A computability theoretic equivalent to Vaught's conjecture.

Antonio Montalbán

U.C. Berkeley

April 2013
Buenos Aires

The Main Theorem

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

The Main Theorem

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

The Main Theorem

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} .
$$

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models of a theory T is either countable or $2^{\aleph_{0}}$.

Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models of a theory T is either countable or $2^{\aleph_{0}}$.

Note that it follows from the Continuum Hypothesis.

Continuum Hypothesis

$\mathbf{C H}$: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has size $2^{\aleph_{0}}$.

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Continuum Hypothesis

$\mathbf{C H}$: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_{1}^{1} equivalence relation on 2^{ω}, then either $2^{\omega} / \equiv$ is countable or $2^{\omega} / \equiv$ has size $2^{\aleph_{0}}$.

Continuum Hypothesis

$\mathbf{C H}$: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_{1}^{1} equivalence relation on 2^{ω}, then either $2^{\omega} / \equiv$ is countable or there is a perfect set of inequivalent reals.

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_{1}^{1} equivalence relation on 2^{ω}, then either $2^{\omega} / \equiv$ is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Σ_{1}^{1}.

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size $2^{\aleph_{0}}$.

Thm [Suslin 1917]: Every Σ_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_{1}^{1} equivalence relation on 2^{ω}, then either $2^{\omega} / \equiv$ is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Σ_{1}^{1}.

Obs: There are Σ_{1}^{1} equivalence relation on 2^{ω} such that $\left|2^{\omega} / \equiv\right|=\aleph_{1}$

A word on coding

A word on coding

For the rest of the talk, all our structures are countable

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Recall that there is an effective bijection between \mathbb{N}^{k} and \mathbb{N},

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Recall that there is an effective bijection between \mathbb{N}^{k} and \mathbb{N}, and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N}.

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Recall that there is an effective bijection between \mathbb{N}^{k} and \mathbb{N}, and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N}.

Countable structures can coded by subsets of \mathbb{N} in a straightforward way,

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Recall that there is an effective bijection between \mathbb{N}^{k} and \mathbb{N}, and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N}.

Countable structures can coded by subsets of \mathbb{N} in a straightforward way, and hence as reals in $2^{\mathbb{N}}$.

A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Recall that there is an effective bijection between \mathbb{N}^{k} and \mathbb{N}, and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N}.

Countable structures can coded by subsets of \mathbb{N} in a straightforward way, and hence as reals in $2^{\mathbb{N}}$.

We call such a real a presentation of \mathcal{A}.

Some special cases are known to hold

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees, (a tree is a poset where the predecessors of every element are linearly ordered).

Some special cases are known to hold

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees, (a tree is a poset where the predecessors of every element are linearly ordered).

Theorem [Shelah 84] Vaught's conjecture holds for ω-stable theories.

Some special cases are known to hold

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees, (a tree is a poset where the predecessors of every element are linearly ordered).

Theorem [Shelah 84] Vaught's conjecture holds for ω-stable theories.

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Def: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Def: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_{1}$, a $\prod_{\alpha}^{i n}$ formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_{i} \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)$, where each φ_{i} is $\sum_{\beta}^{\text {in }}$ for some $\beta<\alpha$.

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Def: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_{1}$, a $\prod_{\alpha}^{i n}$ formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_{i} \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)$, where each φ_{i} is $\sum_{\beta}^{i n}$ for some $\beta<\alpha$.

Obs: The class of presentations of models of an $L_{\omega_{1}, \omega}$ sentence is Borel.

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Def: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_{1}$, a $\prod_{\alpha}^{i n}$ formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_{i} \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)$, where each φ_{i} is $\sum_{\beta}^{i n}$ for some $\beta<\alpha$.

Thm[Lopez-Escobar]: For \mathbb{K} a class of structures closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_{1}, \omega}$ sentence $\Longleftrightarrow \mathbb{K}$ is Borel.

Background on infinitary logic

Vaught's Conjecture for $L_{\omega_{1}, \omega}$:

The number of countable models of an $\mathcal{L}_{\omega_{1}, \omega}$ sentence
is either countable, or $2^{\aleph_{0}}$.

Def: $L_{\omega_{1}, \omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_{1}$, a $\prod_{\alpha}^{i n}$ formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_{i} \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)$, where each φ_{i} is $\sum_{\beta}^{i n}$ for some $\beta<\alpha$.

Thm[Lopez-Escobar]: For \mathbb{K} a class of structures closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_{1}, \omega}$ sentence $\Longleftrightarrow \mathbb{K}$ is Borel.

Lemma: [Scott 65] For every structure \mathcal{A}, there is an $L_{\omega_{1}, \omega}$ sentence φ such that if $\mathcal{B} \models \varphi$, then $\mathcal{B} \cong \mathcal{A}$.

Variations of Vaught's conjecture

Perfect set variation:

> Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Variations of Vaught's conjecture

Perfect set variation:

> Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Topological Vaught's conjecture:

Consider a Borel action of a Polish group on a Polish space.
Any Borel invariant set has either countably many orbits or perfectly many.

Variations of Vaught's conjecture

Perfect set variation:

Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Topological Vaught's conjecture:
Consider a Borel action of a Polish group on a Polish space.
Any Borel invariant set has either countably many orbits or perfectly many.

Thm [Becker, Kechris]: The topological Vaught's conjecture for the group S^{∞} is equivalent to Vaught's conjecture for $L_{\omega_{1}, \omega}$.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.
Lemma: [Scott 65] For every structure \mathcal{A}, there is an ordinal $\rho(\mathcal{A}) \in \omega_{1}$ s.t.

$$
\text { if } \mathcal{B} \equiv{ }_{\rho(\mathcal{A})} \mathcal{A} \text {, then } \mathcal{B} \cong \mathcal{A} \text {. }
$$

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.
Lemma: [Scott 65] For every structure \mathcal{A}, there is an ordinal $\rho(\mathcal{A}) \in \omega_{1}$ s.t.

$$
\text { if } \mathcal{B} \equiv{ }_{\rho(\mathcal{A})} \mathcal{A} \text {, then } \mathcal{B} \cong \mathcal{A} \text {. }
$$

Proof of Morley's theorem:

- Suppose T has less than $2^{\aleph_{0}}$ models.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.
Lemma: [Scott 65] For every structure \mathcal{A}, there is an ordinal $\rho(\mathcal{A}) \in \omega_{1}$ s.t.

$$
\text { if } \mathcal{B} \equiv{ }_{\rho(\mathcal{A})} \mathcal{A} \text {, then } \mathcal{B} \cong \mathcal{A} \text {. }
$$

Proof of Morley's theorem:

- Suppose T has less than $2^{\aleph_{0}}$ models.
- There are countably many \equiv_{α}-equivalence classes of models of T.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.
Lemma: [Scott 65] For every structure \mathcal{A}, there is an ordinal $\rho(\mathcal{A}) \in \omega_{1}$ s.t.

$$
\text { if } \mathcal{B} \equiv{ }_{\rho(\mathcal{A})} \mathcal{A} \text {, then } \mathcal{B} \cong \mathcal{A} \text {. }
$$

Proof of Morley's theorem:

- Suppose T has less than $2^{\aleph_{0}}$ models.
- There are countably many \equiv_{α}-equivalence classes of models of T.
- For each $\alpha<\omega_{1}$, there are countably many $\mathcal{A} \models T$ with $\rho(\mathcal{A})=\alpha$.

Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_{1}, or $2^{\aleph_{0}}$.

Def: For structures \mathcal{A} and \mathcal{B}, and $\alpha \in \omega_{1}$, we write $\mathcal{A} \equiv{ }_{\alpha} \mathcal{B}$ if they satisfy the same $\Pi_{\alpha}^{i n}$-sentences.

Lemma: For each $\alpha \in \omega_{1}, \equiv_{\alpha}$ is a Borel equivalence relation.
Lemma: [Scott 65] For every structure \mathcal{A}, there is an ordinal $\rho(\mathcal{A}) \in \omega_{1}$ s.t.

$$
\text { if } \mathcal{B} \equiv{ }_{\rho(\mathcal{A})} \mathcal{A} \text {, then } \mathcal{B} \cong \mathcal{A} \text {. }
$$

Proof of Morley's theorem:

- Suppose T has less than $2^{\aleph_{0}}$ models.
- There are countably many \equiv_{α}-equivalence classes of models of T.
- For each $\alpha<\omega_{1}$, there are countably many $\mathcal{A} \models T$ with $\rho(\mathcal{A})=\alpha$.
- So $\mid\{$ models of $T\} \mid \leq \aleph_{1}$.

Scattered Theories

Definition: A theory T is scattered if, for every $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-equivalence classes of models of T.

Scattered Theories

Definition: A theory T is scattered if, for every $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-equivalence classes of models of T.

Definition: T is a counterexample to Vaught's conjecture if it is scattered and has uncountably many models.

Scattered Theories

Definition: A theory T is scattered if, for every $\alpha<\omega_{1}$, there are only countably many \equiv_{α}-equivalence classes of models of T.

Definition: T is a counterexample to Vaught's conjecture if it is scattered and has uncountably many models.

Note: This definition is independent of whether CH holds or not.

The Main Theorem-again

Theorem ([M.] (ZFC+ PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

The Main Theorem-again

Theorem ([M.] (ZFC+ PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

$$
\text { let } \bar{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

$$
\text { let } \bar{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Player I wins is $\bar{a} \in A$,

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

$$
\text { let } \bar{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

$$
\text { let } \bar{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.
A strategy is a function $s: \omega^{<\omega} \rightarrow \omega$.

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.
A strategy is a function $s: \omega^{<\omega} \rightarrow \omega$.
It's a winning strategy for I if $\forall a_{1}, a_{3}, a_{5}, \ldots .\left(f(\emptyset), a_{1}, f\left(a_{1}\right), a_{3}, \ldots\right) \in A$

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.
A strategy is a function $s: \omega^{<\omega} \rightarrow \omega$.
It's a winning strategy for I if $\forall a_{1}, a_{3}, a_{5}, \ldots .\left(f(\emptyset), a_{1}, f\left(a_{1}\right), a_{3}, \ldots\right) \in A$
$A \subseteq \omega^{\omega}$ is determined if there is a strategy for either player I or II.

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.
A strategy is a function $s: \omega^{<\omega} \rightarrow \omega$.
It's a winning strategy for I if $\forall a_{1}, a_{3}, a_{5}, \ldots .\left(f(\emptyset), a_{1}, f\left(a_{1}\right), a_{3}, \ldots\right) \in A$
$A \subseteq \omega^{\omega}$ is determined if there is a strategy for either player I or II.
Def: $A \subseteq 2^{\mathbb{N}}$ is projective if it is Σ_{n}^{1} for some n.

Projective Determinacy

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a_{0}		a_{2}		\cdots
Player II		a_{1}		a_{3}	\cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \backslash A$.
A strategy is a function $s: \omega^{<\omega} \rightarrow \omega$.
It's a winning strategy for I if $\forall a_{1}, a_{3}, a_{5}, \ldots .\left(f(\emptyset), a_{1}, f\left(a_{1}\right), a_{3}, \ldots\right) \in A$
$A \subseteq \omega^{\omega}$ is determined if there is a strategy for either player I or II.
Def: $A \subseteq 2^{\mathbb{N}}$ is projective if it is Σ_{n}^{1} for some n.

Projective Determinacy (PD): Every projective set is determined.

The Main Theorem-again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal.
Let ω_{1}^{X} be the least non- X-computable ordinal.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

A set satisfying the conditions above is said to be hyperarithmetic.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_{1}^{1}=\Sigma_{1}^{1} \cap \Pi_{1}^{1}$.

A set satisfying the conditions above is said to be hyperarithmetic.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_{1}^{1}=\Sigma_{1}^{1} \cap \Pi_{1}^{1}$.
- X is computable in $0^{(\alpha)}$ for some $\alpha<\omega_{1}^{C K}$.
$\left(0^{(\alpha)}\right.$ is the α th Turing jump of 0 .)

