Lebesgue density in Π_{1}^{0} classes (and K-triviality)

Joe Miller
+ many others

Day 1

Lebesgue density

Notation

For $\sigma \in 2^{<\omega}$, let $\mu_{\sigma}(C)=\frac{\mu([\sigma] \cap C)}{\mu([\sigma])}$.
(Here, μ is the standard Lebesgue measure on Cantor space.) So $\mu_{\sigma}(C)$ is the fraction of $[\sigma]$ occupied by C.

Definition

Let $C \subseteq 2^{\omega}$ be measurable. The lower density ${ }^{1}$ of C at X is

$$
\rho(C \mid X)=\liminf _{n} \mu_{X \upharpoonright n}(C) .
$$

Lebesgue Density Theorem

If $C \subseteq 2^{\omega}$ is measurable, then $\rho(C \mid X)=1$ for almost every $X \in C$.

[^0]
Lebesgue density for Π_{1}^{0} classes

We want to understand the density points of Π_{1}^{0} classes.

Definition

- $X \in 2^{\omega}$ is a density-one point if $\rho(C \mid X)=1$ for every Π_{1}^{0} class C containing X.
- $X \in 2^{\omega}$ is a positive density point if $\rho(C \mid X)>0$ for every Π_{1}^{0} class C containing X.

Very basic observations:

1. Density-one \Longrightarrow positive density.
2. Almost every $X \in 2^{\omega}$ is a density-one point.
3. Every 1-generic is a density-one point, so it is not a randomness notion.

We avoid 3 by restricting our attention to Martin-Löf random X.

What Noam told us

Let X be Martin-Löf random. The following implications hold:

What I am planning to tell you

Let X be Martin-Löf random. The following implications hold:

Bounding density drops

Lemma

Let $C \subseteq 2^{\omega}$ be a closed set. Fix $\varepsilon \in(0,1)$ and let

$$
U=\left\{X:(\exists k) \mu_{X \upharpoonright k}(C)<\varepsilon\right\} .
$$

Then

1. $\mu(U \cap C) \leq \varepsilon$, and
2. $\mu(U) \leq \frac{1-\mu(C)}{1-\varepsilon}$.

Proof.

Let D be the minimal strings σ such that $\mu_{\sigma}(C)<\varepsilon$. Then D is prefix-free and $[D]=U$.

For 1,
$\mu(U \cap C)=\mu([D] \cap C)=\sum_{\sigma \in D} \mu([\sigma] \cap C) \leq \sum_{\sigma \in D} \mu([\sigma]) \varepsilon=\mu([D]) \varepsilon \leq \varepsilon$.

Bounding density drops

For 2,

$$
\begin{aligned}
& 1-\mu(C) \geq \mu([D] \backslash C)=\sum_{\sigma \in D} \mu([\sigma] \backslash C) \\
= & \sum_{\sigma \in D} \mu([\sigma])-\mu([\sigma] \cap C) \geq \sum_{\sigma \in D} \mu([\sigma])-\mu([\sigma]) \varepsilon \\
= & \sum_{\sigma \in D} \mu([\sigma])(1-\varepsilon)=\mu([D])(1-\varepsilon)=\mu(U)(1-\varepsilon) .
\end{aligned}
$$

An application of 2:
Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If $X \in 2^{\omega}$ is Oberwolfach random, then it is a density-one point.
Proof. . .

Difference randomness and positive density

Definition

- A difference test is a Π_{1}^{0} class C and an effective sequence $\left\{V_{n}\right\}_{n \in \omega}$ of Σ_{1}^{0} classes such that $\mu\left(V_{n} \cap C\right) \leq 2^{-n}$.
- $X \in 2^{\omega}$ is difference random if for every difference test $C,\left\{V_{n}\right\}_{n \in \omega}$, there is an n such that $X \notin V_{n} \cap C$.

Theorem (Franklin, Ng)
X is difference random iff X is Martin-Löf random and $X \nsupseteq T \emptyset^{\prime}$.
Proof. . .

Theorem (Bienvenu, Hölzl, M., Nies)
X is difference random iff X is a ML-random positive density point.
Proof. . .

Aside: Cupping with incomplete random sets

Definition (Kučera 2004)
$A \in 2^{\omega}$ is weakly ML-cuppable if there is a Martin-Löf random $X \not ¥_{T} \emptyset^{\prime}$ such that $A \oplus X \geq_{T} \emptyset^{\prime}$. If one can choose $X<_{T} \emptyset^{\prime}$, then A is ML-cuppable.

Question (Kučera)

Can the K-trivial sets be characterized as either

1. not weakly ML-cuppable, or
$2 . \leq_{T} \emptyset^{\prime}$ and not ML-cuppable?

