Lebesgue density in Π_1^0 classes (and *K*-triviality)

Joe Miller + many others

Day 1

Lebesgue density

Notation For $\sigma \in 2^{<\omega}$, let $\mu_{\sigma}(C) = \frac{\mu([\sigma] \cap C)}{\mu([\sigma])}$.

(Here, μ is the standard Lebesgue measure on Cantor space.) So $\mu_{\sigma}(C)$ is the fraction of $[\sigma]$ occupied by C.

Definition Let $C \subseteq 2^{\omega}$ be measurable. The lower density¹ of C at X is

$$\rho(C \mid X) = \liminf_{n} \mu_{X \upharpoonright n}(C).$$

Lebesgue Density Theorem

If $C \subseteq 2^{\omega}$ is measurable, then $\rho(C \mid X) = 1$ for almost every $X \in C$.

 $^{^{1}}$ We use *dyadic* density throughout, not density on the real interval. This simplifies the proofs considerably, but does not change the results.

Lebesgue density for Π_1^0 classes

We want to understand the density points of Π_1^0 classes.

Definition

- ► $X \in 2^{\omega}$ is a density-one point if $\rho(C \mid X) = 1$ for every Π_1^0 class C containing X.
- ► $X \in 2^{\omega}$ is a positive density point if $\rho(C \mid X) > 0$ for every Π_1^0 class C containing X.

Very basic observations:

- 1. Density-one \implies positive density.
- 2. Almost every $X \in 2^{\omega}$ is a density-one point.
- 3. Every 1-generic is a density-one point, so it is not a randomness notion.

We avoid 3 by restricting our attention to Martin-Löf random X.

What Noam told us

Let X be Martin-Löf random. The following implications hold:

What I am planning to tell you

Let X be Martin-Löf random. The following implications hold:

Bounding density drops

Lemma

Let $C \subseteq 2^{\omega}$ be a closed set. Fix $\varepsilon \in (0, 1)$ and let

$$U = \{ X \colon (\exists k) \ \mu_{X \upharpoonright k}(C) < \varepsilon \}.$$

Then

1.
$$\mu(U \cap C) \le \varepsilon$$
, and
2. $\mu(U) \le \frac{1 - \mu(C)}{1 - \varepsilon}$.

Proof.

Let D be the minimal strings σ such that $\mu_{\sigma}(C) < \varepsilon$. Then D is prefix-free and [D] = U.

For 1,

$$\mu(U \cap C) = \mu([D] \cap C) = \sum_{\sigma \in D} \mu([\sigma] \cap C) \le \sum_{\sigma \in D} \mu([\sigma])\varepsilon = \mu([D])\varepsilon \le \varepsilon.$$

Bounding density drops

For 2,

$$1 - \mu(C) \ge \mu([D] \smallsetminus C) = \sum_{\sigma \in D} \mu([\sigma] \smallsetminus C)$$
$$= \sum_{\sigma \in D} \mu([\sigma]) - \mu([\sigma] \cap C) \ge \sum_{\sigma \in D} \mu([\sigma]) - \mu([\sigma])\varepsilon$$
$$= \sum_{\sigma \in D} \mu([\sigma])(1 - \varepsilon) = \mu([D])(1 - \varepsilon) = \mu(U)(1 - \varepsilon).$$

An application of 2:

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky) If $X \in 2^{\omega}$ is Oberwolfach random, then it is a density-one point. Proof...

Difference randomness and positive density

Definition

- A difference test is a Π_1^0 class C and an effective sequence $\{V_n\}_{n\in\omega}$ of Σ_1^0 classes such that $\mu(V_n\cap C) \leq 2^{-n}$.
- ► $X \in 2^{\omega}$ is difference random if for every difference test $C, \{V_n\}_{n \in \omega}$, there is an *n* such that $X \notin V_n \cap C$.

Theorem (Franklin, Ng)

X is difference random iff X is Martin-Löf random and $X \not\geq_T \emptyset'$. Proof. . .

Theorem (Bienvenu, Hölzl, M., Nies) X is difference random iff X is a ML-random positive density point. Proof. . . Aside: Cupping with incomplete random sets

Definition (Kučera 2004)

 $A \in 2^{\omega}$ is weakly ML-cuppable if there is a Martin-Löf random $X \not\geq_T \emptyset'$ such that $A \oplus X \geq_T \emptyset'$. If one can choose $X <_T \emptyset'$, then A is ML-cuppable.

Question (Kučera)

Can the K-trivial sets be characterized as either

- 1. not weakly ML-cuppable, or
- 2. $\leq_T \emptyset'$ and not ML-cuppable?