A set satisfying the conditions above is said to be hyperarithmetic.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_{1}^{1}=\Sigma_{1}^{1} \cap \Pi_{1}^{1}$.
- X is computable in $0^{(\alpha)}$ for some $\alpha<\omega_{1}^{C K}$.
$\left(0^{(\alpha)}\right.$ is the α th Turing jump of 0 .)
- $X \in L\left(\omega_{1}^{C K}\right)$.

A set satisfying the conditions above is said to be hyperarithmetic.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_{1}^{1}=\Sigma_{1}^{1} \cap \Pi_{1}^{1}$.
- X is computable in $0^{(\alpha)}$ for some $\alpha<\omega_{1}^{C K}$.
$\left(0^{(\alpha)}\right.$ is the α th Turing jump of 0 .)
- $X \in L\left(\omega_{1}^{C K}\right)$.
- $X=\{n \in \omega: \varphi(n)\}$, where φ is a computable infinitary formula.

A set satisfying the conditions above is said to be hyperarithmetic.

Background on hyperarithmetic sets.

Notation: Let $\omega_{1}^{C K}$ be the least non-computable ordinal. Let ω_{1}^{X} be the least non- X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_{1}^{1}=\Sigma_{1}^{1} \cap \Pi_{1}^{1}$.
- X is computable in $0^{(\alpha)}$ for some $\alpha<\omega_{1}^{C K}$.
$\left(0^{(\alpha)}\right.$ is the α th Turing jump of 0 .)
- $X \in L\left(\omega_{1}^{C K}\right)$.
- $X=\{n \in \omega: \varphi(n)\}$, where φ is a computable infinitary formula.

A set satisfying the conditions above is said to be hyperarithmetic.

Obs: For instance, all arithmetic sets are hyperarithmetic.

Another word on coding

Example: A countable ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Another word on coding

Example: A countable ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Def: We say \mathcal{A} is computable, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are computable

Another word on coding

Example: A countable ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Def: We say \mathcal{A} is computable, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are computable

Def: We say \mathcal{A} is hyperarithmetic, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are hyperarithmetic

Another word on coding

Example: A countable ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Def: We say \mathcal{A} is X-computable, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are computable from X.

Def: We say \mathcal{A} is hyperarithmetic, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are hyperarithmetic

Another word on coding

Example: A countable ordered group $\mathcal{A}=\left(A, \times_{A}, \leq_{A}\right)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$.

Def: We say \mathcal{A} is X-computable, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are computable from X.

Def: We say \mathcal{A} is X-hyperarithmetic, if $A \subseteq \mathbb{N}, \times_{A} \subseteq \mathbb{N}^{3}$ and $\leq_{A} \subseteq \mathbb{N}^{2}$ are hyperarithmetic relative to X.

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if every hyperarithmetic structure in \mathbb{K} has a computable copy.

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if every hyperarithmetic structure in \mathbb{K} has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in \mathbb{K} has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one.

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if every hyperarithmetic structure in \mathbb{K} has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one.
(Note: There are \aleph_{1} linear orders modulo bi-embeddability [Laver 71].)

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if every hyperarithmetic structure in \mathbb{K} has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one.
(Note: There are \aleph_{1} linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg-M. 05] Every hyperarithmetic p-group
is bi-embeddable with a computable one.

Hyperarithmetic-is-Recursive

Let \mathbb{K} be a class of structures.
Def: \mathbb{K} satisfies hyperarithmetic-is-recursive if every hyperarithmetic structure in \mathbb{K} has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one.
(Note: There are \aleph_{1} linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg-M. 05] Every hyperarithmetic p-group
is bi-embeddable with a computable one.
(Note: There are \aleph_{1} p-groups modulo bi-embeddability [Barwise-Eklof71].)

The Main Theorem-once more

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} .
$$

Martin's measure

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$.

Martin's measure

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm:[Martin] (PD)
For every degree-invariant projective partition $\left(A_{i}: i \in \mathbb{N}\right)$ of $2^{\mathbb{N}}$, one of the A_{i} 's contains a cone.

Martin's measure

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm:[Martin] (PD)
For every degree-invariant projective partition $\left(A_{i}: i \in \mathbb{N}\right)$ of $2^{\mathbb{N}}$, one of the A_{i} 's contains a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Martin's measure

Def: A cone is a set of the form $\left\{X \in 2^{\mathbb{N}}: X \geq_{T} Y\right\}$ for some $Y \in 2^{\mathbb{N}}$.

Thm:[Martin] (PD)
For every degree-invariant projective partition $\left(A_{i}: i \in \mathbb{N}\right)$ of $2^{\mathbb{N}}$, one of the A_{i} 's contains a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: \mathbb{K} satisfies hyperarithmetic-is-recursive on a cone if, $(\exists Y)\left(\forall X \geq_{T} Y\right)$, every X-hyperarithmetic $\mathcal{A} \in \mathbb{K}$ has X-computable copy.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.
Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.
Corollary: $\{\operatorname{deg}(X): X \in[T]\}=$ the cone above $\operatorname{deg}(T)$.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.

Corollary: $\{\operatorname{deg}(X): X \in[T]\}=$ the cone above $\operatorname{deg}(T)$.
Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and unbounded (i.e. $\forall Y \exists X \geq_{T} Y(X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.

Corollary: $\{\operatorname{deg}(X): X \in[T]\}=$ the cone above $\operatorname{deg}(T)$.
Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and unbounded (i.e. $\forall Y \exists X \geq_{T} Y(X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where I wins if $X \geq_{T} Y$ and $X \in P$.

Player I	x_{0}		x_{1}		\cdots	$X \in 2^{\omega}$
Player II		y_{0}		y_{1}	\cdots	$Y \in 2^{\omega}$

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.

Corollary: $\{\operatorname{deg}(X): X \in[T]\}=$ the cone above $\operatorname{deg}(T)$.
Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and unbounded (i.e. $\forall Y \exists X \geq_{T} Y(X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where I wins if $X \geq_{T} Y$ and $X \in P$.

Player I	x_{0}		x_{1}		\cdots	$X \in 2^{\omega}$
Player II		y_{0}		y_{1}	\cdots	$Y \in 2^{\omega}$

- II cannot have a winning strategy.

Pointed Trees

Def: A tree T is pointed if $(\forall X \in[T]) X \geq_{T} T$.

Obs: A perfect tree T is pointed $\Longleftrightarrow(\forall X \in[T]) T(X) \equiv_{T} X \oplus T$.

Corollary: $\{\operatorname{deg}(X): X \in[T]\}=$ the cone above $\operatorname{deg}(T)$.
Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and unbounded (i.e. $\forall Y \exists X \geq_{T} Y(X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where I wins if $X \geq_{T} Y$ and $X \in P$.

Player I	x_{0}		x_{1}		\cdots	$X \in 2^{\omega}$
Player II		y_{0}		y_{1}	\cdots	$Y \in 2^{\omega}$

- II cannot have a winning strategy.
- If s is a strategy for $I,\left\{s\left(Y_{0} \oplus s\right): Y_{0} \in 2^{\omega}\right\}$ is a perfect pointed tree $\subseteq P$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$. On a pointed perfect tree T, this e is constant.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y)=\{e\}^{T(Y)}$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.

Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y)=\{e\}^{T(Y)}$. It is continuous, and for $Y \geq{ }_{T} T, g(Y) \cong f(Y)$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y)=\{e\}^{T(Y)}$. It is continuous, and for $Y \geq_{T} T, g(Y) \cong f(Y)$. By Σ_{1}^{1}-bounding, g is bounded below some $\alpha<\omega_{1}$.

Martin's theorems

Lemma[Martin](PD): If $2^{\omega}=\bigcup_{n} P_{n}$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_{n}$.

Pf: Suppose that no P_{n} is unbounded.
Then $\forall n \exists X_{n} \forall Y \geq_{T} X_{n}\left(Y \notin P_{n}\right)$. Then $\bigoplus_{m} X_{m} \notin P_{n}$ for any n.
Lemma[Martin](PD):
If $f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $(\forall X) f(X)<\omega_{1}^{X}$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^{X} \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y)=\{e\}^{T(Y)}$. It is continuous, and for $Y \geq_{T} T, g(Y) \cong f(Y)$. By Σ_{1}^{1}-bounding, g is bounded below some $\alpha<\omega_{1}$. Then, g is constant on a cone, and hence so is f.

The Main Theorem-once more

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture. \Rightarrow
- T satisfies hyperarithmetic-is-recursive on a cone. \Leftarrow
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

A sufficient condition for hyp-is-rec.

A sufficient condition for hyp-is-rec.

> Def: For $\begin{aligned} \mathfrak{K} \subseteq 2^{\omega}, & (\mathfrak{K},\end{aligned}$| |
| :--- |
| |
| |
| \equiv is an equivalence relation on \mathfrak{K}, and $r: \mathfrak{K} / \equiv \rightarrow \omega_{1}$. |

A sufficient condition for hyp-is-rec.

Def: For $\mathfrak{K} \subseteq 2^{\omega},(\mathfrak{K}, \equiv, r)$ is a ranked equivalence relation if
\equiv is an equivalence relation on \mathfrak{K}, and $r: \mathfrak{K} / \equiv \rightarrow \omega_{1}$.
Def: $(\mathfrak{K}, \equiv, r)$ is scattered if
$r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_{1}$.

A sufficient condition for hyp-is-rec.

Def: For $\mathfrak{K} \subseteq 2^{\omega},(\mathfrak{K}, \equiv, r)$ is a ranked equivalence relation if
\equiv is an equivalence relation on \mathfrak{K}, and $r: \mathfrak{K} / \equiv \rightarrow \omega_{1}$.
Def: $(\mathfrak{K}, \equiv, r)$ is scattered if
$r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_{1}$.
Def: $(\mathfrak{K}, \equiv, r)$ is projective if
\mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \rightarrow 2^{\omega}$.

A sufficient condition for hyp-is-rec.

Def: For $\mathfrak{K} \subseteq 2^{\omega},(\mathfrak{K}, \equiv, r)$ is a ranked equivalence relation if
\equiv is an equivalence relation on \mathfrak{K}, and $r: \mathfrak{K} / \equiv \rightarrow \omega_{1}$.
Def: $(\mathfrak{K}, \equiv, r)$ is scattered if
$r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_{1}$.
Def: $(\mathfrak{K}, \equiv, r)$ is projective if
\mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \rightarrow 2^{\omega}$.

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollaries

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollaries

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one.

Corollaries

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Corollaries

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Corollary: [Greenberg-M. 05] On a cone, every hyperarithmetic p-group is bi-embeddable with a computable one.

Corollaries

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Corollary: [Greenberg-M. 05] On a cone, every hyperarithmetic p-group is bi-embeddable with a computable one. Using the Ulm rank on p-groups with finite dimensional divisible part.

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z}
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:
Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv{ }_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:
Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv{ }_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.
$\omega_{1}^{\mathcal{A}}=$ least $\left\{\omega_{1}^{X}: X\right.$ computes a copy of $\left.\mathcal{A}\right\}$.

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:
Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv{ }_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.
$\omega_{1}^{\mathcal{A}}=$ least $\left\{\omega_{1}^{X}: X\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Obs: For every structure $\mathcal{A}, \rho(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1$.

Scott Rank

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)

If T is scattered, the class of models of T of low Scott rank satisfies hyperarithmetic-is-recursive on a cone.
where:
Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv{ }_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.
$\omega_{1}^{\mathcal{A}}=$ least $\left\{\omega_{1}^{X}: X\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Obs: For every structure $\mathcal{A}, \rho(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1$.
Def: \mathcal{A} has low Scott rank if $\rho(\mathcal{A})<\omega_{1}^{\mathcal{A}}$.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let $f(X)$ be the least value of $r(Z)$, among Z 's with $Z \leq_{h y p} X$, but X computes nobody equivalent to Z.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let $f(X)$ be the least value of $r(Z)$, among Z 's with $Z \leq_{h y p} X$, but X computes nobody equivalent to Z.
- Then f is projective, degree-invariant, and $f(X)<\omega_{1}^{X}$.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let $f(X)$ be the least value of $r(Z)$, among Z 's with $Z \leq_{h y p} X$, but X computes nobody equivalent to Z.
- Then f is projective, degree-invariant, and $f(X)<\omega_{1}^{X}$.
- Thus, f is constant, say equal α, on a cone.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let $f(X)$ be the least value of $r(Z)$, among Z 's with $Z \leq_{h y p} X$, but X computes nobody equivalent to Z.
- Then f is projective, degree-invariant, and $f(X)<\omega_{1}^{X}$.
- Thus, f is constant, say equal α, on a cone.
- $r^{-1}(\alpha)$ has countably many classes, so some Y computes a member of each.