Compare this to:
Theorem (Posner, Robinson)
For every $A>_{T} \emptyset$ there is a 1 -generic X such that $A \oplus X \geq_{T} \emptyset^{\prime}$. If $A \leq_{T} \emptyset^{\prime}$, then also $X \leq_{T} \emptyset^{\prime}$.

Aside: Cupping with incomplete random sets

Question (Kučera 2004)
Can the K-trivial sets be characterized as either

1. not weakly ML-cuppable, or
2. $\leq_{T} \emptyset^{\prime}$ and not ML-cuppable?

Answer (Day, M.): Yes, both.
Theorem (Day, M.)
If A is not K-trivial, then it is weakly ML-cuppable. If $A<_{T} \emptyset^{\prime}$ is not K-trivial, then it is ML-cuppable.

These are proved by straightforward constructions. It is the other direction I want to focus on.

Theorem (Day, M.)
If A is K-trivial, then it is not weakly ML-cuppable.

We need a Lemma

Assume that A is K-trivial, X is ML-random, and $C \subseteq 2^{\omega}$ is a $\Pi_{1}^{0}[A]$ class containing X. Then there is a Π_{1}^{0} class $D \subseteq C$ containing X.
Proof.
Let $F \subseteq 2^{<\omega}$ be an A-c.e. set such that $2^{\omega} \backslash C=[F]$. We may assume that F is prefix-free, so by the optimality of K^{A}, there is a c such that $K^{A}(\sigma) \leq|\sigma|+c$ for all $\sigma \in F$. But A is low for K, so there is a d such that $K(\sigma) \leq|\sigma|+d$ for all $\sigma \in F$.
Let $G=\{\sigma: K(\sigma) \leq|\sigma|+d\}$. Note that

1. G is c.e.,
2. $G \supseteq F$, and
3. $\sum_{\sigma \in G} 2^{-|\sigma|} \leq \sum_{\sigma \in G} 2^{-K(\sigma)+d} \leq 2^{d}<\infty$.

Because X is Martin-Löf random and G is a Solovay test, there are only finitely many $\sigma \in G$ such that $\sigma \prec X$. No such σ is in F, so we may remove them from G while preserving 1-3. Let $D=2^{\omega} \backslash[G]$. Note that D is a Π_{1}^{0} class, $D \subseteq C, X \in D$.

Aside: Cupping with incomplete random sets

Theorem (Day, M.)

If A is K-trivial, then it is not weakly ML-cuppable.
Proof.
Let A be K-trivial, X Martin-Löf random, and $A \oplus X \geq_{T} \emptyset^{\prime}$. We will show that $X \geq_{T} \emptyset^{\prime}$.
Because A is K-trivial it is low $\left(\emptyset^{\prime} \geq_{T} A^{\prime}\right)$, hence $A \oplus X \geq_{T} A^{\prime}$. It is also low for random, so X is Martin-Löf random relative to A. Therefore, by the Bienvenu et al. result relativized to A, there is a $\Pi_{1}^{0}[A]$ class C containing X such that $\rho(C \mid X)=0$.
By the lemma, there is a Π_{1}^{0} class $D \subseteq C$ containing X. But then $\rho(D \mid X)=0$, so by the Bienvenu et al. result, $X \geq_{T} \emptyset^{\prime}$. In other words, X does not witness the weak ML-cuppability of A.

Day 2

Where are we now?

Let X be Martin-Löf random. The following implications hold:

Madison tests

Andrews, Cai, Diamondstone, Lempp and M. gave a test characterization of Martin-Löf random density-one points.

Definition
The weight of $U \subseteq 2^{<\omega}$ is $\mathrm{wt}(U)=\sum_{\sigma \in U} 2^{-|\sigma|}$.
Notation: For $\sigma \in 2^{<\omega},[\sigma]^{\prec}=\left\{\tau \in 2^{<\omega} \mid \sigma \prec \tau\right\}$.

Definition
A Madison test is a finite weight Δ_{2}^{0} set $U \subseteq 2^{<\omega}$ with a distinguished sequence $\left\{U_{s}\right\}_{s \in \omega}$ of finite approximations such that

1. $\tau \in U_{s} \backslash U_{s+1} \Longrightarrow(\exists \sigma \prec \tau) \sigma \in U_{s+1} \backslash U_{s}$, and
2. $\operatorname{wt}\left(U_{s} \cap[\sigma]^{\prec}\right)>2^{-|\sigma|} \Longrightarrow \sigma \in U_{s}$.
$X \in 2^{\omega}$ passes a Madison test U if at most finitely many prefixes of X are in U.