Compare this to:

Theorem (Posner, Robinson)

For every $A >_T \emptyset$ there is a 1-generic X such that $A \oplus X \ge_T \emptyset'$. If $A \le_T \emptyset'$, then also $X \le_T \emptyset'$.

Aside: Cupping with incomplete random sets

Question (Kučera 2004)

Can the K-trivial sets be characterized as either

- 1. not weakly ML-cuppable, or
- 2. $\leq_T \emptyset'$ and not ML-cuppable?

Answer (Day, M.): Yes, both.

Theorem (Day, M.)

If A is not K-trivial, then it is weakly ML-cuppable. If $A <_T \emptyset'$ is not K-trivial, then it is ML-cuppable.

These are proved by straightforward constructions. It is the other direction I want to focus on.

Theorem (Day, M.)

If A is K-trivial, then it is not weakly ML-cuppable.

We need a Lemma

Assume that A is K-trivial, X is ML-random, and $C \subseteq 2^{\omega}$ is a $\Pi_1^0[A]$ class containing X. Then there is a Π_1^0 class $D \subseteq C$ containing X.

Proof.

Let $F \subseteq 2^{<\omega}$ be an A-c.e. set such that $2^{\omega} \smallsetminus C = [F]$. We may assume that F is prefix-free, so by the optimality of K^A , there is a c such that $K^A(\sigma) \leq |\sigma| + c$ for all $\sigma \in F$. But A is low for K, so there is a d such that $K(\sigma) \leq |\sigma| + d$ for all $\sigma \in F$.

Let $G = \{\sigma \colon K(\sigma) \leq |\sigma| + d\}$. Note that 1. *G* is c.e., 2. $G \supseteq F$, and 3. $\sum_{\sigma \in G} 2^{-|\sigma|} \leq \sum_{\sigma \in G} 2^{-K(\sigma)+d} \leq 2^d < \infty$. Because *X* is Martin-Löf random and *G* is a *Solovay test*, there are only finitely many $\sigma \in G$ such that $\sigma \prec X$. No such σ is in *F*, so we

may remove them from G while preserving 1-3. Let $D = 2^{\omega} \smallsetminus [G]$. Note that D is a Π_1^0 class, $D \subseteq C, X \in D$.

Theorem (Day, M.)

If A is K-trivial, then it is not weakly ML-cuppable.

Proof.

Let A be K-trivial, X Martin-Löf random, and $A \oplus X \ge_T \emptyset'$. We will show that $X \ge_T \emptyset'$.

Because A is K-trivial it is low $(\emptyset' \geq_T A')$, hence $A \oplus X \geq_T A'$. It is also low for random, so X is Martin-Löf random relative to A. Therefore, by the Bienvenu et al. result relativized to A, there is a $\Pi_1^0[A]$ class C containing X such that $\rho(C \mid X) = 0$.

By the lemma, there is a Π_1^0 class $D \subseteq C$ containing X. But then $\rho(D \mid X) = 0$, so by the Bienvenu et al. result, $X \ge_T \emptyset'$. In other words, X does not witness the weak ML-cuppability of A.

Day 2

Where are we now?

Let X be Martin-Löf random. The following implications hold:

Madison tests

Andrews, Cai, Diamondstone, Lempp and M. gave a test characterization of Martin-Löf random density-one points.

Definition The weight of $U \subseteq 2^{<\omega}$ is $\operatorname{wt}(U) = \sum_{\sigma \in U} 2^{-|\sigma|}$.

Notation: For
$$\sigma \in 2^{<\omega}$$
, $[\sigma]^{\prec} = \{\tau \in 2^{<\omega} \mid \sigma \prec \tau\}.$

Definition

A Madison test is a finite weight Δ_2^0 set $U \subseteq 2^{<\omega}$ with a distinguished sequence $\{U_s\}_{s\in\omega}$ of finite approximations such that

1.
$$\tau \in U_s \smallsetminus U_{s+1} \implies (\exists \sigma \prec \tau) \ \sigma \in U_{s+1} \smallsetminus U_s$$
, and

2. wt
$$(U_s \cap [\sigma]^{\prec}) > 2^{-|\sigma|} \implies \sigma \in U_s.$$

 $X \in 2^{\omega}$ passes a Madison test U if at most finitely many prefixes of X are in U.

Madison tests and density

Theorem (Andrews, et al.)

