 6= ∅.

If τ � σ and [τ ]∩Qε 6= ∅, we can use the same argument to show that
µτ (Qε) > µτ (Q)− ε. Because [τ ] ∩Q 6= ∅,

µτ (P ) ≤ µτ (Q) + δ < µτ (Qε) + ε+ δ.

Hence ε+ δ < 1/2 witnesses that 〈σ,Qε〉 is a condition.

Note that if X ∈ Qε, then ρ(Q | X) ≥ ε. This implies that
ρ(S | X) ≥ ε because S ∩ [σ] ⊇ Q ∩ [σ], proving the claim.

It is immediate from the claim that sufficient genericity ensures that
XG is a positive density point.
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Variations

We have finished the proof of:

Theorem
There is a Martin-Löf random X �T ∅′ that computes every K-trivial.

The forcing partial order actually allows us to avoid computing
(countably many) non-K-trivials. Hence:

Theorem
There is a Martin-Löf random X such that the hyperarithmetical sets
below X are exactly the K-trivials.

Proof. . .

On the other hand, by carefully effectivizing the forcing:

Theorem
There is a Martin-Löf random X <T ∅′ that computes every K-trivial.
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Day 3



Where are we now?

Let X be Martin-Löf random. The following implications hold:

X not superhigh

X �JT ∅′
X is not (uniformly)

a.e. dominating

X is Oberwolfach random
X does not compute

every K-trivial

Every c.e. martingale
converges on X

X is a density-
one point

X �T ∅′
(X is difference random)

X is a positive
density point

6
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Random reals that are not Oberwolfach random

Lemma (Various2)
Let X ∈ 2ω be Martin-Löf random but not Oberwolfach random.
Then X computes a function f : ω → ω such that for every oracle A,
if X is Martin-Löf random relative to A, then f dominates every
A-computable function.

Taking A = ∅, the lemma says that if X is ML-random but not
Oberwolfach random, then f ≤T X dominates every computable
function. In other words, X is high.

We can do significantly better.

Definition (Dobrinen, Simpson)
X is uniformly almost everywhere dominating if there is a function
f ≤T X such that for almost every A ∈ 2ω, f dominates every
A-computable function.

2Bienvenu, Hölzl, M., Nies proved this assuming that X is not a density-one
point. Bienvenu, Greenberg, Kučera, Nies, Turetsky applied essentially the same
proof assuming that X is not Oberwolfach random.
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Random reals that are not Oberwolfach random

Theorem (Various)
If X ∈ 2ω is Martin-Löf random but not Oberwolfach random, then X
is uniformly almost everywhere dominating.

Proof.
Let f ≤T X be the function from the lemma. Since X is ML-random,
it is ML-random relative to almost every A. For such an A,
f dominates all A-computable functions.

We call X LR-hard if every set that is Martin-Löf random relative to
X is 2-random (i.e., Martin-Löf random relative to ∅′). Kjos-Hanssen,
M. and Solomon proved that X is (uniformly) almost everywhere
dominating if and only if it is LR-hard. Simpson showed that such an
X is superhigh (X ′ ≥tt ∅′′).

Corollary
If a ML-random X ∈ 2ω is not superhigh, then X is Oberwolfach
random.
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Random reals that are not Oberwolfach random

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If X ∈ 2ω is Martin-Löf random but not Oberwolfach random, then X
computes every K-trivial.

Proof.
Assume that A is a c.e. K-trivial set. Then A computes a function g
(its settling-time function) such that any function dominating g
computes A. Since A is K-trivial and therefore low for
ML-randomness, X is Martin-Löf random relative to A. By the
lemma, X computes a function dominating g, hence X ≥T A.

Nies proved that every K-trivial is computed by a c.e. K-trivial,
which completes the proof.

This is a very different proof than that given by Bienvenu, et al. In
particular, they did not use the fact that every K-trivial is low for
random.
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Random but not Oberwolfach random: the Lemma

Lemma (Various)
Let X ∈ 2ω be Martin-Löf random but not Oberwolfach random.
Then X computes a function f : ω → ω such that for every oracle A,
if X is Martin-Löf random relative to A, then f dominates every
A-computable function.

Proof.
Let {Un}n∈ω, {βn}n∈ω be an Auckland test covering X. Let
β = limβn. (Recall that µ(Un) ≤ β − βn.) We may assume that
{Un}n∈ω is nested.

