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The Main Theorem

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:
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The Main Theorem

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

o T is a counterexample to Vaught's conjecture.
o T satisfies hyperarithmetic-is-recursive on a cone.
@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}.
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Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models of a theory T is either countable or 2%0.
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Vaught's Conjecture

Conjecture: [Vaught 61]
The number of countable models of a theory T is either countable or 2%0.

Note that it follows from the Continuum Hypothesis.
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Continuum Hypothesis

CH: Every subset of 2¢ is either countable or has size 2%,
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Continuum Hypothesis

CH: Every subset of 2¢ is either countable or has size 2%,

Thm [Suslin 1917]: Every )Z% subset of 2¢ either is countable or has size 2%0.
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Thm [Suslin 1917]: Every X1 subset of 2 either is countable
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Continuum Hypothesis

CH: Every subset of 2¢ is either countable or has size 2%,

Thm [Suslin 1917]: Every X1 subset of 2 either is countable
or has a perfect subset.

Thm [Silver 80]: If = is a I'I% equivalence relation on 2%, then either
2/ = is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Z}.
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Continuum Hypothesis

CH: Every subset of 2¢ is either countable or has size 2%,

Thm [Suslin 1917]: Every X1 subset of 2 either is countable
or has a perfect subset.

Thm [Silver 80]: If = is a I'I% equivalence relation on 2%, then either
2/ = is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Z}.

Obs: There are ¥} equivalence relation on 2% such that [2¥/ = | = ¥;
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For the rest of the talk, all our structures are countable

Example: A ordered group A = (A, Xa,<a)
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can be encoded by three sets: A CN, x4 C N3 and <4 C N2,

Recall that there is an effective bijection between N¥ and N,
and three subsets of N can be encoded as a single subset of N.

Countable structures can coded by subsets of N in a straightforward way,
and hence as reals in 2V,
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A word on coding

For the rest of the talk, all our structures are countable

Example: A ordered group A = (A, Xa,<a)
can be encoded by three sets: A CN, x4 C N3 and <4 C N2,

Recall that there is an effective bijection between N¥ and N,
and three subsets of N can be encoded as a single subset of N.

Countable structures can coded by subsets of N in a straightforward way,
and hence as reals in 2V,

We call such a real a presentation of A.
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Some special cases are known to hold

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees,
(a tree is a poset where the predecessors of every element are linearly ordered) .
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Theorem [Shelah 84] Vaught's conjecture holds for w-stable theories.
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence
is either countable, or 2%0,
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence

is either countable, or 2%0,

Def: L., ., is the infinitary first-order language,

where conjunctions and disjunctions are allowed to be infinitary
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence

is either countable, or 2%0,

Def: L., ., is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Def: For o € wy, a I'If)’] formula is one of the form /\i€w Vi wi(X, ¥i),
where each j is 2.7 for some B < a.
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence
is either countable, or 2%0,

Def: L., ., is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Def: For o € wy, a I'If)’] formula is one of the form /\i€w Vyi wi(X, ¥i),
where each j is 2.7 for some B < a.

Obs: The class of presentations of models of an L, ., sentence is Borel.
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence
is either countable, or 2%0,

Def: L., ., is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Def: For o € wy, a I'If)’] formula is one of the form /\i€w Vyi wi(X, ¥i),
where each j is 2.7 for some B < a.
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K is axiomatizable by an L, ., sentence <= K is Borel.
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Background on infinitary logic

Vaught’s Conjecture for L, .:
The number of countable models of an L, ., sentence
is either countable, or 2%0,

Def: L., ., is the infinitary first-order language,
where conjunctions and disjunctions are allowed to be infinitary

Def: For o € wy, a I'If)’] formula is one of the form /\i€w Vyi wi(X, ¥i),
where each j is 2.7 for some B < a.

Thm|Lopez-Escobar]: For K a class of structures closed under isomorphisms,
K is axiomatizable by an L, ., sentence <= K is Borel.

Lemma: [Scott 65] For every structure A, there is an L, ., sentence ¢
such that if B = ¢, then B = A.
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Variations of Vaught's conjecture

Perfect set variation:
Given a theory T, either T has countably many countable models,
or there is a perfect set of non-isomorphic models of T.
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Variations of Vaught's conjecture

Perfect set variation:
Given a theory T, either T has countably many countable models,
or there is a perfect set of non-isomorphic models of T.

Topological Vaught’s conjecture:
Consider a Borel action of a Polish group on a Polish space.
Any Borel invariant set has either countably many orbits or perfectly many.
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Variations of Vaught's conjecture

Perfect set variation:
Given a theory T, either T has countably many countable models,
or there is a perfect set of non-isomorphic models of T.