The following are equivalent for $X \in 2^{\omega}$:

- 1. X is a Martin-Löf random density-one point,
- 2. X passes all Madison tests,
- 3. Every c.e. martingale converges on X.

Proof.

1 \implies 2: Suppose that X is ML-random but fails the Madison test U. Uniformly in n, build a Σ_1^0 class S_n such that $\mu(S_n) \leq 2^{-n} \operatorname{wt}(U)$ and for each $\sigma \in U$ we have $\mu_{\sigma}(S_n) \geq 2^{-n}$. To do this, associate every $\tau \in U_s \smallsetminus U_{s+1}$ with a prefix $\sigma \in U_{s+1} \smallsetminus U_s$. When σ enters U_{s+1} , it inherits the part of S_n that is owned by each associated τ . Then add more to S_n until $\mu_{\sigma}(S_n) \geq 2^{-n}$.

Because $\{S_n\}_{n\in\omega}$ is a Martin-Löf test, there is an n such that $X \notin S_n$. So $C = 2^{\omega} \smallsetminus S_n$ is a Π_1^0 class containing X and such that $\rho(C \mid X) \leq 1 - 2^{-n}$.

Madison tests and martingale convergence

 $2 \Longrightarrow 3$: Assume that X passes all Madison tests.

Claim: X is Martin-Löf random.

To see this, let $\{U_n\}$ be a Martin-Löf test covering X. We may assume that each U_n is given in the form $[D_n]$, where D_n is c.e. and prefix-free. Let $V_0 = D_0$. If $\tau \in V_n$, enumerate $D_{|\tau|+1} \cap [\tau]^{\prec}$ into V_{n+1} . Then $V = \bigcup_{n \in \omega} V_n$ is a Madison test covering X.

Now let d be a c.e. martingale that diverges along X. Fix a rational $\varepsilon > 0$ such that $\varepsilon < \limsup_n d(X \upharpoonright n) - \liminf_n d(X \upharpoonright n)$. Let $\{d_s\}_{s \in \omega}$ be a nondecreasing sequence of computable martingales with limit d, and let $d^s = d - d_s$. Assume d_0 is the zero martingale, so $d^0 = d$.

Fact: Computable martingales converge on computably random reals.

Therefore, $\varepsilon < \limsup_n d^s(X \upharpoonright n) - \liminf_n d^s(X \upharpoonright n)$. So for every s there are arbitrarily long k such that $d^s(X \upharpoonright k) > \varepsilon$.

Madison tests and martingale convergence

We build a Madison test $V = \bigcup_{n \in \omega} V_n$, where V_0 consists of the minimal strings σ where $d^0(\sigma) > \varepsilon$. If τ is in V_n , then it satisfied some condition of the form $d^s(\tau) = d(\tau) - d_s(\tau) > \varepsilon$. Let t be least such that $d_t(\tau) - d_s(\tau) > \varepsilon$ and let $V_{n+1} \cap [\tau]^{\prec}$ consist of the minimal strings $\sigma \succ \tau$ where $d^t(\sigma) > \varepsilon$.

We claim that V, with the natural sequence of approximations, is a Madison test. We only remove a string σ from V[s] because we realized that it, or some prefix, is not minimal, in which case a prefix of σ appears in V[s + 1]. So V satisfies condition 1.

Assume $\tau \in V_n$ as witnessed by $d_t(\tau) - d_s(\tau) > \varepsilon$. If $\rho \succeq \tau$, then $d^t(\rho)2^{-|\rho|} \ge \varepsilon \operatorname{wt}(V_{n+1} \cap [\rho]^{\prec})$. Applying this inductively, for any $\rho \succ \tau$ we have $d^t(\rho)2^{-|\rho|} \ge \varepsilon \operatorname{wt}(V \cap [\rho]^{\prec})$. Assume that τ is the longest proper prefix of ρ in V. Then if $\operatorname{wt}(V \cap [\rho]^{\prec}) > 2^{-|\rho|}$, we have $d^t(\rho) > \varepsilon$, so $\rho \in V_{n+1}$. (The same reasoning holds for the finite approximations.) This proves that V satisfies condition 2, so it is a Madison test.

We have already argued that X fails V, which is a contradiction.

More about martingale convergence

 $3 \Longrightarrow 1$: (Noam gave this proof.) Assume every c.e. martingale converges on X. Clearly, X is ML-random. Let S be a Σ_1^0 class. Then $m(\sigma) = \mu_{\sigma}(S)$ is a c.e. martingale, so it converges on X. If $X \notin S$ and $m(X \upharpoonright n) \to \varepsilon > 0$, we can build a Martin-Löf test covering X. \Box

Lemma (Andrews, et al.)