A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation

$$
\text { such that } \forall Z \in \mathfrak{K}, r(Z)<\omega_{1}^{Z} .
$$

For every X on a cone, (i.e. $\exists Y \forall X \geq_{T} Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let $f(X)$ be the least value of $r(Z)$, among Z 's with $Z \leq_{h y p} X$, but X computes nobody equivalent to Z.
- Then f is projective, degree-invariant, and $f(X)<\omega_{1}^{X}$.
- Thus, f is constant, say equal α, on a cone.
- $r^{-1}(\alpha)$ has countably many classes, so some Y computes a member of each.
- For that $Y, f(Y) \neq \alpha$.

The Main Theorem- yet again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture. \Leftarrow
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

The Main Theorem- yet again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture. \Leftarrow
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

Theorem

If T has strictly more than \aleph_{1} many models, then, relative to every X on a cone, T has an X-hyperarithemetic model without an X-computable copy.

Coding within structures

Def: $X \subseteq \mathbb{N}$ is coded by \mathcal{A} if X is c.e. in every copy of \mathcal{A}.

Coding within structures

Def: $X \subseteq \mathbb{N}$ is coded by \mathcal{A} if X is c.e. in every copy of \mathcal{A}.

$\operatorname{Thm}[$ Knight $]: X$ is coded by $\mathcal{A} \Longleftrightarrow\left(\exists \bar{a} \in \mathcal{A}^{<\omega}\right) X \leq_{e} \Sigma_{1-t p_{\mathcal{A}}}(\bar{a})$.

Coding within structures

Def: $X \subseteq \mathbb{N}$ is coded by \mathcal{A} if X is c.e. in every copy of \mathcal{A}.
$\operatorname{Thm}[$ Knight $]: X$ is coded by $\mathcal{A} \Longleftrightarrow\left(\exists \bar{a} \in \mathcal{A}^{<\omega}\right) X \leq_{e} \Sigma_{1-t p_{\mathcal{A}}}(\bar{a})$.
Def: $X \subseteq \mathbb{N}$ is weakly coded by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A}.

Coding within structures

Def: $X \subseteq \mathbb{N}$ is coded by \mathcal{A} if X is c.e. in every copy of \mathcal{A}.
$\operatorname{Thm}[$ Knight $]: X$ is coded by $\mathcal{A} \Longleftrightarrow\left(\exists \bar{a} \in \mathcal{A}^{<\omega}\right) X \leq_{e} \Sigma_{1-t p_{\mathcal{A}}}(\bar{a})$.
Def: $X \subseteq \mathbb{N}$ is weakly coded by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A}.
Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
Either

- there are countably many Σ_{1}-types realized in \mathbb{K}, and
- no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0);
or
- there are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and
- every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$;

Coding within structures

Def: $X \subseteq \mathbb{N}$ is coded by \mathcal{A} if X is c.e. in every copy of \mathcal{A}.
$\operatorname{Thm}[$ Knight $]: X$ is coded by $\mathcal{A} \Longleftrightarrow\left(\exists \bar{a} \in \mathcal{A}^{<\omega}\right) X \leq_{e} \Sigma_{1-t p_{\mathcal{A}}}(\bar{a})$.
Def: $X \subseteq \mathbb{N}$ is weakly coded by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A}.
Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
Either

- there are countably many Σ_{1}-types realized in \mathbb{K}, and
- no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0);
or
- there are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and
- every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$;
relative to an oracle.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.
Obs: Every set can be coded in a field.

Examples

Thm[Ritcher]: No set can be coded in a linear ordering.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.
Obs: Every set can be coded in a field.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable. Otherwise, we work in the cone above T.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type $T(X)$, and let $\mathcal{A}_{X} \in \mathbb{K}$ have Σ_{1}-type $T(X)$.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type $T(X)$, and let $\mathcal{A}_{X} \in \mathbb{K}$ have Σ_{1}-type $T(X)$.
- Therefore, $T(X)$ is c.e. in every copy of \mathcal{A}.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type $T(X)$, and let $\mathcal{A}_{X} \in \mathbb{K}$ have Σ_{1}-type $T(X)$.
- Therefore, $T(X)$ is c.e. in every copy of \mathcal{A}.
- Suppose T preserves $\leq_{\text {lex }}$ in 2^{ω}.

Dichotomy for Σ_{1}-types

Thm[M.]: Given \mathbb{K}, exactly one of the following holds:
(1) There are countably many Σ_{1}-types realized in \mathbb{K}, and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative to an oracle.
(2) There are $2^{\aleph_{0}}$ many Σ_{1}-types realized in \mathbb{K}, and every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$; relative to an oracle.

Pf:

- The set of Σ_{1}-types realized in \mathbb{K} is Σ_{1}^{1}. So has size either countable or $2^{\aleph_{0}}$.
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0 - Σ_{1}-types (i.e. no variables).
- Let T be a perfect set of Σ_{1}-types realized in \mathbb{K}.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type $T(X)$, and let $\mathcal{A}_{X} \in \mathbb{K}$ have Σ_{1}-type $T(X)$.
- Therefore, $T(X)$ is c.e. in every copy of \mathcal{A}.
- Suppose T preserves $\leq_{l e x}$ in 2^{ω}. Hence X is left c.e. in every copy of \mathcal{A}.

Constructing structures

Assume \mathcal{L} is relational.

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure.
(where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure.
(where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Pf: Write the axiom as $\bigwedge_{i} \forall \bar{y} \varphi_{i}(\bar{y})$, where φ is Σ_{1}^{c}.

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure. (where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Pf: Write the axiom as $\bigwedge_{i} \forall \bar{y} \varphi_{i}(\bar{y})$, where φ is Σ_{1}^{c}. We define \mathcal{A} as a limit of finite structures $\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \cdots$, with $\mathcal{A}_{i} \in \mathbb{K}^{\text {fin }}$.

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure. (where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Pf: Write the axiom as $\bigwedge_{i} \forall \bar{y} \varphi_{i}(\bar{y})$, where φ is Σ_{1}^{c}.
We define \mathcal{A} as a limit of finite structures $\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \cdots$, with $\mathcal{A}_{i} \in \mathbb{K}^{\text {fin }}$. For each i and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_{i}(\bar{c})$.

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure. (where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Pf: Write the axiom as $\bigwedge_{i} \forall \bar{y} \varphi_{i}(\bar{y})$, where φ is Σ_{1}^{c}.
We define \mathcal{A} as a limit of finite structures $\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \cdots$, with $\mathcal{A}_{i} \in \mathbb{K}^{\text {fin }}$. For each i and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_{i}(\bar{c})$. At each stage s, define \mathcal{A}_{s} so that it satisfies one more requirement:

Constructing structures

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_{2}^{c} axiomatizable, and $\mathbb{K}^{\text {fin }}$ computable, then \mathbb{K} has a computable structure. (where $\mathbb{K}^{\text {fin }}$ is the set of finite substructures of structures in \mathbb{K}.)

Pf: Write the axiom as $\bigwedge_{i} \forall \bar{y} \varphi_{i}(\bar{y})$, where φ is Σ_{1}^{c}.
We define \mathcal{A} as a limit of finite structures $\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \cdots$, with $\mathcal{A}_{i} \in \mathbb{K}^{\text {fin }}$. For each i and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_{i}(\bar{c})$. At each stage s, define \mathcal{A}_{s} so that it satisfies one more requirement: If $\varphi_{i}(\bar{c}) \equiv \bigvee_{j} \exists(\bar{x}) \psi_{i, j}(\bar{c}, \bar{x})$, search for $j, \mathcal{A}_{s} \in \mathbb{K}^{\text {fin }}$ and $\bar{a} \in \mathcal{A}_{s}$ such that $\mathcal{A}_{s-1} \subseteq \mathcal{A}_{s}$ and $\mathcal{A}_{s}=\psi_{i, j}(\bar{c}, \bar{a})$.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types. Assume it's computable, and that so is the axiom.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types. Assume it's computable, and that so is the axiom. Given X, use $T(X)$ to build \mathcal{A}_{X} with Σ_{1}-type $T(X)$.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types. Assume it's computable, and that so is the axiom. Given X, use $T(X)$ to build \mathcal{A}_{X} with Σ_{1}-type $T(X)$. \mathcal{A}_{X} weakly codes X.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types. Assume it's computable, and that so is the axiom. Given X, use $T(X)$ to build \mathcal{A}_{X} with Σ_{1}-type $T(X)$. \mathcal{A}_{X} weakly codes X.

Corollary: If \mathbb{K} is Π_{2}^{c}, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every Y, there is a Y^{\prime}-computable structure, not Y-computable, relative to an oracle.

Constructing structures

Corollary: If \mathbb{K} is Π_{2}^{c}, and t is a computable Σ_{1}-type in \mathbb{K}, then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_{1}-type to the theory. Use the Σ_{1} to enumerate the finite substructures.
Corollary: If \mathbb{K} is $\Pi_{2}^{i n}$, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_{1}-types. Assume it's computable, and that so is the axiom. Given X, use $T(X)$ to build \mathcal{A}_{X} with Σ_{1}-type $T(X)$. \mathcal{A}_{X} weakly codes X.

Corollary: If \mathbb{K} is Π_{2}^{c}, and realizes $2^{\aleph_{0}}$ many Σ_{1}-types, then for every Y, there is a Y^{\prime}-computable structure, not Y-computable, relative to an oracle.

Pf: For every Y, Y^{\prime} computes an X which is not Y-left c.e.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Consider the axioms which define these new relations:

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

The Morleyization, \hat{T}, of T consist of $R_{T}()$ together with all these axioms.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} \text {. }
$$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

The Morleyization, \hat{T}, of T consist of $R_{T}()$ together with all these axioms.

- \hat{T} is $\Pi_{2}^{i n}$.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} .
$$

Consider the axioms which define these new relations:
For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

The Morleyization, \hat{T}, of T consist of $R_{T}()$ together with all these axioms.

- \hat{T} is $\Pi_{2}^{i n}$.
- There is $1-1$ correspondence between models of T and those of \hat{T} :

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} .
$$

Consider the axioms which define these new relations:
For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

The Morleyization, \hat{T}, of T consist of $R_{T}()$ together with all these axioms.

- \hat{T} is $\Pi_{2}^{i n}$.
- There is 1-1 correspondence between models of T and those of \hat{T} :
- If $\hat{\mathcal{A}} \models \hat{T}$, then $\hat{\mathcal{A}}$ computes \mathcal{A} with $\mathcal{A} \models T$.

Making a theory $\Pi_{2}^{\text {in }}$

Let T be an $\mathcal{L}_{\omega_{1}, \omega}$ sentence.
For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \Longleftrightarrow \varphi(\bar{x})$.

$$
\text { Let } \hat{\mathcal{L}}=\mathcal{L} \cup\left\{R_{\varphi}: \varphi \text { a subformula of } T\right\} .
$$

Consider the axioms which define these new relations:
For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \psi(\bar{x}, y)$

$$
(\forall \bar{x}) \quad R_{(\forall y) \psi}(\bar{x}) \leftrightarrow(\forall y) R_{\psi}(\bar{x}, y) .
$$

The Morleyization, \hat{T}, of T consist of $R_{T}()$ together with all these axioms.