Topological Vaught’s conjecture:
Consider a Borel action of a Polish group on a Polish space.
Any Borel invariant set has either countably many orbits or perfectly many.

Thm [Becker, Kechris]: The topological Vaught's conjecture for the group
5% is equivalent to Vaught's conjecture for L, ..
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,
we write A =, B if they satisfy the same [1!7-sentences.
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,

we write A =, B if they satisfy the same M"-sentences.

Lemma: For each o € wy, =, is a Borel equivalence relation.
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,
we write A =, B if they satisfy the same [1!7-sentences.

Lemma: For each o € wy, =, is a Borel equivalence relation.

Lemma: [Scott 65] For every structure A, there is an ordinal p(A) € w; s.t.
if B =,(A) A, then B A.

Proof of Morley’s theorem:
e Suppose T has less than 2% models.
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,
we write A =, B if they satisfy the same [1!7-sentences.

Lemma: For each o € wy, =, is a Borel equivalence relation.

Lemma: [Scott 65] For every structure A, there is an ordinal p(A) € w; s.t.
if B =,(A) A, then B A.

Proof of Morley’s theorem:
e Suppose T has less than 2% models.

e There are countably many =,-equivalence classes of models of T.
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,
we write A =, B if they satisfy the same [1!7-sentences.

Lemma: For each o € wy, =, is a Borel equivalence relation.

Lemma: [Scott 65] For every structure A, there is an ordinal p(A) € w; s.t.
if B =,(A) A, then B A.

Proof of Morley’s theorem:

e Suppose T has less than 2% models.

e There are countably many =,-equivalence classes of models of T.
e For each o < wy, there are countably many A = T with p(A) = «.
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Morley's theorem

Theorem: [Morley 70] The number of countable models of a theory T
is either countable, X;, or 20,

Def: For structures A and B, and o € wy,
we write A =, B if they satisfy the same [1!7-sentences.

Lemma: For each o € wy, =, is a Borel equivalence relation.

Lemma: [Scott 65] For every structure A, there is an ordinal p(A) € w; s.t.
if B =,(A) A, then B A.

Proof of Morley’s theorem:

e Suppose T has less than 2% models.

e There are countably many =,-equivalence classes of models of T.
e For each o < wy, there are countably many A = T with p(A) = «.
e So |{models of T} <Nj.
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Scattered Theories

Definition: A theory T is scattered if, for every a < wq,
there are only countably many =,-equivalence classes of models of T.
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Scattered Theories

Definition: A theory T is scattered if, for every a < wq,
there are only countably many =,-equivalence classes of models of T.

Definition: T is a counterexample to Vaught's conjecture if
it is scattered and has uncountably many models.
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Scattered Theories

Definition: A theory T is scattered if, for every a < wq,
there are only countably many =,-equivalence classes of models of T.

Definition: T is a counterexample to Vaught's conjecture if
it is scattered and has uncountably many models.

Note: This definition is independent of whether CH holds or not.
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The Main Theorem—again

Theorem ([M.] (ZFC+ PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

o T is a counterexample to Vaught's conjecture.
o T satisfies hyperarithmetic-is-recursive on a cone.
@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}.
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The Main Theorem—again

Theorem ([M.] (ZFC+ )
Let T be a theory with uncountably many countable models.

The following are equivalent:
o T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone.

@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}. )
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Projective Determinacy

Fix a set A C w¥.
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Fix a set A C w¥.

Player | ‘ ao a
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let 3 = (ag, a1, a2, as, ...)
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao a
Player Il | al a3

let 3 = (ag, a1, a2, as, ...)

Player | wins is 3 € A,
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
Player Il | a a3

let 3 = (ag, a1, a2, as, ...)

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
Player Il | a a3

let 3 = (ag, a1, a2, as, ...)

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.
A strategy is a function s: Ww<¥ — w.
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
let 3 = (ag, a1, a», a3, ...
Player ] ‘ ai a3 - ( 0, d1, d2,d3, )

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.
A strategy is a function s: Ww<¥ — w.

It's a winning strategy for | if Vay, a3, as, ....(F(0), a1, f(a1), a3,...) € A
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
Player Il | a a3

let 3 = (ag, a1, a2, as, ...)

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.
A strategy is a function s: Ww<¥ — w.
It's a winning strategy for | if Vay, a3, as, ....(F(0), a1, f(a1), a3,...) € A

A C w¥ is determined if there is a strategy for either player | or Il.
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
Player Il | a a3

let 3 = (ag, a1, a2, as, ...)

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.
A strategy is a function s: Ww<¥ — w.
It's a winning strategy for | if Vay, a3, as, ....(F(0), a1, f(a1), a3,...) € A

A C w¥ is determined if there is a strategy for either player | or Il.