Let X be Martin-Löf random and let d_1, d_2 be c.e. martingales such that $d_1 + d_2$ converges on X. Then both d_1 and d_2 converge on X.

Lemma (Andrews, et al.)

There is a c.e. martingale d that is universal for convergence. I.e., if d converges on $X \in 2^{\omega}$, then every c.e. martingale converges on X.

Idea.

Let d be the sum of a universal c.e. martingale and a weighted sum, taken over all Σ_1^0 classes S, of the martingales $d_S(\sigma) = \mu_{\sigma}(S)$. Together, these ensure that X is Martin-Löf random and a density-one point. Separating density-one and positive density

Theorem (Day, M.)

There is a Martin-Löf random X that is a positive density point but not a density-one point.

Together with previously discussed work:

- $\blacktriangleright X \not\geq_T \emptyset',$
- \blacktriangleright X is not Oberwolfach random, and so
- \blacktriangleright X computes every K-trivial.

This solves the covering problem.

Theorem (Day, M.; Bienvenu, Greenberg, Kučera, Nies, Turetsky) There is a Martin-Löf random $X \not\geq_T \emptyset'$ that computes every K-trivial.

The forcing partial order

Let $P \subseteq 2^{\omega}$ be a nonempty Π_1^0 class that contains only Martin-Löf random sets. The forcing partial order \mathbb{P} consists of conditions of the form $\langle \sigma, Q \rangle$, where

- $\blacktriangleright \ \sigma \in 2^{<\omega}.$
- ▶ $Q \subseteq P$ is a Π_1^0 class.
- $\blacktriangleright \ [\sigma] \cap Q \neq \emptyset.$
- ▶ There is a $\delta < 1/2$ such that

$$(\forall \rho \succeq \sigma) \ [\rho] \cap Q \neq \emptyset \implies \mu_{\rho}(Q) + \delta \ge \mu_{\rho}(P)$$

We say that $\langle \tau, R \rangle$ extends $\langle \sigma, Q \rangle$ if $\tau \succeq \sigma$ and $R \subseteq Q$. Let λ be the empty string. Note that $\langle \lambda, P \rangle \in \mathbb{P}$, with $\delta = 0$, so \mathbb{P} is nonempty.

If $G \subseteq \mathbb{P}$ is a filter, let $X_G = \bigcup_{\langle \sigma, Q \rangle \in G} \sigma$.

Properties of the forcing partial order

It is enough to prove that if $G\subseteq \mathbb{P}$ is sufficiently generic, then

- 1. $X_G \in 2^{\omega}$. In this case, $X_G \in P$ (hence it is Martin-Löf random).
- 2. $\rho(P \mid X_G) \leq 1/2$, so X_G is not a density-one point.
- 3. X_G is a positive density point.

Proof of 1. Note that if $\langle \sigma, Q \rangle \in \mathbb{P}$ and $\tau \succeq \sigma$ is such that $[\tau] \cap Q \neq \emptyset$, then $\langle \tau, Q \rangle \in \mathbb{P}$.

Proof of 2: $\rho(P \mid X_G) \le 1/2$

Fix n. We will show that the conditions forcing

$$(\exists l \ge n) \ \mu_{X_{\dot{G}} \upharpoonright l}(P) < 1/2 \tag{1}$$

are dense in \mathbb{P} . Let $\langle \sigma, Q \rangle$ be any condition and let δ witness that $\langle \sigma, Q \rangle \in \mathbb{P}$.

Take *m* such that $2^{-m} < 1/2 - \delta$. Let *Z* be the left-most path of $[\sigma] \cap Q$. The set *Z* is Martin-Löf random and consequently contains arbitrarily long intervals of 1's. Take $\tau \succeq \sigma$ such that $\tau 1^m \prec Z$ and $|\tau| \ge n$. Because *Z* is the left-most path in *Q* it follows that $\mu_{\tau}(Q) \le 2^{-m}$ and so

$$\mu_{\tau}(P) \le \mu_{\tau}(Q) + \delta \le 2^{-m} + \delta < \frac{1}{2}.$$

Hence the condition $\langle \tau, Q \rangle$ extends $\langle \sigma, Q \rangle$ and forces (1).

Proof of 3: X_G is a positive density point

Claim

Let $S \subseteq 2^{\omega}$ be a Π_1^0 class and let $\langle \sigma, Q \rangle \in \mathbb{P}$. There is an $\varepsilon > 0$ and a condition $\langle \tau, R \rangle$ extending $\langle \sigma, Q \rangle$ such that either

- ▶ $[\tau] \cap S = \emptyset$, or
- If $X \in R$, then $\rho(S \mid X) \ge \varepsilon$.