- \hat{T} is $\Pi_{2}^{i n}$.
- There is 1-1 correspondence between models of T and those of \hat{T} :
- If $\hat{\mathcal{A}} \models \hat{T}$, then $\hat{\mathcal{A}}$ computes \mathcal{A} with $\mathcal{A} \models T$.
- Assuming T is Π_{α}^{c}, if $\mathcal{A} \models T$, then $\mathcal{A}^{(\alpha)}$ computes $\hat{\mathcal{A}}$ with $\hat{\mathcal{A}} \models \hat{T}$.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures. Let α be an ordinal.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures. Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :

$$
(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}
$$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{B}}(\bar{b})$.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \overline{\mathbf{a}}): \mathcal{A} \in \mathbb{K}, \overline{\mathbf{a}} \in \mathcal{A}\}}{\equiv{ }_{\alpha}}$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \overline{\mathrm{a}}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}=$ the set of Π_{α}-types realized in \mathbb{K}.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \overline{\mathrm{a}}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}=$ the set of Π_{α}-types realized in \mathbb{K}.
\equiv_{α} is Borel, so, by [Silver 80], bf $\alpha(\mathbb{K})$ has size either countable or continuum.

Examples

For $\mathbb{K}=$ linear orderings

- $\mathbf{b f}_{1}(\mathbb{K})$ and $\mathbf{b} \mathbf{f}_{2}(\mathbb{K})$ are countable.

Examples

For $\mathbb{K}=$ linear orderings

- $\mathbf{b} \mathbf{f}_{1}(\mathbb{K})$ and $\mathbf{b} \mathbf{f}_{2}(\mathbb{K})$ are countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 3$.

Examples

For $\mathbb{K}=$ linear orderings

- $\mathbf{b f}_{1}(\mathbb{K})$ and $\mathbf{b} \mathbf{f}_{2}(\mathbb{K})$ are countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 3$.

For $\mathbb{K}=$ equivalence structures

- $\mathbf{b f}_{1}(\mathbb{K})$ is countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 2$.

Examples

For $\mathbb{K}=$ linear orderings

- $\mathbf{b f}_{1}(\mathbb{K})$ and $\mathbf{b} \mathbf{f}_{2}(\mathbb{K})$ are countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 3$.

For $\mathbb{K}=$ equivalence structures

- $\mathbf{b f}_{1}(\mathbb{K})$ is countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 2$.

For $\mathbb{K}=$ Boolean algebras

- $\mathbf{b} \mathbf{f}_{n}(\mathbb{K})$ is countable for all $n \in \omega$.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for all $\alpha \geq \omega$.

Examples

For $\mathbb{K}=$ linear orderings

- $\mathbf{b f}_{1}(\mathbb{K})$ and $\mathbf{b} \mathbf{f}_{2}(\mathbb{K})$ are countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 3$.

For $\mathbb{K}=$ equivalence structures

- $\mathbf{b f}_{1}(\mathbb{K})$ is countable.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for $\alpha \geq 2$.

For $\mathbb{K}=$ Boolean algebras

- $\mathbf{b} \mathbf{f}_{n}(\mathbb{K})$ is countable for all $n \in \omega$.
- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for all $\alpha \geq \omega$.

For $\mathbb{K}=$ Fields

- $\mathbf{b f}_{\alpha}(\mathbb{K})$ has size $2^{\aleph_{0}}$ for all α.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either
or

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
- there is a countable complete set of $\Pi_{\alpha}^{i n}$-formulas;
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};
- there is no countable complete set of $\Pi_{\alpha}^{i n}$-formulas;

Complete sets of $\Pi_{\alpha}^{\text {in }}-$ formulas

Definition ([M)

$\left\{P_{0}, P_{1}, \ldots\right\}$ is a complete set of $\Pi_{\alpha}^{i n}$ formulas for \mathbb{K} if every $\sum_{\alpha+1}^{i n} \mathcal{L}$-formula is equivalent to a $\sum_{1}^{i n}\left(\mathcal{L} \cup\left\{P_{0}, \ldots\right\}\right)$-formula.

Example: Π_{1}^{c} relations on Linear orderings

Let $\mathbb{K}=$ linear orderings.
Let Succ $=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c(a<c<b)\right\}$.

Example: Π_{1}^{c} relations on Linear orderings

Let $\mathbb{K}=$ linear orderings.
Let Succ $=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c(a<c<b)\right\}$.

Example:

On linear orderins, $\{S u c c\}$ is a complete set of Π_{1}^{c} relations.

Example: Π_{1}^{c} relations on Linear orderings

Let $\mathbb{K}=$ linear orderings.
Let Succ $=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c(a<c<b)\right\}$.

Example:

On linear orderins, $\{S u c c\}$ is a complete set of Π_{1}^{c} relations.

Every Σ_{2}^{c} formula is equivalent in \mathbb{K} to a
0^{\prime}-disjunction of Σ_{1} finitary formulas in the language $\{\leq, S u c c\}$.

Example: Π_{2}^{c} relations on Linear orderings

$$
\text { Let } D_{1}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, c_{1} \text { in between }, \operatorname{Succ}\left(c_{0}, c_{1}\right)\right\}
$$

Example: Π_{2}^{c} relations on Linear orderings

Let $D_{1}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, c_{1}\right.$ in between, $\left.\operatorname{Succ}\left(c_{0}, c_{1}\right)\right\}$
Let $D_{n}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}\right.$ in between,$\left.\bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$
Let $D_{n}^{+\infty}=\left\{a \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}>a, \bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$

Example: Π_{2}^{c} relations on Linear orderings

Let $D_{1}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, c_{1}\right.$ in between, $\left.\operatorname{Succ}\left(c_{0}, c_{1}\right)\right\}$
Let $D_{n}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}\right.$ in between,$\left.\bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$
Let $D_{n}^{+\infty}=\left\{a \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}>a, \bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$

Example:

The relations $\left\{\right.$ Succ, $\left.D_{1}, D_{2}, D_{3}, \ldots ., D_{1}^{+\infty}, \ldots D_{1}^{-\infty} \ldots\right\}$ are a complete set of Π_{2}^{c} relations.

Example: Π_{2}^{c} relations on Linear orderings

Let $D_{1}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, c_{1}\right.$ in between, $\left.\operatorname{Succ}\left(c_{0}, c_{1}\right)\right\}$
Let $D_{n}=\left\{(a, b) \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}\right.$ in between,$\left.\bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$
Let $D_{n}^{+\infty}=\left\{a \in \mathcal{A}^{2}: a<b \& \nexists c_{0}, \ldots, c_{n}>a, \bigwedge_{i<n} \operatorname{Succ}\left(c_{i}, c_{i+1}\right)\right\}$

Example:

The relations $\left\{\right.$ Succ, $\left.D_{1}, D_{2}, D_{3}, \ldots ., D_{1}^{+\infty}, \ldots D_{1}^{-\infty} \ldots\right\}$ are
a complete set of Π_{2}^{c} relations.

Every Σ_{3}^{c} formula is equivalent to a $0^{(2)}$-disjunction of
Σ_{1} finitary formulas in the language $\left\{\leq\right.$, Succ, $\left.D_{1}, D_{2}, \ldots\right\}$.

Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)
The sets R_{n} are a complete sets of Π_{n}^{c} relations:
$R_{1}=(\mathcal{B}, A t)$
$R_{2}=(\mathcal{B}, A t$, Inf, Atless $)$.

Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)
The sets R_{n} are a complete sets of Π_{n}^{c} relations:
$R_{1}=(\mathcal{B}, A t)$
$R_{2}=(\mathcal{B}, A t$, Inf , Atless $)$.
$R_{3}=(\mathcal{B}, A t$, Inf, Atless, atomic, 1-atom, atominf $)$.

Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)
The sets R_{n} are a complete sets of Π_{n}^{c} relations:
$R_{1}=(\mathcal{B}, A t)$
$R_{2}=(\mathcal{B}, A t$, Inf, Atless $)$.
$R_{3}=(\mathcal{B}$, At, Inf, Atless, atomic, 1-atom, atominf $)$.
$R_{4}=(\mathcal{B}$, At, Inf, Atless, atomic, 1-atom, atominf, \sim-inf, Int $(\omega+\eta)$, infatomicless, 1-atomless, nomaxatomless).
Furthermore, $\forall n$ there is a finite complete set of Π_{n}^{c} relations

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.
Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
- there is a countable complete set of $\Pi_{\alpha}^{i n}$-formulas;
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};
- there is no countable complete set of $\Pi_{\alpha}^{i n}$-formulas;

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
- there is a countable complete set of $\Pi_{\alpha}^{\text {in }}$-formulas;
- no non-trivial set can be Σ_{α}^{0}-encoded in any structure in \mathbb{K};
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};
- there is no countable complete set of $\Pi_{\alpha}^{i n}$-formulas;
- any set can be weakly- Σ_{α}^{0}-encoded in some structure in \mathbb{K}; relative to some oracle.

Coding in the α th jump.

Def: A set D is Σ_{α}^{0} coded in \mathcal{A} if D is Σ_{α}^{0} in every copy of \mathcal{A}.

Coding in the α th jump.

Def: A set D is Σ_{α}^{0} coded in \mathcal{A} if D is Σ_{α}^{0} in every copy of \mathcal{A}.

Thm: [Ask, Knight] TFAE

- is Σ_{α}^{0} coded in \mathcal{A};
- D is enumeration-reducible to $\Sigma_{\alpha}^{c}-t_{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in \mathcal{A}$.

Coding in the α th jump.

Def: A set D is Σ_{α}^{0} coded in \mathcal{A} if D is Σ_{α}^{0} in every copy of \mathcal{A}.
Thm: [Ask, Knight] TFAE

- is Σ_{α}^{0} coded in \mathcal{A};
- D is enumeration-reducible to $\sum_{\alpha}^{c}-t p_{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in \mathcal{A}$.
bf ${ }_{\alpha}(\mathbb{K})$ countable \Longrightarrow only countably many sets can be Σ_{α}^{0}-coded by some struc. in \mathbb{K}.

Coding in the α th jump.

Def: A set D is Σ_{α}^{0} coded in \mathcal{A} if D is Σ_{α}^{0} in every copy of \mathcal{A}.
Thm: [Ask, Knight] TFAE

- is Σ_{α}^{0} coded in \mathcal{A};
- D is enumeration-reducible to $\sum_{\alpha}^{c}-t p_{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in \mathcal{A}$.
bf ${ }_{\alpha}(\mathbb{K})$ countable \Longrightarrow only countably many sets can be Σ_{α}^{0}-coded by some struc. in \mathbb{K}.
Thus, there is an oracle, relative to which, no non-trivial set can be Σ_{α}^{0}-encoded in any structure in \mathbb{K}

Coding in the α th jump.

Def: A set D is Σ_{α}^{0} coded in \mathcal{A} if D is Σ_{α}^{0} in every copy of \mathcal{A}.

Thm: [Ask, Knight] TFAE

- is Σ_{α}^{0} coded in \mathcal{A};
- D is enumeration-reducible to $\sum_{\alpha}^{c}-t_{\mathcal{A}}(\bar{a})$ for some $\bar{a} \in \mathcal{A}$.
bf ${ }_{\alpha}(\mathbb{K})$ countable \Longrightarrow only countably many sets can be Σ_{α}^{0}-coded by some struc. in \mathbb{K}.
Thus, there is an oracle, relative to which, no non-trivial set can be Σ_{α}^{0}-encoded in any structure in \mathbb{K}

Def: A set D is weakly Σ_{α}^{0} coded in \mathcal{A} if D is left- Σ_{α}^{0} in every copy of \mathcal{A}.

The dichotomy

Let \mathbb{K} be a Borel class of countable structures.
Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish countably many struct. in \mathbb{K};
- there is a countable complete set of $\Pi_{\alpha}^{i n}$-formulas;
- no non-trivial set can be Σ_{α}^{0}-encoded in any structure in \mathbb{K};
or
- There are continuum many $\Pi_{\alpha}^{i n}$-types realized in \mathbb{K}.
- using α jumps we can distinguish continuum many struct. in \mathbb{K};
- there is no countable complete set of $\Pi_{\alpha}^{i n}$-formulas;
- any set can be weakly- Σ_{α}^{0}-encoded in some structure in \mathbb{K};
relative to some oracle.

The Main Theorem- so you don't forget

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

Theorem

If $\left|\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$ for some α, then, relative to every X on a cone, \mathbb{K} has an X-hyperarithemetic model without an X-computable copy.