We write {Un,s}s∈ω for a fixed effective sequence of clopen
approximations to Un. We may assume that µ(Un,s) ≤ βs − βn. We
may also assume that {Un,s}n∈ω is nested for each stage s.
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Random but not Oberwolfach random: the Lemma

Let g(n) be the least s > n such that X ∈ Un,s. Note that g is total,
X-computable, and non-decreasing. Define f ≤T X by f(n) = g◦n(0).
(I.e., let f(0) = g(0) and, for all n ∈ ω, let f(n+ 1) = g(f(n)).)

We will show that f satisfies the lemma. To see this, assume that
there is an A-computable function h that is not dominated by f . We
will use h to build a Solovay test relative to A that captures X. There
are two cases.

Case 1: h dominates f . We may assume that (∀n) h(n) ≥ f(n). Note
that (∀n) f(n) ≥ g(n). It is true for n = 0. If it holds for n, then
f(n) ≥ g(n) ≥ n+ 1, so f(n+ 1) = g(f(n)) ≥ g(n+ 1). Therefore,
(∀n) h(n) ≥ g(n).
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Random but not Oberwolfach random: the Lemma

Define k ≤T A by k(n) = h◦n(0) and, for all n, let

Sn = Uk(n),k(n+1) = Uk(n),h(k(n)) ⊇ Uk(n),g(k(n)).
Therefore, X ∈ Sn. Also, µ(Sn) ≤ βk(n+1) − βk(n). Note that∑
n∈ω µ(Sn) ≤

∑
n∈ω βk(n+1) − βk(n) ≤ β. So {Sn}n∈ω is a Solovay

test relative to A that covers X.

Case 2: h does not dominate f . For all n, let Sn = Uh(n),h(n+1). As in
Case 1, {Sn}n∈ω is Solovay test relative to A. We must show that it
captures X.

By our assumption, there are infinitely many n such that h(n) ≤ f(n)
and h(n+ 1) ≥ f(n+ 1). Fix such an n and note that
h(n+ 1) ≥ f(n+ 1) = g(f(n)) ≥ g(h(n)). Therefore,
X ∈ Uh(n),g(h(n)) ⊆ Uh(n),h(n+1) = Sn. This is true for infinitely many
n, so X is not Martin-Löf random relative to A.
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— THANK YOU! —



Oberwolfach randoms are density-one points

Definition
An effective sequence {Un}n∈ω of Σ0

1 classes is an Auckland test if
there is a left-c.e. real β with a computable nondecreasing sequence of
rational approximations {βn}n∈ω such that

I β = limn→∞ βn, and

I µ(Un) ≤ β − βn.

X ∈ 2ω passes an Auckland test if X /∈
⋂
n∈ω Un. We say that X is

Oberwolfach random if it passes all Auckland tests.

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If X ∈ 2ω is Oberwolfach random, then it is a density-one point.



Oberwolfach randoms are density-one points

Proof.
We prove the contrapositive. Assume that X is not a density-one
point. There is a rational ε ∈ (0, 1) and a Π0

1 class C containing X
such that ρ(C | X) < ε < 1.

Let D be a prefix-free c.e. set such that C = 2ω r [D]. Let
Dn = D rDn and let Un = {X : (∃k) µX � k(2ω r [Dn]) < ε}. It is
clear that X ∈

⋂
n∈ω Un. Note that

µ(Un) ≤ 1− µ(2ω r [Dn])

1− ε
=
µ[Dn]

1− ε
=
µ[D]− µ[Dn]

1− ε
.

Therefore, {Un}n∈ω is an Auckland test, as witnessed by the c.e. real

β =
µ[D]

1− ε
with approximations βn =

µ[Dn]

1− ε
. Hence X is not

Oberwolfach random.

(back)
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Characterizing difference randomness

Theorem (Franklin, Ng)
X is difference random iff X is Martin-Löf random and X �T ∅′.

Proof.
Assume that X fails the difference test consisting of C and {Vn}n∈ω.
We may slow down the enumeration of each Vn to ensure that
(∀s) µ(Vn ∩C[s]) ≤ 2−n. Define a function f ≤T X by letting f(n) be
the least s such that X ∈ Vn ∩ C[s].

Now if n enters ∅′ at stage s, let Gn = Vn ∩ C[s]. Otherwise, Gn = ∅.
So {Gn}n∈ω is a ML-test (that we treat as a Solovay test). If
(∃∞n) n ∈ ∅′ r ∅′f(n), then this test covers X, so X is not

ML-random. Otherwise, X ≥T ∅′.

For the other direction, first note that if X is difference random, then
it is Martin-Löf random. Assume that X ≥T ∅′. Fix a Turing
functional Γ such that ΓX = ∅′.



Characterizing difference randomness

We build a difference test C, {Vn}n∈ω as follows. Let

C = 2ω r {X : (∃n) ΓX(n) ↓= 0 and n ∈ ∅′}.