Proof.

If there is a $\tau \succeq \sigma$ such that $[\tau] \cap S = \emptyset$ and $[\tau] \cap Q \neq \emptyset$, then let $\langle \tau, Q \rangle$ be our condition.

Otherwise, $S \cap [\sigma] \supseteq Q \cap [\sigma]$. In this case, let δ witness that $\langle \sigma, Q \rangle \in \mathbb{P}$. Take ε to be a rational greater than 0 and less than $\min\{1/2 - \delta, \mu_{\sigma}(Q)\}$. (Note that $\mu_{\sigma}(Q) > 0$ because $[\sigma] \cap Q$ is a non-empty Π_{1}^{0} class containing only Martin-Löf random sets.)

Let Q^{ε} be the Π_1^0 class $\{X \in Q \cap [\sigma] \mid (\forall n \ge |\sigma|) \ \mu_{X \upharpoonright n}(Q) \ge \varepsilon\}$. We will show that $\langle \sigma, Q^{\varepsilon} \rangle$ is the required condition.

Proof of 3, continued

Let M be the set of minimal strings in $\{\rho \succeq \sigma \colon \mu_{\rho}(Q) < \varepsilon\}$. Then M is prefix-free and $Q^{\varepsilon} = Q \cap [\sigma] \smallsetminus Q \cap [M]$. Summing over M gives us $\mu_{\sigma}(Q \cap [M]) < \varepsilon$. Hence $\mu_{\sigma}(Q^{\varepsilon}) > \mu_{\sigma}(Q) - \varepsilon > 0$. This proves that $[\sigma] \cap Q^{\varepsilon} \neq \emptyset$.

If $\tau \succeq \sigma$ and $[\tau] \cap Q^{\varepsilon} \neq \emptyset$, we can use the same argument to show that $\mu_{\tau}(Q^{\varepsilon}) > \mu_{\tau}(Q) - \varepsilon$. Because $[\tau] \cap Q \neq \emptyset$,

$$\mu_{\tau}(P) \le \mu_{\tau}(Q) + \delta < \mu_{\tau}(Q^{\varepsilon}) + \varepsilon + \delta.$$

Hence $\varepsilon + \delta < 1/2$ witnesses that $\langle \sigma, Q^{\varepsilon} \rangle$ is a condition.

Note that if $X \in Q^{\varepsilon}$, then $\rho(Q \mid X) \ge \varepsilon$. This implies that $\rho(S \mid X) \ge \varepsilon$ because $S \cap [\sigma] \supseteq Q \cap [\sigma]$, proving the claim.

It is immediate from the claim that sufficient genericity ensures that X_G is a positive density point.

Variations

We have finished the proof of:

Theorem

There is a Martin-Löf random $X \not\geq_T \emptyset'$ that computes every K-trivial.

The forcing partial order actually allows us to avoid computing (countably many) non-K-trivials. Hence:

Theorem

There is a Martin-Löf random X such that the hyperarithmetical sets below X are exactly the K-trivials.

Proof...

On the other hand, by carefully effectivizing the forcing:

Theorem

There is a Martin-Löf random $X <_T \emptyset'$ that computes every K-trivial.

Day 3

Where are we now?

Let X be Martin-Löf random. The following implications hold:

Random reals that are not Oberwolfach random

Lemma (Various²)

Let $X \in 2^{\omega}$ be Martin-Löf random but not Oberwolfach random. Then X computes a function $f: \omega \to \omega$ such that for every oracle A, if X is Martin-Löf random relative to A, then f dominates every A-computable function.

Taking $A = \emptyset$, the lemma says that if X is ML-random but not Oberwolfach random, then $f \leq_T X$ dominates every computable function. In other words, X is high.

We can do significantly better.

Definition (Dobrinen, Simpson)

X is uniformly almost everywhere dominating if there is a function $f \leq_T X$ such that for almost every $A \in 2^{\omega}$, f dominates every A-computable function.

²Bienvenu, Hölzl, M., Nies proved this assuming that X is not a density-one point. Bienvenu, Greenberg, Kučera, Nies, Turetsky applied essentially the same proof assuming that X is not Oberwolfach random.

Random reals that are not Oberwolfach random

Theorem (Various)

If $X \in 2^{\omega}$ is Martin-Löf random but not Oberwolfach random, then X is uniformly almost everywhere dominating.