Madison tests and density

Theorem (Andrews, et al.)
The following are equivalent for $X \in 2^{\omega}$:

1. X is a Martin-Löf random density-one point,
2. X passes all Madison tests,
3. Every c.e. martingale converges on X.

Proof.
$1 \Longrightarrow 2$: Suppose that X is ML-random but fails the Madison test U. Uniformly in n, build a Σ_{1}^{0} class S_{n} such that $\mu\left(S_{n}\right) \leq 2^{-n} \mathrm{wt}(U)$ and for each $\sigma \in U$ we have $\mu_{\sigma}\left(S_{n}\right) \geq 2^{-n}$. To do this, associate every $\tau \in U_{s} \backslash U_{s+1}$ with a prefix $\sigma \in U_{s+1} \backslash U_{s}$. When σ enters U_{s+1}, it inherits the part of S_{n} that is owned by each associated τ. Then add more to S_{n} until $\mu_{\sigma}\left(S_{n}\right) \geq 2^{-n}$.

Because $\left\{S_{n}\right\}_{n \in \omega}$ is a Martin-Löf test, there is an n such that $X \notin S_{n}$. So $C=2^{\omega} \backslash S_{n}$ is a Π_{1}^{0} class containing X and such that $\rho(C \mid X) \leq 1-2^{-n}$.

Madison tests and martingale convergence

$2 \Longrightarrow 3$: Assume that X passes all Madison tests.
Claim: X is Martin-Löf random.
To see this, let $\left\{U_{n}\right\}$ be a Martin-Löf test covering X. We may assume that each U_{n} is given in the form $\left[D_{n}\right]$, where D_{n} is c.e. and prefix-free. Let $V_{0}=D_{0}$. If $\tau \in V_{n}$, enumerate $D_{|\tau|+1} \cap[\tau]$ into V_{n+1}. Then $V=\bigcup_{n \in \omega} V_{n}$ is a Madison test covering X.
Now let d be a c.e. martingale that diverges along X. Fix a rational $\varepsilon>0$ such that $\varepsilon<\limsup _{n} d(X \upharpoonright n)-\liminf _{n} d(X \upharpoonright n)$. Let $\left\{d_{s}\right\}_{s \in \omega}$ be a nondecreasing sequence of computable martingales with limit d, and let $d^{s}=d-d_{s}$. Assume d_{0} is the zero martingale, so $d^{0}=d$.

Fact: Computable martingales converge on computably random reals.
Therefore, $\varepsilon<\limsup _{n} d^{s}(X \upharpoonright n)-\liminf _{n} d^{s}(X \upharpoonright n)$. So for every s there are arbitrarily long k such that $d^{s}(X \upharpoonright k)>\varepsilon$.

Madison tests and martingale convergence

We build a Madison test $V=\bigcup_{n \in \omega} V_{n}$, where V_{0} consists of the minimal strings σ where $d^{0}(\sigma)>\varepsilon$. If τ is in V_{n}, then it satisfied some condition of the form $d^{s}(\tau)=d(\tau)-d_{s}(\tau)>\varepsilon$. Let t be least such that $d_{t}(\tau)-d_{s}(\tau)>\varepsilon$ and let $V_{n+1} \cap[\tau]^{\prec}$ consist of the minimal strings $\sigma \succ \tau$ where $d^{t}(\sigma)>\varepsilon$.

We claim that V, with the natural sequence of approximations, is a Madison test. We only remove a string σ from $V[s]$ because we realized that it, or some prefix, is not minimal, in which case a prefix of σ appears in $V[s+1]$. So V satisfies condition 1 .
Assume $\tau \in V_{n}$ as witnessed by $d_{t}(\tau)-d_{s}(\tau)>\varepsilon$. If $\rho \succeq \tau$, then $d^{t}(\rho) 2^{-|\rho|} \geq \varepsilon \mathrm{wt}\left(V_{n+1} \cap[\rho]^{\prec}\right)$. Applying this inductively, for any $\rho \succ \tau$ we have $d^{t}(\rho) 2^{-|\rho|} \geq \varepsilon \mathrm{wt}\left(V \cap[\rho]^{\prec}\right)$. Assume that τ is the longest proper prefix of ρ in V. Then if $\operatorname{wt}\left(V \cap[\rho]^{\prec}\right)>2^{-|\rho|}$, we have $d^{t}(\rho)>\varepsilon$, so $\rho \in V_{n+1}$. (The same reasoning holds for the finite approximations.) This proves that V satisfies condition 2, so it is a Madison test.

We have already argued that X fails V, which is a contradiction.

More about martingale convergence

$3 \Longrightarrow 1:($ Noam gave this proof.) Assume every c.e. martingale converges on X. Clearly, X is ML-random. Let S be a Σ_{1}^{0} class. Then $m(\sigma)=\mu_{\sigma}(S)$ is a c.e. martingale, so it converges on X. If $X \notin S$ and $m(X \upharpoonright n) \rightarrow \varepsilon>0$, we can build a Martin-Löf test covering X.

Lemma (Andrews, et al.)
Let X be Martin-Löf random and let d_{1}, d_{2} be c.e. martingales such that $d_{1}+d_{2}$ converges on X. Then both d_{1} and d_{2} converge on X.