By the recursion theorem, we control an infinite computable set R of
positions of ∅′. Partition R into finite sets R0, R1, ... such that
|Rn| = 2n − 1.

I Whenever we see Γσ �Rn ↓= ∅′ �Rn[s], we put [σ] into Vn.

I Whenever we see µ(C ∩ Vn[s]) > 2−n, we enumerate an element
of Rn into ∅′. (This has the effect of putting Vn[s] into the
complement of C, hence can only happen 2n − 1 times.)

The construction ensures that X ∈
⋂
n∈ω Vn ∩ C and

µ(Vn ∩ C) ≤ 2−n, proving that X is not difference random.
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Characterizing ML-random positive density points

Theorem (Bienvenu, Hölzl, M., Nies)
X is difference random iff X is a ML-random positive density point.

Proof.
Assume that X is not a positive density point. Let C be a Π0

1 class
containing X such that ρ(C | X) = 0. For each n, let
Un = {Z : (∃k) µZ � k(C) < 2−n}. Then µ(C ∩ Un) ≤ 2−n, so C and
{Un}n∈ω form a difference test covering X.

For the other direction, let C, {Vn}n∈ω be a difference test covering
X. Assume that X is ML-random and fix r ∈ ω. We will show that
there is a σ ≺ X for which µσ(C) ≤ 2−r.

We define an effective sequence of Σ0
1 classes {Gm}m∈ω with

µ(Gm) ≤ (1− 2−r−1)m. Let G0 = 2ω. Suppose that Gm has been
defined. Let Bm be a prefix-free c.e. set such that Gm = [Bm].



Characterizing ML-random positive density points

We define Gm+1 as follows. When a string σ enters Bm, we put(
V|σ|+r+1 ∩ [σ]

)(≤2−|σ|(1−2−r−1))

into Gm+1. (If W is a Σ0
1 class, W (≤ε) is the same class except

restricted to measure ε.) It is not hard to see that

µ(Gm+1) ≤ (1− 2−r−1)µ(Gm) ≤ (1− 2−r−1)m+1.

Since X is ML-random, there is a minimal m such that X /∈ Gm. The
minimality of m implies that there is a σ ∈ Bm−1 with σ ≺ X. Let
V = V|σ|+r+1. Note that µσ(V ) > 1− 2−r−1, otherwise X would enter

Gm. Also µσ(C ∩ V ) ≤ 2|σ|µ(C ∩ V ) ≤ 2−r−1 by the definition of a
difference test. But µσ(C) + µσ(V )− µσ(C ∩ V ) ≤ 1, which implies
that µσ(C) ≤ 2−r, as required.

Since r was arbitrary, ρ(C | X) = 0.
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This page intentionally left blank



If A is not K-trivial, we can force XG �T A

Claim
Assume that A ∈ 2ω is not K-trivial, 〈σ,Q〉 ∈ P, and Φ is a Turing
functional. There is a τ ∈ 2<ω such that 〈τ,Q〉 extends 〈σ,Q〉 and

(∀X ∈ [τ ] ∩Q)[ ΦX = A =⇒ X is not difference random ].

Proof.
If there is a ρ � σ and an n such that Φρ(n) ↓6= A(n) and [ρ] ∩Q 6= ∅,
then take τ = ρ. Assume that no such ρ and n exist.

Define Vn = {X : X ∈ Un[ΦX ]}, where Un[Z] is the nth level of the
universal Martin-Löf test relative to Z. If X ∈ Vn ∩ [σ] ∩Q, then
because ΦX is not incompatible with A, we have
X ∈ Un[ΦX ] ⊆ Un[A]. Hence µ(Vn ∩ [σ] ∩Q) ≤ µ(Un[A]) ≤ 2−n. In
other words, Q and {Vn ∩ [σ]}n∈ω form a difference test.



If A is not K-trivial, we can force XG �T A

Now assume that X ∈ [σ] ∩Q and ΦX = A. Because A is not a base
for randomness, X ∈ Un[A] = Un[ΦX ] for all n. Therefore,
X ∈

⋂
n∈ω Vn ∩ [σ] ∩Q, so X is not difference random. Hence the

claim is satisfied by taking τ = σ.

We have already shown that if G ⊆ P is sufficiently generic, then XG

is a positive density point, hence it is difference random.

So the claim shown that if G ⊆ P is sufficiently generic relative to A,
then XG does not compute A. We can build G to ensure that XG

does not compute any member of a countable set of non-K-trivials
(e.g., all non-K-trivial hyperarithmetical sets).
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