Naming the types

Let α be the least such that $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.

Naming the types

Let α be the least such that $\left|\mathbf{b f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f} \mathcal{F}_{\beta}(\mathbb{K})$, let R_{p} be the relation such that for $\mathcal{A} \in \mathbb{K}$,
$\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$

Naming the types

Let α be the least such that $\left|\mathbf{b f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, let R_{p} be the relation such that for $\mathcal{A} \in \mathbb{K}$,
$\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a})$.

Naming the types

Let α be the least such that $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f} \mathcal{F}_{\beta}(\mathbb{K})$, let R_{p} be the relation such that for $\mathcal{A} \in \mathbb{K}$,
$\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a})$.

Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- $\mathcal{L} \beta$ formula.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.
Lemma: For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$,

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.
Lemma: For $p \in \mathbf{b f} \boldsymbol{f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$, and hence is $\Pi_{1}^{i n}$-over L_{β}.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.
Lemma: For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$, and hence is $\Pi_{1}^{i n}$-over L_{β}.
Pf: For each $q \in \mathbf{b f}_{\beta}(\mathbb{K})$ with $p \nsubseteq q$, pick $\varphi_{q} \in p \backslash q$.
Claim: $R_{p}(\bar{x}) \Longleftrightarrow \bigwedge_{q \in \mathbf{b f}_{\beta}(\mathbb{K}), p \notin q} \varphi_{q}$.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.
Lemma: For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$, and hence is $\Pi_{1}^{i n}$-over L_{β}.
Pf: For each $q \in \mathbf{b f}_{\beta}(\mathbb{K})$ with $p \nsubseteq q$, pick $\varphi_{q} \in p \backslash q$.
Claim: $R_{p}(\bar{x}) \Longleftrightarrow \bigwedge_{q \in \mathrm{bf}_{\beta}(\mathbb{K}), p \notin q} \varphi_{q}$.
For $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, let ψ_{p} the the $\Pi_{1}^{i n}$-over L_{β} formula defining it.

Naming the types

Recall: For $\beta<\alpha$ and $p \in \mathbf{b f}_{\beta}(\mathbb{K}), \mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.
Lemma: For $\beta<\alpha$, every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\sum_{1}^{i n}$-over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{b f}}^{\beta(\mathbb{K}), \varphi \in p} 10$.
Corollary: Every Σ_{β} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{β}-formula.
Lemma: For $p \in \mathbf{b f} \boldsymbol{f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$, and hence is $\Pi_{1}^{i n}$-over L_{β}.
Pf: For each $q \in \mathbf{b f}_{\beta}(\mathbb{K})$ with $p \nsubseteq q$, pick $\varphi_{q} \in p \backslash q$.
Claim: $R_{p}(\bar{x}) \Longleftrightarrow \bigwedge_{q \in \mathbf{b f}_{\beta}(\mathbb{K}), p \notin q} \varphi_{q}$.
For $p \in \mathbf{b f}{ }_{\beta}(\mathbb{K})$, let ψ_{p} the the $\Pi_{1}^{i n}$-over L_{β} formula defining it.
Let T_{α} be the set of $\Pi_{2}^{\text {in }} \mathcal{L}_{\alpha}$-sentences

$$
"(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}) " \text { for } p \in \mathbf{b f}_{\alpha}(\mathbb{K})
$$

(2) implies (1)

Recall:

- α is the least with $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

(2) implies (1)

Recall:

- α is the least with $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, \boldsymbol{p} \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\sum_{1}^{i n}$-over \mathcal{L}_{α}-formula.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, \boldsymbol{p} \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\sum_{1}^{i n}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.
- $T_{\alpha}=\left\{(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}): p \in \mathbf{b f}_{\alpha}(\mathbb{K})\right\}$.

(2) implies (1)

Recall:

- α is the least with $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, \boldsymbol{p} \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\sum_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.
- $T_{\alpha}=\left\{(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}): p \in \mathbf{b f}_{\alpha}(\mathbb{K})\right\}$.

Cor: Every Σ_{α}-type is equivalent to a finitary Σ_{1}-type of \mathcal{L}_{α}.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\Sigma_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.
- $T_{\alpha}=\left\{(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}): p \in \mathbf{b f}_{\alpha}(\mathbb{K})\right\}$.

Cor: Every Σ_{α}-type is equivalent to a finitary Σ_{1}-type of \mathcal{L}_{α}.
Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, \boldsymbol{p} \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\Sigma_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.
- $T_{\alpha}=\left\{(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}): p \in \mathbf{b f}_{\alpha}(\mathbb{K})\right\}$.

Cor: Every Σ_{α}-type is equivalent to a finitary Σ_{1}-type of \mathcal{L}_{α}.
Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.
So, \hat{T}_{α} is $\Pi_{2}^{i n}$, and there are $2^{\aleph_{0}}$ many Σ_{1}-types over \hat{T}.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- Every Σ_{α} formula is equivalent to a $\Sigma_{1}^{\text {in }}$-over \mathcal{L}_{α}-formula.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{1}^{\text {in }}$-over L_{β}. ψ_{p} is that formula.
- $T_{\alpha}=\left\{(\forall \bar{x}) R_{p}(\bar{x}) \Longleftrightarrow \psi_{p}(\bar{x}): p \in \mathbf{b f}_{\alpha}(\mathbb{K})\right\}$.

Cor: Every Σ_{α}-type is equivalent to a finitary Σ_{1}-type of \mathcal{L}_{α}.
Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.
So, \hat{T}_{α} is $\Pi_{2}^{i n}$, and there are $2^{\aleph_{0}}$ many Σ_{1}-types over \hat{T}.

Then, for every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, without a Y-computable copy,

(2) implies (1)

Recall:

- α is the least with $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.

(2) implies (1)

Recall:

- α is the least with $|\mathbf{b f}(\mathbb{K})|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b f} \boldsymbol{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b f} \boldsymbol{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b f} \boldsymbol{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

Let γ be the maximum between α and the complexity of T.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

Let γ be the maximum between α and the complexity of T.
So, if $\mathcal{A} \models T, \mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{\alpha}$ such that $\hat{\mathcal{A}}_{\alpha} \models \hat{T}_{\alpha}$.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

Let γ be the maximum between α and the complexity of T.
So, if $\mathcal{A} \models T, \mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{\alpha}$ such that $\hat{\mathcal{A}}_{\alpha} \models \hat{T}_{\alpha}$.
Given every X on the cone, let $Y=X^{(\gamma)}$, then

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

Let γ be the maximum between α and the complexity of T.
So, if $\mathcal{A} \models T, \mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{\alpha}$ such that $\hat{\mathcal{A}}_{\alpha} \models \hat{T}_{\alpha}$.
Given every X on the cone, let $Y=X^{(\gamma)}$, then there is a $X^{(\gamma+1)}$-computable model $\hat{\mathcal{A}}_{\alpha} \equiv \hat{T}_{\alpha}$,
without a $X^{(\gamma)}$ computable copy.

(2) implies (1)

Recall:

- α is the least with $\left|\mathbf{b} f_{\alpha}(\mathbb{K})\right|=2^{\aleph_{0}}$.
- $\mathcal{L}_{\alpha}=\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K}), R_{p}$ is $\Pi_{\beta}^{i n}$.
- $\hat{T}_{\alpha}=T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y^{\prime}-computable model of \hat{T}_{α}, not Y-computable.

Let γ be the maximum between α and the complexity of T.
So, if $\mathcal{A} \models T, \mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{\alpha}$ such that $\hat{\mathcal{A}}_{\alpha} \models \hat{T}_{\alpha}$.
Given every X on the cone, let $Y=X^{(\gamma)}$, then there is a $X^{(\gamma+1)}$-computable model $\hat{\mathcal{A}}_{\alpha} \equiv \hat{T}_{\alpha}$,
without a $X^{(\gamma)}$ computable copy.
So, \mathcal{A} does not have an X-computable copy.

The Main Theorem-again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} .
$$

The main direction of the theorem

Def: $S p(\mathcal{A})=\left\{X \in 2^{\omega}: X \quad\right.$ computes a copy of $\left.\mathcal{A}\right\}$.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Recall: ω_{1}^{X} is the least ordinal without an X-computable copy.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Recall: ω_{1}^{X} is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then $\omega_{1}^{Z} \leq \omega_{1}^{X}$.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Recall: ω_{1}^{X} is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then $\omega_{1}^{Z} \leq \omega_{1}^{X}$.
$\mathbf{E x}: \operatorname{Sp}\left(\omega_{1}^{C K}\right)=\left\{X: \omega_{1}^{X}>\omega_{1}^{C K}\right\}$.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Recall: ω_{1}^{X} is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then $\omega_{1}^{Z} \leq \omega_{1}^{X}$.
$\mathbf{E x}: \operatorname{Sp}\left(\omega_{1}^{C K}\right)=\left\{X: \omega_{1}^{X}>\omega_{1}^{C K}\right\}$.

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then, there is $Y \in 2^{\omega}$ such that, for every $C \subseteq 2^{\mathbb{N}}$, the following are equivalent:

- $C=S p^{Y}(\mathcal{A})$ for some $\mathcal{A} \models T$,
- $C=\left\{X: \omega_{1}^{X \oplus Y} \geq \alpha\right\}$ for some $\alpha<\omega_{1}$.

The main direction of the theorem

Def: $S p^{Y}(\mathcal{A})=\left\{X \in 2^{\omega}: X \oplus Y\right.$ computes a copy of $\left.\mathcal{A}\right\}$.
Recall: ω_{1}^{X} is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then $\omega_{1}^{Z} \leq \omega_{1}^{X}$.
$\mathbf{E x}: \operatorname{Sp}\left(\omega_{1}^{C K}\right)=\left\{X: \omega_{1}^{X}>\omega_{1}^{C K}\right\}$.

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then, there is $Y \in 2^{\omega}$ such that, for every $C \subseteq 2^{\mathbb{N}}$, the following are equivalent:

- $C=S p^{Y}(\mathcal{A})$ for some $\mathcal{A} \models T$,
- $C=\left\{X: \omega_{1}^{X \oplus Y} \geq \alpha\right\}$ for some $\alpha<\omega_{1}$.

Corollary: If T is a counterexample to Vaught's conjecture, then T satisfies hyperarithmetic-is-recursive on a cone.

An observation

Suppose you have a proof of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}$ - $\operatorname{Th}(\mathcal{A})$."

An observation

Suppose you have a proof of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}$ - $\operatorname{Th}(\mathcal{A})$." in a way that relativizes

An observation

Suppose you have a proof of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$." in a way that relativizes
or of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$ and no computable copy." in a way that relativizes

An observation

Suppose you have a proof of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$." in a way that relativizes
or of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$ and no computable copy."

in a way that relativizes

then you have a proof of Vaught's Conjecture.

An observation

Suppose you have a proof of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$."
in a way that relativizes
or of:
"If you have a structure \mathcal{A} with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_{2}^{c}-\operatorname{Th}(\mathcal{A})$ and no computable copy." in a way that relativizes
then you have a proof of Vaught's Conjecture.

Question: What can we say about the structures with $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$?

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.
For instance:

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.
For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{c K} \models \varphi$.

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.
For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{C K} \models \varphi$.
It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv{ }_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$.

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.
For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{C K} \models \varphi$.
It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv{ }_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$.
Since $\omega_{1}^{C K}=\omega^{\alpha} \cdot \omega_{1}^{C K}$,

Structures with the same spectrum as $\omega_{1}^{C K}$

The structures \mathcal{A} we know that have $\operatorname{Sp}(\mathcal{A})=\operatorname{Sp}\left(\omega_{1}^{C K}\right)$ are:

- $\omega_{1}^{C K}$
- any ordinal $\alpha, \omega_{1}^{C K} \leq \alpha<\omega_{2}^{C K}$,
- $\omega_{2}^{C K} \cdot(1+\mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the p-group given by the tree above,
- ...