Proof.

Let $f \leq_T X$ be the function from the lemma. Since X is ML-random, it is ML-random relative to almost every A. For such an A, f dominates all A-computable functions.

We call X LR-hard if every set that is Martin-Löf random relative to X is 2-random (i.e., Martin-Löf random relative to \emptyset'). Kjos-Hanssen, M. and Solomon proved that X is (uniformly) almost everywhere dominating if and only if it is LR-hard. Simpson showed that such an X is superhigh $(X' \geq_{tt} \emptyset'')$.

Corollary

If a ML-random $X\in 2^\omega$ is not superhigh, then X is Oberwolfach random.

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky) If $X \in 2^{\omega}$ is Martin-Löf random but not Oberwolfach random, then X computes every K-trivial.

Proof.

Assume that A is a c.e. K-trivial set. Then A computes a function g (its settling-time function) such that any function dominating g computes A. Since A is K-trivial and therefore low for ML-randomness, X is Martin-Löf random relative to A. By the lemma, X computes a function dominating g, hence $X \geq_T A$.

Nies proved that every K-trivial is computed by a c.e. K-trivial, which completes the proof.

This is a very different proof than that given by Bienvenu, et al. In particular, they did not use the fact that every K-trivial is low for random.

Lemma (Various)

Let $X \in 2^{\omega}$ be Martin-Löf random but not Oberwolfach random. Then X computes a function $f \colon \omega \to \omega$ such that for every oracle A, if X is Martin-Löf random relative to A, then f dominates every A-computable function.

Proof.

Let $\{U_n\}_{n\in\omega}$, $\{\beta_n\}_{n\in\omega}$ be an Auckland test covering X. Let $\beta = \lim \beta_n$. (Recall that $\mu(U_n) \leq \beta - \beta_n$.) We may assume that $\{U_n\}_{n\in\omega}$ is nested.

We write $\{U_{n,s}\}_{s\in\omega}$ for a fixed effective sequence of clopen approximations to U_n . We may assume that $\mu(U_{n,s}) \leq \beta_s - \beta_n$. We may also assume that $\{U_{n,s}\}_{n\in\omega}$ is nested for each stage s. Let g(n) be the least s > n such that $X \in U_{n,s}$. Note that g is total, X-computable, and non-decreasing. Define $f \leq_T X$ by $f(n) = g^{\circ n}(0)$. (I.e., let f(0) = g(0) and, for all $n \in \omega$, let f(n+1) = g(f(n)).)

We will show that f satisfies the lemma. To see this, assume that there is an A-computable function h that is not dominated by f. We will use h to build a Solovay test relative to A that captures X. There are two cases.

Case 1: *h* dominates *f*. We may assume that $(\forall n) h(n) \ge f(n)$. Note that $(\forall n) f(n) \ge g(n)$. It is true for n = 0. If it holds for *n*, then $f(n) \ge g(n) \ge n + 1$, so $f(n + 1) = g(f(n)) \ge g(n + 1)$. Therefore, $(\forall n) h(n) \ge g(n)$.

Random but not Oberwolfach random: the Lemma

Define $k \leq_T A$ by $k(n) = h^{\circ n}(0)$ and, for all n, let

$$S_n = U_{k(n),k(n+1)} = U_{k(n),h(k(n))} \supseteq U_{k(n),g(k(n))}.$$

Therefore, $X \in S_n$. Also, $\mu(S_n) \leq \beta_{k(n+1)} - \beta_{k(n)}$. Note that $\sum_{n \in \omega} \mu(S_n) \leq \sum_{n \in \omega} \beta_{k(n+1)} - \beta_{k(n)} \leq \beta$. So $\{S_n\}_{n \in \omega}$ is a Solovay test relative to A that covers X.

Case 2: *h* does not dominate *f*. For all *n*, let $S_n = U_{h(n),h(n+1)}$. As in Case 1, $\{S_n\}_{n \in \omega}$ is Solovay test relative to *A*. We must show that it captures *X*.

By our assumption, there are infinitely many n such that $h(n) \leq f(n)$ and $h(n+1) \geq f(n+1)$. Fix such an n and note that $h(n+1) \geq f(n+1) = g(f(n)) \geq g(h(n))$. Therefore, $X \in U_{h(n),g(h(n))} \subseteq U_{h(n),h(n+1)} = S_n$. This is true for infinitely many n, so X is not Martin-Löf random relative to A.