Lemma (Andrews, et al.)

There is a c.e. martingale d that is universal for convergence. I.e., if d converges on $X \in 2^{\omega}$, then every c.e. martingale converges on X.

Idea.

Let d be the sum of a universal c.e. martingale and a weighted sum, taken over all Σ_{1}^{0} classes S, of the martingales $d_{S}(\sigma)=\mu_{\sigma}(S)$. Together, these ensure that X is Martin-Löf random and a density-one point.

Separating density-one and positive density

Theorem (Day, M.)
There is a Martin-Löf random X that is a positive density point but not a density-one point.

Together with previously discussed work:

- $X \not ¥_{T} \emptyset^{\prime}$,
- X is not Oberwolfach random, and so
- X computes every K-trivial.

This solves the covering problem.
Theorem (Day, M.; Bienvenu, Greenberg, Kučera, Nies, Turetsky) There is a Martin-Löf random $X \not{ }_{T} \emptyset^{\prime}$ that computes every K-trivial.

The forcing partial order

Let $P \subseteq 2^{\omega}$ be a nonempty Π_{1}^{0} class that contains only Martin-Löf random sets. The forcing partial order \mathbb{P} consists of conditions of the form $\langle\sigma, Q\rangle$, where

- $\sigma \in 2^{<\omega}$.
- $Q \subseteq P$ is a Π_{1}^{0} class.
- $[\sigma] \cap Q \neq \emptyset$.
- There is a $\delta<1 / 2$ such that

$$
(\forall \rho \succeq \sigma)[\rho] \cap Q \neq \emptyset \Longrightarrow \mu_{\rho}(Q)+\delta \geq \mu_{\rho}(P)
$$

We say that $\langle\tau, R\rangle$ extends $\langle\sigma, Q\rangle$ if $\tau \succeq \sigma$ and $R \subseteq Q$. Let λ be the empty string. Note that $\langle\lambda, P\rangle \in \mathbb{P}$, with $\delta=0$, so \mathbb{P} is nonempty. If $G \subseteq \mathbb{P}$ is a filter, let $X_{G}=\bigcup_{\langle\sigma, Q\rangle \in G} \sigma$.

Properties of the forcing partial order

It is enough to prove that if $G \subseteq \mathbb{P}$ is sufficiently generic, then

1. $X_{G} \in 2^{\omega}$. In this case, $X_{G} \in P$ (hence it is Martin-Löf random).
2. $\rho\left(P \mid X_{G}\right) \leq 1 / 2$, so X_{G} is not a density-one point.
3. X_{G} is a positive density point.

Proof of 1.
Note that if $\langle\sigma, Q\rangle \in \mathbb{P}$ and $\tau \succeq \sigma$ is such that $[\tau] \cap Q \neq \emptyset$, then $\langle\tau, Q\rangle \in \mathbb{P}$.

Proof of 2: $\rho\left(P \mid X_{G}\right) \leq 1 / 2$

Fix n. We will show that the conditions forcing

$$
\begin{equation*}
(\exists l \geq n) \mu_{X_{\dot{G}} \upharpoonright l}(P)<1 / 2 \tag{1}
\end{equation*}
$$

are dense in \mathbb{P}. Let $\langle\sigma, Q\rangle$ be any condition and let δ witness that $\langle\sigma, Q\rangle \in \mathbb{P}$.

Take m such that $2^{-m}<1 / 2-\delta$. Let Z be the left-most path of $[\sigma] \cap Q$. The set Z is Martin-Löf random and consequently contains arbitrarily long intervals of 1's. Take $\tau \succeq \sigma$ such that $\tau 1^{m} \prec Z$ and $|\tau| \geq n$. Because Z is the left-most path in Q it follows that $\mu_{\tau}(Q) \leq 2^{-m}$ and so

$$
\mu_{\tau}(P) \leq \mu_{\tau}(Q)+\delta \leq 2^{-m}+\delta<\frac{1}{2} .
$$

Hence the condition $\langle\tau, Q\rangle$ extends $\langle\sigma, Q\rangle$ and forces (1).

Proof of 3: X_{G} is a positive density point

Claim

Let $S \subseteq 2^{\omega}$ be a Π_{1}^{0} class and let $\langle\sigma, Q\rangle \in \mathbb{P}$. There is an $\varepsilon>0$ and a condition $\langle\tau, R\rangle$ extending $\langle\sigma, Q\rangle$ such that either

- $[\tau] \cap S=\emptyset$, or
- If $X \in R$, then $\rho(S \mid X) \geq \varepsilon$.

Proof.
If there is a $\tau \succeq \sigma$ such that $[\tau] \cap S=\emptyset$ and $[\tau] \cap Q \neq \emptyset$, then let $\langle\tau, Q\rangle$ be our condition.