In all these examples, we know that
if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_{1}, \omega}$ sentence, then \mathbb{K} has $2^{\aleph_{0}}$ many structures.
For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{C K} \models \varphi$.
It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv{ }_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$.
Since $\omega_{1}^{C K}=\omega^{\alpha} \cdot \omega_{1}^{C K}$, for any \mathcal{L} we have that $\omega^{\alpha} \cdot \mathcal{L} \models \varphi$.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that $\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}$, and \mathcal{H} has no hyperarithmetic descending sequence.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Pf: Because $\omega_{1}^{C K}$ is Π_{1}^{1}, and if $P=\omega_{1}^{C K}$, it would be Δ_{1}^{1}.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Pf: Because $\omega_{1}^{C K}$ is Π_{1}^{1}, and if $P=\omega_{1}^{C K}$, it would be Δ_{1}^{1}. We could then find a hyp descending sequence in $\mathcal{H} \backslash \omega_{1}^{C K}$.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Pf: Because $\omega_{1}^{C K}$ is Π_{1}^{1}, and if $P=\omega_{1}^{C K}$, it would be Δ_{1}^{1}. We could then find a hyp descending sequence in $\mathcal{H} \backslash \omega_{1}^{C K}$.

A variation: If $\omega_{1}^{X}=\omega_{1}^{C K}$, and $P \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(X)$, the same holds.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Pf: Because $\omega_{1}^{C K}$ is Π_{1}^{1}, and if $P=\omega_{1}^{C K}$, it would be Δ_{1}^{1}. We could then find a hyp descending sequence in $\mathcal{H} \backslash \omega_{1}^{C K}$.

A variation: If $\omega_{1}^{X}=\omega_{1}^{C K}$, and $P \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(X)$, the same holds.
Relativization: There is a computable operator $X \mapsto \mathcal{H}^{X}$, such that \mathcal{H}^{X} is the Harrison linear ordering relative to X.

Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering \mathcal{H} such that

$$
\mathcal{H} \cong \omega_{1}^{C K}+\omega_{1}^{C K} \cdot \mathbb{Q}
$$

and \mathcal{H} has no hyperarithmetic descending sequence.

Overspill Argument:

$$
\text { If } P \subseteq \mathcal{H} \text { is } \Sigma_{1}^{1} \text { and } \omega_{1}^{C K} \subseteq P \text {, there is } \alpha^{*} \in P \backslash \omega_{1}^{C K}
$$

Pf: Because $\omega_{1}^{C K}$ is Π_{1}^{1}, and if $P=\omega_{1}^{C K}$, it would be Δ_{1}^{1}. We could then find a hyp descending sequence in $\mathcal{H} \backslash \omega_{1}^{C K}$.

A variation: If $\omega_{1}^{X}=\omega_{1}^{C K}$, and $P \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(X)$, the same holds.
Relativization: There is a computable operator $X \mapsto \mathcal{H}^{X}$, such that \mathcal{H}^{X} is the Harrison linear ordering relative to X.

$$
\text { i.e. } \mathcal{H}^{X} \cong \omega_{1}^{X}+\omega_{1}^{X} \cdot \mathbb{Q} \text { has no } X \text {-hyp descending sequences. }
$$

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$. (\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq)\right.$: if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$. (\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$. (\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq 1\right.\right.$ ex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.)

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq)\right.$: if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$. (\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq 1\right.\right.$ ex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.) and hence

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \in \mathbb{K}\}=\left\{\left\{X: \omega_{1}^{X} \geq \alpha\right\}: \alpha<\omega_{1}\right\}
$$

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq)\right.$: if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$. (\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq 1\right.\right.$ ex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.) and hence

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \in \mathbb{K}\}=\left\{\left\{X: \omega_{1}^{X} \geq \alpha\right\}: \alpha<\omega_{1}\right\}
$$

Obs:

- \mathbb{K} is Σ_{1}^{1}.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq)\right.$: if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$.
(\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq 1\right.\right.$ ex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.) and hence

$$
\{S p(\mathcal{A}): \mathcal{A} \in \mathbb{K}\}=\left\{\left\{X: \omega_{1}^{X} \geq \alpha\right\}: \alpha<\omega_{1}\right\}
$$

Obs:

- \mathbb{K} is Σ_{1}^{1}.
$\mathcal{L} \in \mathbb{K}$ if \mathbb{Q} embeds in \mathcal{L} and $\forall a, b \in \mathcal{L}$ there is automorphism mapping $a \mapsto b$.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$.
(\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq 1\right.\right.$ ex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.) and hence

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \in \mathbb{K}\}=\left\{\left\{X: \omega_{1}^{X} \geq \alpha\right\}: \alpha<\omega_{1}\right\}
$$

Obs:

- \mathbb{K} is Σ_{1}^{1}.
$\mathcal{L} \in \mathbb{K}$ if \mathbb{Q} embeds in \mathcal{L} and $\forall a, b \in \mathcal{L}$ there is automorphism mapping $a \mapsto b$.
- \mathbb{K} is not $L_{\omega_{1}, \omega}$ axiomatizable.

Kunen's Example

Let $\mathbb{K}=\left\{\mathbb{Z}^{\alpha} \cdot \mathbb{Q}: \alpha<\omega_{1}\right\}$ as linear orders.
Then

$$
\operatorname{Sp}\left(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}\right)=\left\{X: \omega_{1}^{X} \geq \alpha\right\}
$$

$\left((\supseteq):\right.$ if $\alpha<\omega_{1}^{X}$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha=\omega_{1}^{X}, \mathbb{Z}^{\alpha} \cdot \mathbb{Q}=\mathbb{Z}^{\alpha+\alpha \cdot \mathbb{Q}}=\mathbb{Z}^{\mathcal{H}^{X}}$.
(\subseteq) : if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta<\alpha$. But X computes no copy of $\mathbb{Z}^{\omega_{1}^{X}}$, because the tree $\left\{p:\left(2^{<n}, \leq\right.\right.$ lex $\left.) \rightarrow \mathbb{Z}^{\beta}\right\}$ is WF and has rank $\geq \beta$.) and hence

$$
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \in \mathbb{K}\}=\left\{\left\{X: \omega_{1}^{X} \geq \alpha\right\}: \alpha<\omega_{1}\right\}
$$

Obs:

- \mathbb{K} is Σ_{1}^{1}.
$\mathcal{L} \in \mathbb{K}$ if \mathbb{Q} embeds in \mathcal{L} and $\forall a, b \in \mathcal{L}$ there is automorphism mapping $a \mapsto b$.
- \mathbb{K} is not $L_{\omega_{1}, \omega}$ axiomatizable.

Again, for $\alpha<\omega_{1}^{C K}$, for any two lin.ord $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathbb{Z}^{\alpha} \cdot \mathcal{L}_{1} \equiv_{\alpha} \mathbb{Z}^{\alpha} \cdot \mathcal{L}_{2}$.

A bit more background

Def: An ordinal α is admissible if there is no unbounded, Σ_{1}-in- L_{α} function $f: \delta \rightarrow \alpha$ for any $\delta<\alpha$.

A bit more background

Def: An ordinal α is admissible if there is no unbounded, Σ_{1}-in- L_{α} function $f: \delta \rightarrow \alpha$ for any $\delta<\alpha$.

Thm [Sacks]: α is admissible $\Longleftrightarrow \alpha=\omega_{1}^{X}$ for some X.

A bit more background

Def: An ordinal α is admissible if there is no unbounded, Σ_{1}-in- L_{α} function $f: \delta \rightarrow \alpha$ for any $\delta<\alpha$.

Thm [Sacks]: α is admissible $\Longleftrightarrow \alpha=\omega_{1}^{X}$ for some X.

A bit more background

Def: An ordinal α is admissible if there is no unbounded, Σ_{1}-in- L_{α} function $f: \delta \rightarrow \alpha$ for any $\delta<\alpha$.

Thm [Sacks]: α is admissible $\Longleftrightarrow \alpha=\omega_{1}^{X}$ for some X.

Gandy's Basis Theorem:

If φ is Σ_{1}^{1}, and $\exists X \varphi(X)$, then there is such an X with $\omega_{1}^{X}=\omega_{1}^{C K}$.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:

Let $g: \omega \rightarrow \omega$ be a generic permutation of ω.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G}
$$

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X}
$$

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X}
$$

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Let $f: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$ be an isomorphism.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Let $f: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$ be an isomorphism. It's a permutation of ω.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Let $f: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$ be an isomorphism. It's a permutation of ω. If g is generic enough, so is $f \circ g$.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Let $f: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$ be an isomorphism. It's a permutation of ω. If g is generic enough, so is $f \circ g$. Notice that G is be the pull back of \mathcal{H}^{Y} through $f \circ g$.

Interpolation lemma

Lemma: If $\omega_{1}^{X}=\omega_{1}^{Y}$, then there is G such that

$$
\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}=\omega_{1}^{Y} .
$$

Pf:
Let $g: \omega \rightarrow \omega$ be a generic permutation of ω. Let G be the pull back of \mathcal{H}^{X} through g. Then $G \cong \omega_{1}^{X} \oplus \omega_{1}^{X} \cdot \mathbb{Q}$. Conclude that

$$
\omega_{1}^{X} \leq \omega_{1}^{G} \leq \omega_{1}^{G \oplus X} \leq \omega_{1}^{g \oplus X} \leq \omega_{1}^{X} .
$$

Let $f: \mathcal{H}^{X} \rightarrow \mathcal{H}^{Y}$ be an isomorphism. It's a permutation of ω. If g is generic enough, so is $f \circ g$. Notice that G is be the pull back of \mathcal{H}^{Y} through $f \circ g$. Conclude that $\omega_{1}^{Y}=\omega_{1}^{G}=\omega_{1}^{G \oplus Y}$.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-\operatorname{tp} p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{B}}(\bar{b})$.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp_{\mathcal {B}}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp} p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \bar{a}): \mathcal{A} \in \mathbb{K}, \overline{\mathbf{a}} \in \mathcal{A}\}}{\equiv_{\alpha}}$

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-\operatorname{tp}_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp} p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b} \mathbf{f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \bar{a}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}=$ the set of Π_{α}-types realized in \mathbb{K}.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp} p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \bar{a}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}=$ the set of Π_{α}-types realized in \mathbb{K}.
\equiv_{α} is Borel, so, by [Silver 80], bf ${ }_{\alpha}(\mathbb{K})$ has size either countable or continuum.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α-back-and-forth below (\mathcal{B}, \bar{b}) :
$(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b}) \Longleftrightarrow \forall \beta<\alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$

$$
(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta}(\mathcal{B}, \bar{b}, \bar{d})
$$

$(\mathcal{A}, \bar{a}) \leq_{0}(\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE
(1) $(\mathcal{A}, \bar{a}) \leq_{\alpha}(\mathcal{B}, \bar{b})$
(2) $\Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{a}) \subseteq \Pi_{\alpha}^{i n}-\operatorname{tp} p_{\mathcal{B}}(\bar{b})$.
(3) Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}), deciding whether $(\mathcal{C}, \bar{c}) \cong(\mathcal{A}, \bar{a})$ is $\boldsymbol{\Sigma}_{\alpha}^{0}$-hard.

Let $\mathbf{b f}_{\alpha}(\mathbb{K})=\frac{\{(\mathcal{A}, \bar{a}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}=$ the set of Π_{α}-types realized in \mathbb{K}.
\equiv_{α} is Borel, so, by [Silver 80], bf ${ }_{\alpha}(\mathbb{K})$ has size either countable or continuum.
T being scattered means that $\mathbf{b f}_{\alpha}(\mathbb{K})$ is countable for all α.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $\operatorname{SR}(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\omega_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\omega_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. Thm [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\left.\mathcal{A} \equiv \overline{\mathcal{L}}_{\omega_{1}^{c} \kappa}^{c}, \omega\right]$, then $\mathcal{A} \cong \mathcal{B}$.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\omega_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. Thm [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv{\underset{\mathcal{L}}{\omega_{1}^{c} K}, \omega}_{c}^{c} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_{1}^{C K}$,

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv{ }_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\mathcal{L}_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. Thm [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\left.\mathcal{A} \equiv \overline{\mathcal{L}}_{\omega_{1}^{c} \kappa}^{c}, \omega\right]$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_{1}^{C K}$, and hence $S R(\mathcal{A}) \leq \omega_{1}^{C K}+1$.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\omega_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.
Thm [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv{\underset{\mathcal{L}}{\omega_{1}^{c} K}, \omega}_{c}^{c} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.
Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_{1}^{C K}$, and hence $S R(\mathcal{A}) \leq \omega_{1}^{C K}+1$.
Relativizing: $S R(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1$.