Oberwolfach randoms are density-one points

Definition

An effective sequence $\{U_n\}_{n\in\omega}$ of Σ_1^0 classes is an Auckland test if there is a left-c.e. real β with a computable nondecreasing sequence of rational approximations $\{\beta_n\}_{n\in\omega}$ such that

$$\blacktriangleright \ \beta = \lim_{n \to \infty} \beta_n, \text{ and }$$

$$\blacktriangleright \ \mu(U_n) \le \beta - \beta_n.$$

 $X \in 2^{\omega}$ passes an Auckland test if $X \notin \bigcap_{n \in \omega} U_n$. We say that X is Oberwolfach random if it passes all Auckland tests.

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky) If $X \in 2^{\omega}$ is Oberwolfach random, then it is a density-one point. Oberwolfach randoms are density-one points

Proof.

We prove the contrapositive. Assume that X is not a density-one point. There is a rational $\varepsilon \in (0, 1)$ and a Π_1^0 class C containing X such that $\rho(C \mid X) < \varepsilon < 1$.

Let D be a prefix-free c.e. set such that $C = 2^{\omega} \smallsetminus [D]$. Let $D^n = D \smallsetminus D_n$ and let $U_n = \{X \colon (\exists k) \ \mu_{X \upharpoonright k} (2^{\omega} \smallsetminus [D^n]) < \varepsilon\}$. It is clear that $X \in \bigcap_{n \in \omega} U_n$. Note that

$$\mu(U_n) \leq \frac{1 - \mu(2^{\omega} \smallsetminus [D^n])}{1 - \varepsilon} = \frac{\mu[D^n]}{1 - \varepsilon} = \frac{\mu[D] - \mu[D_n]}{1 - \varepsilon}.$$

Therefore, $\{U_n\}_{n\in\omega}$ is an Auckland test, as witnessed by the c.e. real $\beta = \frac{\mu[D]}{1-\varepsilon}$ with approximations $\beta_n = \frac{\mu[D_n]}{1-\varepsilon}$. Hence X is not Oberwolfach random.

(back)

This page intentionally left blank

Characterizing difference randomness

Theorem (Franklin, Ng)

X is difference random iff X is Martin-Löf random and $X \not\geq_T \emptyset'$.

Proof.

Assume that X fails the difference test consisting of C and $\{V_n\}_{n\in\omega}$. We may slow down the enumeration of each V_n to ensure that $(\forall s) \ \mu(V_n \cap C[s]) \leq 2^{-n}$. Define a function $f \leq_T X$ by letting f(n) be the least s such that $X \in V_n \cap C[s]$.

Now if *n* enters \emptyset' at stage *s*, let $G_n = V_n \cap C[s]$. Otherwise, $G_n = \emptyset$. So $\{G_n\}_{n \in \omega}$ is a ML-test (that we treat as a Solovay test). If $(\exists^{\infty}n) \ n \in \emptyset' \setminus \emptyset'_{f(n)}$, then this test covers *X*, so *X* is not ML-random. Otherwise, $X \geq_T \emptyset'$.

For the other direction, first note that if X is difference random, then it is Martin-Löf random. Assume that $X \ge_T \emptyset'$. Fix a Turing functional Γ such that $\Gamma^X = \emptyset'$.

Characterizing difference randomness

We build a difference test C, $\{V_n\}_{n\in\omega}$ as follows. Let

$$C = 2^{\omega} \smallsetminus \{ X \colon (\exists n) \ \Gamma^X(n) \downarrow = 0 \text{ and } n \in \emptyset' \}.$$

By the recursion theorem, we control an infinite computable set R of positions of \emptyset' . Partition R into finite sets R_0, R_1, \dots such that $|R_n| = 2^n - 1$.

- Whenever we see $\Gamma^{\sigma} \upharpoonright R_n \downarrow = \emptyset' \upharpoonright R_n[s]$, we put $[\sigma]$ into V_n .
- ▶ Whenever we see $\mu(C \cap V_n[s]) > 2^{-n}$, we enumerate an element of R_n into \emptyset' . (This has the effect of putting $V_n[s]$ into the complement of C, hence can only happen $2^n - 1$ times.)

(back)

The construction ensures that $X \in \bigcap_{n \in \omega} V_n \cap C$ and $\mu(V_n \cap C) \leq 2^{-n}$, proving that X is not difference random.

This page intentionally left blank

Theorem (Bienvenu, Hölzl, M., Nies)

 \boldsymbol{X} is difference random iff \boldsymbol{X} is a ML-random positive density point.

Proof.