Otherwise, $S \cap[\sigma] \supseteq Q \cap[\sigma]$. In this case, let δ witness that $\langle\sigma, Q\rangle \in \mathbb{P}$. Take ε to be a rational greater than 0 and less than $\min \left\{1 / 2-\delta, \mu_{\sigma}(Q)\right\}$. (Note that $\mu_{\sigma}(Q)>0$ because $[\sigma] \cap Q$ is a non-empty Π_{1}^{0} class containing only Martin-Löf random sets.)

Let Q^{ε} be the Π_{1}^{0} class $\left\{X \in Q \cap[\sigma] \mid(\forall n \geq|\sigma|) \mu_{X \mid n}(Q) \geq \varepsilon\right\}$. We will show that $\left\langle\sigma, Q^{\varepsilon}\right\rangle$ is the required condition.

Proof of 3, continued

Let M be the set of minimal strings in $\left\{\rho \succeq \sigma: \mu_{\rho}(Q)<\varepsilon\right\}$. Then M is prefix-free and $Q^{\varepsilon}=Q \cap[\sigma] \backslash Q \cap[M]$. Summing over M gives us $\mu_{\sigma}(Q \cap[M])<\varepsilon$. Hence $\mu_{\sigma}\left(Q^{\varepsilon}\right)>\mu_{\sigma}(Q)-\varepsilon>0$. This proves that $[\sigma] \cap Q^{\varepsilon} \neq \emptyset$.

If $\tau \succeq \sigma$ and $[\tau] \cap Q^{\varepsilon} \neq \emptyset$, we can use the same argument to show that $\mu_{\tau}\left(Q^{\varepsilon}\right)>\mu_{\tau}(Q)-\varepsilon$. Because $[\tau] \cap Q \neq \emptyset$,

$$
\mu_{\tau}(P) \leq \mu_{\tau}(Q)+\delta<\mu_{\tau}\left(Q^{\varepsilon}\right)+\varepsilon+\delta .
$$

Hence $\varepsilon+\delta<1 / 2$ witnesses that $\left\langle\sigma, Q^{\varepsilon}\right\rangle$ is a condition.
Note that if $X \in Q^{\varepsilon}$, then $\rho(Q \mid X) \geq \varepsilon$. This implies that $\rho(S \mid X) \geq \varepsilon$ because $S \cap[\sigma] \supseteq Q \cap[\sigma]$, proving the claim.

It is immediate from the claim that sufficient genericity ensures that X_{G} is a positive density point.

Variations

We have finished the proof of:
Theorem
There is a Martin-Löf random $X \not ¥_{T} \emptyset^{\prime}$ that computes every K-trivial.

The forcing partial order actually allows us to avoid computing (countably many) non- K-trivials. Hence:

Theorem

There is a Martin-Löf random X such that the hyperarithmetical sets below X are exactly the K-trivials.

Proof. . .

On the other hand, by carefully effectivizing the forcing:
Theorem
There is a Martin-Löf random $X<_{T} \emptyset^{\prime}$ that computes every K-trivial.

Day 3

Where are we now?

Let X be Martin-Löf random. The following implications hold:

Random reals that are not Oberwolfach random

Lemma (Various ${ }^{2}$)

Let $X \in 2^{\omega}$ be Martin-Löf random but not Oberwolfach random. Then X computes a function $f: \omega \rightarrow \omega$ such that for every oracle A, if X is Martin-Löf random relative to A, then f dominates every A-computable function.

Taking $A=\emptyset$, the lemma says that if X is ML-random but not Oberwolfach random, then $f \leq_{T} X$ dominates every computable function. In other words, X is high.

We can do significantly better.
Definition (Dobrinen, Simpson)
X is uniformly almost everywhere dominating if there is a function $f \leq_{T} X$ such that for almost every $A \in 2^{\omega}, f$ dominates every A-computable function.

[^1]
Random reals that are not Oberwolfach random

Theorem (Various)

If $X \in 2^{\omega}$ is Martin-Löf random but not Oberwolfach random, then X is uniformly almost everywhere dominating.

Proof.
Let $f \leq_{T} X$ be the function from the lemma. Since X is ML-random, it is ML-random relative to almost every A. For such an A, f dominates all A-computable functions.

We call X LR-hard if every set that is Martin-Löf random relative to X is 2-random (i.e., Martin-Löf random relative to \emptyset^{\prime}). Kjos-Hanssen, M. and Solomon proved that X is (uniformly) almost everywhere dominating if and only if it is LR-hard. Simpson showed that such an X is superhigh ($X^{\prime} \geq_{t t} \emptyset^{\prime \prime}$).

Corollary
If a ML-random $X \in 2^{\omega}$ is not superhigh, then X is Oberwolfach random.

Random reals that are not Oberwolfach random

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If $X \in 2^{\omega}$ is Martin-Löf random but not Oberwolfach random, then X computes every K-trivial.