Scott Rank

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α, such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha}(\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $S R(\mathcal{A})=\sup \left\{\rho_{\mathcal{A}}(\bar{a})+1: \bar{a} \in \mathcal{A}^{<\omega}\right\}$.
Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv \mathcal{L}_{\omega_{1}, \omega} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.
Thm [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\left.\mathcal{A} \equiv \overline{\mathcal{L}}_{\omega_{1}^{c} \kappa}^{c}, \omega\right]$, then $\mathcal{A} \cong \mathcal{B}$.
Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_{1}^{C K}$, and hence $S R(\mathcal{A}) \leq \omega_{1}^{C K}+1$.
Relativizing: $\operatorname{SR}(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1$.
Since T is scattered and uncountable,
it has models of arbitrarily high Scott rank.

The two steps

Suppose T is a scattered theory with uncountably many models. We want to show:

The two steps

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\} \quad=\quad\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

The two steps

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$
\begin{aligned}
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\} & =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} \\
& =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}, \alpha \text { admissible }\right\}
\end{aligned}
$$

The two steps

Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

$$
\begin{aligned}
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \mid=T\} & =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} \\
& =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}, \alpha \text { admissible }\right\}
\end{aligned}
$$

And to get that we will prove two things:

The two steps

Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

$$
\begin{aligned}
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\} & =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} \\
& =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}, \alpha \text { admissible }\right\}
\end{aligned}
$$

And to get that we will prove two things:
(1) For every admissible α, there is $\mathcal{A} \equiv T$ with $\omega_{1}^{\mathcal{A}}=\alpha$.
(2) For every $\mathcal{A} \vDash T, \operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$. Let X be so that $\alpha=\omega_{1}^{X}$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$. Let X be so that $\alpha=\omega_{1}^{X}$.

Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$:

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$. Let X be so that $\alpha=\omega_{1}^{X}$.

Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \equiv T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$,

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \equiv T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \equiv T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$,

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not \equiv_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$, and $\forall \gamma<\alpha^{*}, \gamma<\omega_{1}^{X}, \gamma<\operatorname{SR}(\mathcal{A})$.

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$, and $\forall \gamma<\alpha^{*}, \gamma<\omega_{1}^{X}, \gamma<S R(\mathcal{A})$.
Thus

$$
\omega_{1}^{X} \leq S R(\mathcal{A})
$$

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$, and $\forall \gamma<\alpha^{*}, \gamma<\omega_{1}^{X}, \gamma<\operatorname{SR}(\mathcal{A})$.
Thus

$$
\omega_{1}^{X} \leq S R(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1
$$

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$, and $\forall \gamma<\alpha^{*}, \gamma<\omega_{1}^{X}, \gamma<S R(\mathcal{A})$.
Thus

$$
\omega_{1}^{X} \leq S R(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1 \leq \omega_{1}^{X}+1
$$

The first step

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_{1}^{\mathcal{A}}=\alpha$.
Let X be so that $\alpha=\omega_{1}^{X}$.
Obs: Let $S R_{>\gamma}$ be the $\Pi_{2 \gamma+2}^{i n}$ sentence so that $\mathcal{A} \models S R_{>\gamma} \Longleftrightarrow S R(\mathcal{A})>\gamma$: $S R_{<\gamma}$ is $\exists \bar{x}, \bar{y}\left(\bar{x} \equiv_{\gamma} \bar{y} \wedge \bar{x} \not 三_{\gamma+1} \bar{y}\right)$.
We know that for every γ, there is a model of T which has $\operatorname{SR}>\gamma$.
Let $P=\left\{\beta \in \mathcal{H}^{X}\right.$: there exists $\mathcal{A}, \mathcal{A} \models T$ and $\left.\bigwedge_{\gamma<\beta} \mathcal{A} \models S R_{>\gamma}\right\}$.
P is $\Sigma_{1}^{1}(X)$ and $\omega_{1}^{X} \subseteq P$. There is $\alpha^{*} \in P \backslash \omega_{1}^{X}$, and let \mathcal{A} be the witness.
By Gandy's thm, we can take \mathcal{A} with $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{X}$.
Then $\mathcal{A} \models T$, and $\forall \gamma<\alpha^{*}, \gamma<\omega_{1}^{X}, \gamma<S R(\mathcal{A})$.
Thus

$$
\omega_{1}^{X} \leq S R(\mathcal{A}) \leq \omega_{1}^{\mathcal{A}}+1 \leq \omega_{1}^{X}+1
$$

Thus $\omega_{1}^{\mathcal{A}}=\omega_{1}^{X}$.

The two steps

Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

$$
\begin{aligned}
\{\operatorname{Sp}(\mathcal{A}): \mathcal{A} \models T\} & =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} \\
& =\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}, \alpha \text { admissible }\right\}
\end{aligned}
$$

And to get that we will prove two things:
(1) For every admissible α, there is $\mathcal{A} \equiv T$ with $\omega_{1}^{\mathcal{A}}=\alpha$.
(2) For every $\mathcal{A} \vDash T, \operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{\text {in }}-\operatorname{tp}_{\mathcal{A}}(\bar{x})$.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t_{\mathcal{A}}(\bar{x})$.

Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \models R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{i n}$-type exactly p.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{i n}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{\text {in }}-\operatorname{tp}_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \models R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{i n}$-type exactly p.
Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\} \cup\left\{R_{p}^{=}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{x})$.

Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \vDash R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{i n}$-type exactly p.
Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\} \cup\left\{R_{p}^{=}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

- Every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\Pi_{1}^{i n}$-over- $\mathcal{L} \beta$ formula.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \models R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{i n}$-type exactly p.
Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\} \cup\left\{R_{p}^{=}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

- Every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\Pi_{1}^{i n}$-over- $\mathcal{L} \beta$ formula.
- Every $\Pi_{\beta}^{i n}$-type is equivalent to a finitary Π_{1}-type of \mathcal{L}_{β}.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{x})$.

Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \models R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{\text {in }}$-type exactly p.
Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\} \cup\left\{R_{p}^{=}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

- Every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\Pi_{1}^{i n}$-over- $\mathcal{L} \beta$ formula.
- Every $\Pi_{\beta}^{i n}$-type is equivalent to a finitary Π_{1}-type of \mathcal{L}_{β}.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, let ψ_{p} the conjunction of these finitary $\Pi_{1}-\mathcal{L}_{\beta}$-formulas.

Recall

Using Morleyization, we can assume T is Π_{2}^{c}.

For each $\beta<\alpha$ and each $\Pi_{\beta}^{\text {in }}$-type $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_{p}(\bar{x}) \Longleftrightarrow \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \Longleftrightarrow p \subseteq \Pi_{\alpha}^{i n}-t p_{\mathcal{A}}(\bar{x})$.

Let us also consider a relation $R_{p}^{=}$:
$\mathcal{A} \models R_{p}^{=}(\bar{x}) \Longleftrightarrow \bar{x}$ has $\Pi_{\alpha}^{\text {in }}$-type exactly p.
Let \mathcal{L}_{α} be $\mathcal{L} \cup\left\{R_{p}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\} \cup\left\{R_{p}^{=}: \beta<\alpha, p \in \mathbf{b f}_{\beta}(\mathbb{K})\right\}$.

- Every $\Pi_{\beta}^{i n}$ formula is equivalent to a $\Pi_{1}^{i n}$-over- $\mathcal{L} \beta$ formula.
- Every $\Pi_{\beta}^{\text {in }}$-type is equivalent to a finitary Π_{1}-type of \mathcal{L}_{β}.
- For $p \in \mathbf{b f}_{\beta}(\mathbb{K})$, let ψ_{p} the conjunction of these finitary $\Pi_{1}-\mathcal{L}_{\beta}$-formulas.
- ψ_{p} is $\Pi_{1}^{i n}$-in- \mathcal{L}_{β} and is equivalent to R_{p}.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where - $\beta<\alpha$,

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{\text {in }}$ type of T.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{\text {in }}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary Π_{1} - \mathcal{L}_{β}-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{\text {in }}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary Π_{1} - \mathcal{L}_{β}-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary Π_{1} - \mathcal{L}_{β}-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Let $T_{\alpha}^{\mathbb{B}}$ be T, together with the set of $\Pi_{2}^{\text {in }} \mathcal{L}_{\alpha}$-sentences

- $(\forall \bar{x}) R_{q}(\bar{x}) \Longleftrightarrow \bigwedge_{\psi \in S_{q}} \psi(\bar{x})$, for $q \in \mathbb{B}$,

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Let $T_{\alpha}^{\mathbb{B}}$ be T, together with the set of $\Pi_{2}^{\text {in }} \mathcal{L}_{\alpha}$-sentences

- $(\forall \bar{x}) R_{q}(\bar{x}) \Longleftrightarrow \bigwedge_{\psi \in S_{q}} \psi(\bar{x})$, for $q \in \mathbb{B}$,
- $(\forall \bar{x}) R_{q}^{=}(\bar{x}) \Longleftrightarrow R_{p}(\bar{x}) \wedge \bigwedge_{\varphi \in \Pi_{1} \backslash S_{1}} \neg \varphi$, for $q \in \mathbb{B}$,

The α-bf-structure

The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Let $T_{\alpha}^{\mathbb{B}}$ be T, together with the set of $\Pi_{2}^{\text {in }} \mathcal{L}_{\alpha}$-sentences

- $(\forall \bar{x}) R_{q}(\bar{x}) \Longleftrightarrow \bigwedge_{\psi \in S_{q}} \psi(\bar{x})$, for $q \in \mathbb{B}$,
- $(\forall \bar{x}) R_{q}^{=}(\bar{x}) \Longleftrightarrow R_{p}(\bar{x}) \wedge \bigwedge_{\varphi \in \Pi_{1} \backslash s_{1}} \neg \varphi$, for $q \in \mathbb{B}$,
- $\bigwedge_{\gamma<\alpha} \forall \bar{x} \bigvee_{q \in \mathbb{B}, \beta_{q}=\gamma} R_{q}^{-}(\bar{x})$.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: If \mathbb{K} is Π_{2}^{c}, t is a Σ_{1}-type, there is a t-computable structure in \mathbb{K} realizing t.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: If \mathbb{K} is Π_{2}^{c}, t is a Σ_{1}-type, there is a t-computable structure in \mathbb{K} realizing t.
Def: We say that an \mathcal{L}-structure \mathcal{A} satisfies an α-bf-structure \mathbb{B}, if one can find interpretations of the relations in $\mathcal{L}_{\alpha}^{\mathbb{B}}$ so that $\mathcal{A} \models T_{\alpha}^{\mathbb{B}}$.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: If \mathbb{K} is Π_{2}^{c}, t is a Σ_{1}-type, there is a t-computable structure in \mathbb{K} realizing t.
Def: We say that an \mathcal{L}-structure \mathcal{A} satisfies an α-bf-structure \mathbb{B}, if one can find interpretations of the relations in $\mathcal{L}_{\alpha}^{\mathbb{B}}$ so that $\mathcal{A} \models T_{\alpha}^{\mathbb{B}}$.

Corollary: If \mathbb{B} is the α-bf-structure of T, and p a Σ_{1}-in- \mathcal{L}_{α} type, there is a model of $T_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: If \mathbb{K} is Π_{2}^{c}, t is a Σ_{1}-type, there is a t-computable structure in \mathbb{K} realizing t.
Def: We say that an \mathcal{L}-structure \mathcal{A} satisfies an α-bf-structure \mathbb{B}, if one can find interpretations of the relations in $\mathcal{L}_{\alpha}^{\mathbb{B}}$ so that $\mathcal{A} \models T_{\alpha}^{\mathbb{B}}$.