Assume that X is not a positive density point. Let C be a Π_1^0 class containing X such that $\rho(C \mid X) = 0$. For each n, let $U_n = \{Z : (\exists k) \ \mu_{Z \upharpoonright k}(C) < 2^{-n}\}$. Then $\mu(C \cap U_n) \leq 2^{-n}$, so C and $\{U_n\}_{n \in \omega}$ form a difference test covering X.

For the other direction, let C, $\{V_n\}_{n \in \omega}$ be a difference test covering X. Assume that X is ML-random and fix $r \in \omega$. We will show that there is a $\sigma \prec X$ for which $\mu_{\sigma}(C) \leq 2^{-r}$.

We define an effective sequence of Σ_1^0 classes $\{G_m\}_{m\in\omega}$ with $\mu(G_m) \leq (1-2^{-r-1})^m$. Let $G_0 = 2^{\omega}$. Suppose that G_m has been defined. Let B_m be a prefix-free c.e. set such that $G_m = [B_m]$.

Characterizing ML-random positive density points

We define G_{m+1} as follows. When a string σ enters B_m , we put

$$\left(V_{|\sigma|+r+1} \cap [\sigma]\right)^{(\leq 2^{-|\sigma|}(1-2^{-r-1}))}$$

into G_{m+1} . (If W is a Σ_1^0 class, $W^{(\leq \varepsilon)}$ is the same class except restricted to measure ε .) It is not hard to see that

$$\mu(G_{m+1}) \le (1 - 2^{-r-1})\mu(G_m) \le (1 - 2^{-r-1})^{m+1}$$

Since X is ML-random, there is a minimal m such that $X \notin G_m$. The minimality of m implies that there is a $\sigma \in B_{m-1}$ with $\sigma \prec X$. Let $V = V_{|\sigma|+r+1}$. Note that $\mu_{\sigma}(V) > 1 - 2^{-r-1}$, otherwise X would enter G_m . Also $\mu_{\sigma}(C \cap V) \leq 2^{|\sigma|} \mu(C \cap V) \leq 2^{-r-1}$ by the definition of a difference test. But $\mu_{\sigma}(C) + \mu_{\sigma}(V) - \mu_{\sigma}(C \cap V) \leq 1$, which implies that $\mu_{\sigma}(C) \leq 2^{-r}$, as required.

Since r was arbitrary, $\rho(C \mid X) = 0$.

(back)

This page intentionally left blank

If A is not K-trivial, we can force $X_G \not\geq_T A$

Claim

Assume that $A \in 2^{\omega}$ is not *K*-trivial, $\langle \sigma, Q \rangle \in \mathbb{P}$, and Φ is a Turing functional. There is a $\tau \in 2^{<\omega}$ such that $\langle \tau, Q \rangle$ extends $\langle \sigma, Q \rangle$ and

$$(\forall X \in [\tau] \cap Q)[\ \Phi^X = A \implies X \text{ is not difference random }].$$

Proof.

If there is a $\rho \succeq \sigma$ and an n such that $\Phi^{\rho}(n) \downarrow \neq A(n)$ and $[\rho] \cap Q \neq \emptyset$, then take $\tau = \rho$. Assume that no such ρ and n exist.

Define $V_n = \{X : X \in U_n[\Phi^X]\}$, where $U_n[Z]$ is the *n*th level of the universal Martin-Löf test relative to Z. If $X \in V_n \cap [\sigma] \cap Q$, then because Φ^X is not incompatible with A, we have $X \in U_n[\Phi^X] \subseteq U_n[A]$. Hence $\mu(V_n \cap [\sigma] \cap Q) \leq \mu(U_n[A]) \leq 2^{-n}$. In other words, Q and $\{V_n \cap [\sigma]\}_{n \in \omega}$ form a difference test.

If A is not K-trivial, we can force $X_G \not\geq_T A$

Now assume that $X \in [\sigma] \cap Q$ and $\Phi^X = A$. Because A is not a base for randomness, $X \in U_n[A] = U_n[\Phi^X]$ for all n. Therefore, $X \in \bigcap_{n \in \omega} V_n \cap [\sigma] \cap Q$, so X is not difference random. Hence the claim is satisfied by taking $\tau = \sigma$.

We have already shown that if $G \subseteq \mathbb{P}$ is sufficiently generic, then X_G is a positive density point, hence it is difference random.

So the claim shown that if $G \subseteq \mathbb{P}$ is sufficiently generic relative to A, then X_G does not compute A. We can build G to ensure that X_G does not compute any member of a countable set of non-K-trivials (e.g., all non-K-trivial hyperarithmetical sets).

(back)