Proof.

Assume that A is a c.e. K-trivial set. Then A computes a function g (its settling-time function) such that any function dominating g computes A. Since A is K-trivial and therefore low for ML-randomness, X is Martin-Löf random relative to A. By the lemma, X computes a function dominating g, hence $X \geq_{T} A$.

Nies proved that every K-trivial is computed by a c.e. K-trivial, which completes the proof.

This is a very different proof than that given by Bienvenu, et al. In particular, they did not use the fact that every K-trivial is low for random.

Random but not Oberwolfach random: the Lemma

Lemma (Various)

Let $X \in 2^{\omega}$ be Martin-Löf random but not Oberwolfach random. Then X computes a function $f: \omega \rightarrow \omega$ such that for every oracle A, if X is Martin-Löf random relative to A, then f dominates every A-computable function.

Proof.
Let $\left\{U_{n}\right\}_{n \in \omega},\left\{\beta_{n}\right\}_{n \in \omega}$ be an Auckland test covering X. Let $\beta=\lim \beta_{n}$. (Recall that $\mu\left(U_{n}\right) \leq \beta-\beta_{n}$.) We may assume that $\left\{U_{n}\right\}_{n \in \omega}$ is nested.

We write $\left\{U_{n, s}\right\}_{s \in \omega}$ for a fixed effective sequence of clopen approximations to U_{n}. We may assume that $\mu\left(U_{n, s}\right) \leq \beta_{s}-\beta_{n}$. We may also assume that $\left\{U_{n, s}\right\}_{n \in \omega}$ is nested for each stage s.

Random but not Oberwolfach random: the Lemma

Let $g(n)$ be the least $s>n$ such that $X \in U_{n, s}$. Note that g is total, X-computable, and non-decreasing. Define $f \leq_{T} X$ by $f(n)=g^{\circ n}(0)$. (I.e., let $f(0)=g(0)$ and, for all $n \in \omega$, let $f(n+1)=g(f(n))$.)

We will show that f satisfies the lemma. To see this, assume that there is an A-computable function h that is not dominated by f. We will use h to build a Solovay test relative to A that captures X. There are two cases.

Case 1: h dominates f. We may assume that $(\forall n) h(n) \geq f(n)$. Note that $(\forall n) f(n) \geq g(n)$. It is true for $n=0$. If it holds for n, then $f(n) \geq g(n) \geq n+1$, so $f(n+1)=g(f(n)) \geq g(n+1)$. Therefore, $(\forall n) h(n) \geq g(n)$.

Random but not Oberwolfach random: the Lemma

Define $k \leq_{T} A$ by $k(n)=h^{\circ n}(0)$ and, for all n, let

$$
S_{n}=U_{k(n), k(n+1)}=U_{k(n), h(k(n))} \supseteq U_{k(n), g(k(n))} .
$$

Therefore, $X \in S_{n}$. Also, $\mu\left(S_{n}\right) \leq \beta_{k(n+1)}-\beta_{k(n)}$. Note that $\sum_{n \in \omega} \mu\left(S_{n}\right) \leq \sum_{n \in \omega} \beta_{k(n+1)}-\beta_{k(n)} \leq \beta$. So $\left\{S_{n}\right\}_{n \in \omega}$ is a Solovay test relative to A that covers X.

Case 2: h does not dominate f. For all n, let $S_{n}=U_{h(n), h(n+1)}$. As in Case $1,\left\{S_{n}\right\}_{n \in \omega}$ is Solovay test relative to A. We must show that it captures X.

By our assumption, there are infinitely many n such that $h(n) \leq f(n)$ and $h(n+1) \geq f(n+1)$. Fix such an n and note that $h(n+1) \geq f(n+1)=g(f(n)) \geq g(h(n))$. Therefore, $X \in U_{h(n), g(h(n))} \subseteq U_{h(n), h(n+1)}=S_{n}$. This is true for infinitely many n, so X is not Martin-Löf random relative to A.

- THANK YOU! -

Oberwolfach randoms are density-one points

Definition
An effective sequence $\left\{U_{n}\right\}_{n \in \omega}$ of Σ_{1}^{0} classes is an Auckland test if there is a left-c.e. real β with a computable nondecreasing sequence of rational approximations $\left\{\beta_{n}\right\}_{n \in \omega}$ such that

- $\beta=\lim _{n \rightarrow \infty} \beta_{n}$, and
- $\mu\left(U_{n}\right) \leq \beta-\beta_{n}$.
$X \in 2^{\omega}$ passes an Auckland test if $X \notin \bigcap_{n \in \omega} U_{n}$. We say that X is Oberwolfach random if it passes all Auckland tests.

Theorem (Bienvenu, Greenberg, Kučera, Nies, Turetsky)
If $X \in 2^{\omega}$ is Oberwolfach random, then it is a density-one point.