Corollary: If \mathbb{B} is the α-bf-structure of T, and p a Σ_{1}-in- \mathcal{L}_{α} type, there is a model of $T_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Lemma: An α-bf-structure \mathbb{B} is the α-bf-structure of T iff $\forall p \in \mathbb{B}$ there is a model satisfying \mathbb{B}, realizing p, and every model of T satisfies \mathbb{B}.

Building models out of α-bf-structures

Recall: An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: If \mathbb{K} is Π_{2}^{c}, t is a Σ_{1}-type, there is a t-computable structure in \mathbb{K} realizing t.
Def: We say that an \mathcal{L}-structure \mathcal{A} satisfies an α-bf-structure \mathbb{B}, if one can find interpretations of the relations in $\mathcal{L}_{\alpha}^{\mathbb{B}}$ so that $\mathcal{A} \models T_{\alpha}^{\mathbb{B}}$.

Corollary: If \mathbb{B} is the α-bf-structure of T, and p a Σ_{1}-in- \mathcal{L}_{α} type, there is a model of $T_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Lemma: An α-bf-structure \mathbb{B} is the α-bf-structure of T iff $\forall p \in \mathbb{B}$ there is a model satisfying \mathbb{B}, realizing p, and every model of T satisfies \mathbb{B}.

Obs: Being the α-bf-structure of T is Π_{1}^{1}.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$. An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$. An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \mid \beta\right\} \subseteq \mathcal{H}$

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \mid \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \models T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^{*}$ and $R_{p}^{=}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$.
There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^{*}$ and $R_{p}^{=}$.
For $\beta<\omega_{1}^{C K}$, and $q \in \mathbb{B} \upharpoonright \beta, \mathcal{A} \models R_{q}^{=} \Longleftrightarrow \mathcal{B} \models R_{q}^{=}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$.
There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^{*}$ and $R_{p}^{=}$.
For $\beta<\omega_{1}^{C K}$, and $q \in \mathbb{B} \upharpoonright \beta, \mathcal{A} \models R_{q}^{=} \Longleftrightarrow \mathcal{B} \models R_{q}^{=}$. So $\mathcal{A} \equiv{ }_{\beta} \mathcal{B}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$.
There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^{*}$ and $R_{p}^{=}$.
For $\beta<\omega_{1}^{C K}$, and $q \in \mathbb{B} \upharpoonright \beta, \mathcal{A} \models R_{q}^{=} \Longleftrightarrow \mathcal{B} \models R_{q}^{=}$. So $\mathcal{A} \equiv{ }_{\beta} \mathcal{B}$.
So $\mathcal{A} \equiv{ }_{\omega_{1}^{c \kappa}} \mathcal{B}$.

The general idea

Recall: We want to show $\operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$ for $\mathcal{A} \vDash T$.
An α-bf-structure is a set \mathbb{B} of triples $q=\left\langle\beta_{q}, R_{q}, S_{q}\right\rangle$ where

- $\beta_{q}<\alpha$,
- R_{q} is a relation symbol.
- S_{q} is as a finitary $\Pi_{1}-\mathcal{L}_{\beta}^{\mathbb{B}}$-type, where $\mathcal{L}_{\beta}^{\mathbb{B}}=\left\{R_{s}, R_{s}^{=}: s \in \mathbb{B}, \beta_{s}<\beta\right\}$.

Lemma: Suppose \mathbb{B} is a computable α^{*}-bf-structure for $\alpha^{*} \in \mathcal{H} \backslash \omega_{1}^{C K}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β-bf-structure of T for all $\beta<\omega_{1}^{C K}$. Suppose that $\mathcal{A} \models T$ and $\omega_{1}^{\mathcal{A}}=\omega_{1}^{C K}$.

Then \mathcal{A} has a computable copy.
Pf: The set $P=\left\{\beta \leq \alpha^{*}: \mathcal{A}\right.$ satisfies $\left.\mathbb{B} \upharpoonright \beta\right\} \subseteq \mathcal{H}$ is $\Sigma_{1}^{1}(\mathcal{A})$ and contains $\omega_{1}^{C K}$. There is $\beta^{*} \in P \backslash \omega_{1}^{C K}$. Let $p \in \mathbb{B}$ be such that $\beta_{p}=\beta^{*}$, and $\mathcal{A} \models R_{p}^{=}$.
There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^{*}$ and $R_{p}^{=}$.
For $\beta<\omega_{1}^{C K}$, and $q \in \mathbb{B} \upharpoonright \beta, \mathcal{A} \models R_{q}^{=} \Longleftrightarrow \mathcal{B} \models R_{q}^{=}$. So $\mathcal{A} \equiv{ }_{\beta} \mathcal{B}$.
So $\mathcal{A} \equiv \omega_{\omega_{1}^{c k}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T. Let $f(X)$ be the least such α.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T. Let $f(X)$ be the least such $\alpha . f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $f(X)<\omega_{1}^{X}$.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T.
Let $f(X)$ be the least such $\alpha . f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $f(X)<\omega_{1}^{X}$.
Then, by Martin's lemma, f is constant on a cone.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T.
Let $f(X)$ be the least such $\alpha . f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $f(X)<\omega_{1}^{X}$.
Then, by Martin's lemma, f is constant on a cone.
But for every α, there is some Y in the cone with $f(X)>\alpha$.

Computing α-bf-structures.

Lemma (PD): For every X on a cone, if $\alpha<\omega_{1}^{C K}$, then X computes a copy of the α-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha<\omega_{1}^{C K}$, such that X does not computes a copy of the α-bf-structure of T. Let $f(X)$ be the least such $\alpha . f: 2^{\omega} \rightarrow \omega_{1}$ is projective, degree-invariant and $f(X)<\omega_{1}^{X}$.
Then, by Martin's lemma, f is constant on a cone.
But for every α, there is some Y in the cone with $f(X)>\alpha$.

From now on, we work relative to the base of this cone.

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{\text {in }}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.
Lemma: Every X computes an α^{*}-bf-structure, for some $\alpha^{*} \in \mathcal{H}^{X} \backslash \omega_{1}^{X}$, \mathbb{B}, such that $\left(\forall \alpha<\omega_{1}^{X}\right) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{\text {in }}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.
Lemma: Every X computes an α^{*}-bf-structure, for some $\alpha^{*} \in \mathcal{H}^{X} \backslash \omega_{1}^{X}$, \mathbb{B}, such that $\left(\forall \alpha<\omega_{1}^{X}\right) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α-bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are equivalent
if there is a way of matching the relations symbols...

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.
Lemma: Every X computes an α^{*}-bf-structure, for some $\alpha^{*} \in \mathcal{H}^{X} \backslash \omega_{1}^{X}$, \mathbb{B}, such that $\left(\forall \alpha<\omega_{1}^{X}\right) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α-bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are equivalent
if there is a way of matching the relations symbols...
Obs: Equivalence of α-bf-structures is Σ_{1}^{1}.

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.
Lemma: Every X computes an α^{*}-bf-structure, for some $\alpha^{*} \in \mathcal{H}^{X} \backslash \omega_{1}^{X}$, \mathbb{B}, such that $\left(\forall \alpha<\omega_{1}^{X}\right) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α-bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are equivalent
if there is a way of matching the relations symbols...
Obs: Equivalence of α-bf-structures is Σ_{1}^{1}.
Let $P=\left\{\alpha \in \mathcal{H}^{X}: X\right.$ computes an α-bf-structure \mathbb{B} such that

$$
\begin{aligned}
& (\forall \beta<\alpha) \text { (for all } \beta \text {-bf-structures } \tilde{\mathbb{B}}) \\
& \left.\qquad \text { if } \beta<\omega_{1}^{X} \text { and } \tilde{\mathbb{B}} \text { is correct, then } \mathbb{B} \upharpoonright \beta \equiv \tilde{\mathbb{B}}\right\} .
\end{aligned}
$$

Computing non-standard α^{*}-bf-structures

Recall: The α-bf-structure of T is the set of all the triples $\left\langle\beta, R_{p}, S_{p}\right\rangle$ where

- $\beta<\alpha$,
- $p \in \mathbf{b f}_{\beta}(T)$, i.e. is a $\Pi_{\beta}^{i n}$ type of T.
- R_{p} is a relation symbol of the same arity as p.
- S_{p} is the representation of p as a finitary $\Pi_{1}-\mathcal{L}_{\beta}$-type.

Obs: Being the correct α-bf-structure of T is Π_{1}^{1}.
Lemma: Every X computes an α^{*}-bf-structure, for some $\alpha^{*} \in \mathcal{H}^{X} \backslash \omega_{1}^{X}$, \mathbb{B}, such that $\left(\forall \alpha<\omega_{1}^{X}\right) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α-bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are equivalent
if there is a way of matching the relations symbols...
Obs: Equivalence of α-bf-structures is Σ_{1}^{1}.
Let $P=\left\{\alpha \in \mathcal{H}^{X}: X\right.$ computes an α-bf-structure \mathbb{B} such that

$$
\begin{aligned}
& (\forall \beta<\alpha) \text { (for all } \beta \text {-bf-structures } \tilde{\mathbb{B}}) \\
& \left.\qquad \text { if } \beta<\omega_{1}^{X} \text { and } \tilde{\mathbb{B}} \text { is correct, then } \mathbb{B} \upharpoonright \beta \equiv \tilde{\mathbb{B}}\right\} .
\end{aligned}
$$

P is Σ_{1}^{1}, and $\omega_{1}^{C K} \subseteq P$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$,

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\sum_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_{1}^{\chi \oplus Y}} \mathcal{B}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\sum_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_{1}^{X \oplus \gamma}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_{1}^{X \oplus \gamma}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.
\mathcal{A} has an X-computable model, for some X with $\omega_{1}^{X}=\omega_{1}^{Y} \leq \omega_{1}^{X \oplus Y}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_{1}^{X \oplus \gamma}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.
\mathcal{A} has an X-computable model, for some X with $\omega_{1}^{X}=\omega_{1}^{Y} \leq \omega_{1}^{X \oplus Y}$. Let G be such that $\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\oplus \omega_{1}^{G \oplus Y}=\omega_{1}^{Y}$.

Almost there

Lemma: Suppose $\omega_{1}^{\mathcal{A}} \leq \omega_{1}^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A}, provided \mathcal{A} has an X-computable model, with $\omega_{1}^{X}=\omega_{1}^{Y}=\omega_{1}^{X \oplus Y}$.

- Y computes an α^{*}-bf-structure \mathbb{B}, correct up to ω_{1}^{Y}, with $\alpha^{*} \in \mathcal{H}^{Y} \backslash \omega_{1}^{Y}$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^{*} \in \alpha^{*} \backslash \omega_{1}^{Y}$, because ω_{1}^{Y} is not $\Sigma_{1}^{1}(X \oplus Y)$.
- Let p^{*} be such that $\mathcal{A} \models R_{p^{*}}^{=}$, and $\beta_{p^{*}}=\beta^{*}$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^{*}$, and has same β^{*}-type as \mathcal{A}.
- So, $\mathcal{A} \equiv_{\omega_{1}^{\curlyvee}} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_{1}^{X \oplus \gamma}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.
\mathcal{A} has an X-computable model, for some X with $\omega_{1}^{X}=\omega_{1}^{Y} \leq \omega_{1}^{X \oplus Y}$. Let G be such that $\omega_{1}^{X}=\omega_{1}^{X \oplus G}=\omega_{1}^{G}=\oplus \omega_{1}^{G \oplus Y}=\omega_{1}^{Y}$. Apply the lemma above twice.

The two steps

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which
(1) For every admissible α, there is $\mathcal{A} \models T$ with $\omega_{1}^{\mathcal{A}}=\alpha$.
(2) For every $\mathcal{A} \models T, \operatorname{Sp}(\mathcal{A})=\left\{X: \omega_{1}^{X} \geq \omega_{1}^{\mathcal{A}}\right\}$.

As we would then get:

$$
\{S p(\mathcal{A}): \mathcal{A} \mid=T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\}
$$

The main theorem-for the last time

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$
\{S p(\mathcal{A}): \mathcal{A} \models T\}=\left\{\left\{X \in 2^{\omega}: \omega_{1}^{X} \geq \alpha\right\}: \alpha \in \omega_{1}\right\} .
$$