Oberwolfach randoms are density-one points

Proof.

We prove the contrapositive. Assume that X is not a density-one point. There is a rational $\varepsilon \in(0,1)$ and a Π_{1}^{0} class C containing X such that $\rho(C \mid X)<\varepsilon<1$.
Let D be a prefix-free c.e. set such that $C=2^{\omega} \backslash[D]$. Let $D^{n}=D \backslash D_{n}$ and let $U_{n}=\left\{X:(\exists k) \mu_{X \upharpoonright k}\left(2^{\omega} \backslash\left[D^{n}\right]\right)<\varepsilon\right\}$. It is clear that $X \in \bigcap_{n \in \omega} U_{n}$. Note that

$$
\mu\left(U_{n}\right) \leq \frac{1-\mu\left(2^{\omega} \backslash\left[D^{n}\right]\right)}{1-\varepsilon}=\frac{\mu\left[D^{n}\right]}{1-\varepsilon}=\frac{\mu[D]-\mu\left[D_{n}\right]}{1-\varepsilon}
$$

Therefore, $\left\{U_{n}\right\}_{n \in \omega}$ is an Auckland test, as witnessed by the c.e. real $\beta=\frac{\mu[D]}{1-\varepsilon}$ with approximations $\beta_{n}=\frac{\mu\left[D_{n}\right]}{1-\varepsilon}$. Hence X is not
Oberwolfach random.

This page intentionally left blank

Characterizing difference randomness

Theorem (Franklin, Ng)

X is difference random iff X is Martin-Löf random and $X \not ¥_{T} \emptyset^{\prime}$.
Proof.
Assume that X fails the difference test consisting of C and $\left\{V_{n}\right\}_{n \in \omega}$. We may slow down the enumeration of each V_{n} to ensure that $(\forall s) \mu\left(V_{n} \cap C[s]\right) \leq 2^{-n}$. Define a function $f \leq_{T} X$ by letting $f(n)$ be the least s such that $X \in V_{n} \cap C[s]$.

Now if n enters \emptyset^{\prime} at stage s, let $G_{n}=V_{n} \cap C[s]$. Otherwise, $G_{n}=\emptyset$. So $\left\{G_{n}\right\}_{n \in \omega}$ is a ML-test (that we treat as a Solovay test). If $\left(\exists^{\infty} n\right) n \in \emptyset^{\prime} \backslash \emptyset_{f(n)}^{\prime}$, then this test covers X, so X is not ML-random. Otherwise, $X \geq_{T} \emptyset^{\prime}$.

For the other direction, first note that if X is difference random, then it is Martin-Löf random. Assume that $X \geq_{T} \emptyset^{\prime}$. Fix a Turing functional Γ such that $\Gamma^{X}=\emptyset^{\prime}$.

Characterizing difference randomness

We build a difference test $C,\left\{V_{n}\right\}_{n \in \omega}$ as follows. Let

$$
C=2^{\omega} \backslash\left\{X:(\exists n) \Gamma^{X}(n) \downarrow=0 \text { and } n \in \emptyset^{\prime}\right\} .
$$

By the recursion theorem, we control an infinite computable set R of positions of \emptyset^{\prime}. Partition R into finite sets R_{0}, R_{1}, \ldots such that $\left|R_{n}\right|=2^{n}-1$.

- Whenever we see $\Gamma^{\sigma} \upharpoonright R_{n} \downarrow=\emptyset^{\prime} \upharpoonright R_{n}[s]$, we put $[\sigma]$ into V_{n}.
- Whenever we see $\mu\left(C \cap V_{n}[s]\right)>2^{-n}$, we enumerate an element of R_{n} into \emptyset^{\prime}. (This has the effect of putting $V_{n}[s]$ into the complement of C, hence can only happen $2^{n}-1$ times.)

The construction ensures that $X \in \bigcap_{n \in \omega} V_{n} \cap C$ and $\mu\left(V_{n} \cap C\right) \leq 2^{-n}$, proving that X is not difference random.

This page intentionally left blank

Characterizing ML-random positive density points

Theorem (Bienvenu, Hölzl, M., Nies)

X is difference random iff X is a ML-random positive density point.
Proof.
Assume that X is not a positive density point. Let C be a Π_{1}^{0} class containing X such that $\rho(C \mid X)=0$. For each n, let
$U_{n}=\left\{Z:(\exists k) \mu_{Z \upharpoonright k}(C)<2^{-n}\right\}$. Then $\mu\left(C \cap U_{n}\right) \leq 2^{-n}$, so C and $\left\{U_{n}\right\}_{n \in \omega}$ form a difference test covering X.

For the other direction, let $C,\left\{V_{n}\right\}_{n \in \omega}$ be a difference test covering X. Assume that X is ML-random and fix $r \in \omega$. We will show that there is a $\sigma \prec X$ for which $\mu_{\sigma}(C) \leq 2^{-r}$.

We define an effective sequence of Σ_{1}^{0} classes $\left\{G_{m}\right\}_{m \in \omega}$ with $\mu\left(G_{m}\right) \leq\left(1-2^{-r-1}\right)^{m}$. Let $G_{0}=2^{\omega}$. Suppose that G_{m} has been defined. Let B_{m} be a prefix-free c.e. set such that $G_{m}=\left[B_{m}\right]$.

Characterizing ML-random positive density points

We define G_{m+1} as follows. When a string σ enters B_{m}, we put

$$
\left(V_{|\sigma|+r+1} \cap[\sigma]\right)^{\left(\leq 2^{-|\sigma|}\left(1-2^{-r-1}\right)\right)}
$$

into G_{m+1}. (If W is a Σ_{1}^{0} class, $W^{(\leq \varepsilon)}$ is the same class except restricted to measure ε.) It is not hard to see that

$$
\mu\left(G_{m+1}\right) \leq\left(1-2^{-r-1}\right) \mu\left(G_{m}\right) \leq\left(1-2^{-r-1}\right)^{m+1} .
$$

Since X is ML-random, there is a minimal m such that $X \notin G_{m}$. The minimality of m implies that there is a $\sigma \in B_{m-1}$ with $\sigma \prec X$. Let $V=V_{|\sigma|+r+1}$. Note that $\mu_{\sigma}(V)>1-2^{-r-1}$, otherwise X would enter G_{m}. Also $\mu_{\sigma}(C \cap V) \leq 2^{|\sigma|} \mu(C \cap V) \leq 2^{-r-1}$ by the definition of a difference test. But $\mu_{\sigma}(C)+\mu_{\sigma}(V)-\mu_{\sigma}(C \cap V) \leq 1$, which implies that $\mu_{\sigma}(C) \leq 2^{-r}$, as required.

Since r was arbitrary, $\rho(C \mid X)=0$.

This page intentionally left blank

If A is not K-trivial, we can force $X_{G} \not ¥_{T} A$

Claim

Assume that $A \in 2^{\omega}$ is not K-trivial, $\langle\sigma, Q\rangle \in \mathbb{P}$, and Φ is a Turing functional. There is a $\tau \in 2^{<\omega}$ such that $\langle\tau, Q\rangle$ extends $\langle\sigma, Q\rangle$ and

$$
(\forall X \in[\tau] \cap Q)\left[\Phi^{X}=A \Longrightarrow X \text { is not difference random }\right] .
$$

Proof.

If there is a $\rho \succeq \sigma$ and an n such that $\Phi^{\rho}(n) \downarrow \neq A(n)$ and $[\rho] \cap Q \neq \emptyset$, then take $\tau=\rho$. Assume that no such ρ and n exist.
Define $V_{n}=\left\{X: X \in U_{n}\left[\Phi^{X}\right]\right\}$, where $U_{n}[Z]$ is the nth level of the universal Martin-Löf test relative to Z. If $X \in V_{n} \cap[\sigma] \cap Q$, then because Φ^{X} is not incompatible with A, we have $X \in U_{n}\left[\Phi^{X}\right] \subseteq U_{n}[A]$. Hence $\mu\left(V_{n} \cap[\sigma] \cap Q\right) \leq \mu\left(U_{n}[A]\right) \leq 2^{-n}$. In other words, Q and $\left\{V_{n} \cap[\sigma]\right\}_{n \in \omega}$ form a difference test.

If A is not K-trivial, we can force $X_{G} \not ¥_{T} A$

Now assume that $X \in[\sigma] \cap Q$ and $\Phi^{X}=A$. Because A is not a base for randomness, $X \in U_{n}[A]=U_{n}\left[\Phi^{X}\right]$ for all n. Therefore, $X \in \bigcap_{n \in \omega} V_{n} \cap[\sigma] \cap Q$, so X is not difference random. Hence the claim is satisfied by taking $\tau=\sigma$.

We have already shown that if $G \subseteq \mathbb{P}$ is sufficiently generic, then X_{G} is a positive density point, hence it is difference random.

So the claim shown that if $G \subseteq \mathbb{P}$ is sufficiently generic relative to A, then X_{G} does not compute A. We can build G to ensure that X_{G} does not compute any member of a countable set of non- K-trivials (e.g., all non- K-trivial hyperarithmetical sets).

[^0]: ${ }^{1}$ We use dyadic density throughout, not density on the real interval. This simplifies the proofs considerably, but does not change the results.

[^1]: ${ }^{2}$ Bienvenu, Hölzl, M., Nies proved this assuming that X is not a density-one point. Bienvenu, Greenberg, Kučera, Nies, Turetsky applied essentially the same proof assuming that X is not Oberwolfach random.