Def: AC 2N js projective if it is Z}, for some n.
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Projective Determinacy

Fix a set A C w¥.

Player | ‘ ao ar
Player Il | a a3

let 3 = (ag, a1, a2, as, ...)

Player | winsis 3 € A, and Player Il wins if 3 € w* \ A.

A strategy is a function s: Ww<¥ — w.

It's a winning strategy for | if Vay, a3, as, ....(F(0), a1, f(a1), a3,...) € A
A C w¥ is determined if there is a strategy for either player | or Il.

Def: AC 2N js projective if it is Z}, for some n.

Projective Determinacy (PD): Every projective set is determined.
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The Main Theorem—again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

o T is a counterexample to Vaught's conjecture.
o T satisfies hyperarithmetic-is-recursive on a cone.

@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:

A set satisfying the conditions above is said to be hyperarithmetic.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:
o XisAl=xinni

A set satisfying the conditions above is said to be hyperarithmetic.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:
o XisAl=xinni

e X is computable in 0(*) for some a < w&K.

(0(®) is the ath Turing jump of 0.)

A set satisfying the conditions above is said to be hyperarithmetic.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:
o XisAl=xinni
e X is computable in 0(*) for some a < w&K.
(0(®) is the ath Turing jump of 0.)

o X € L(wEK).

A set satisfying the conditions above is said to be hyperarithmetic.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:
o XisAl=xinni
e X is computable in 0(*) for some a < w&K.
(0(®) is the ath Turing jump of 0.)
o X € L(wEK).

e X ={necw:p(n)} where v is a computable infinitary formula.

A set satisfying the conditions above is said to be hyperarithmetic.
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Background on hyperarithmetic sets.

Notation: Let w{X be the least non-computable ordinal.
Let wi* be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set X Cw, T.F.A.E.:
o XisAl=xinni
e X is computable in 0(®) for some a < wch.
(0(®) is the ath Turing jump of 0.)

o X € L(wEK).

e X ={necw:p(n)} where v is a computable infinitary formula.

A set satisfying the conditions above is said to be hyperarithmetic.

Obs: For instance, all arithmetic sets are hyperarithmetic.
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Another word on coding

Example: A countable ordered group A = (A, xa,<a)
can be encoded by three sets: A C N, x4 C N3 and <4 C N2.
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Another word on coding

Example: A countable ordered group A = (A, xa,<a)
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if ACN, x4 C N3 and <4 C N? are computable
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if ACN, x4 CN3and <4 C N? are hyperarithmetic
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Another word on coding

Example: A countable ordered group A = (A, xa,<a)
can be encoded by three sets: A C N, x4 C N3 and <4 C N2.

Def: We say A is X-computable,
if ACN, x4 C N3 and <4 C N? are computable from X.

Def: We say A is  hyperarithmetic ,
if ACN, x4 CN3and <4 C N? are hyperarithmetic
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Another word on coding

Example: A countable ordered group A = (A, xa,<a)
can be encoded by three sets: A C N, x4 C N3 and <4 C N2.

Def: We say A is X-computable,
if ACN, x4 C N3 and <4 C N? are computable from X.

Def: We say A is X-hyperarithmetic ,
if ACN, x4 C N3 and <4 C N? are hyperarithmetic relative to X.
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Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.
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Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if

every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.
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Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order
is bi-embeddable with a computable one.
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Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order

is bi-embeddable with a computable one.
(Note: There are Ny linear orders modulo bi-embeddability [Laver 71].)
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Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order

is bi-embeddable with a computable one.
(Note: There are Ny linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg—M. 05] Every hyperarithmetic p-group
is bi-embeddable with a computable one.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 16 / 70



Hyperarithmetic-is-Recursive

Let K be a class of structures.
Def: K satisfies hyperarithmetic-is-recursive if
every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order

is bi-embeddable with a computable one.
(Note: There are Ny linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg—M. 05] Every hyperarithmetic p-group

is bi-embeddable with a computable one.
(Note: There are 8y p-groups modulo bi-embeddability [Barwise—Eklof71].)
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The Main Theorem—once more

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

o T is a counterexample to Vaught's conjecture.
o T satisfies hyperarithmetic-is-recursive on a cone.
@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}.
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Martin's measure

Def: A cone is a set of the form {X € 2 : X >7 Y} for some Y € 2.
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Martin's measure

Def: A cone is a set of the form {X € 2 : X >7 Y} for some Y € 2.

Thm:[Martin] (PD)
For every degree-invariant projective partition (A; : i € N) of 2,

one of the A;’s contains a cone.
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Martin's measure

Def: A cone is a set of the form {X € 2 : X >7 Y} for some Y € 2.

Thm:[Martin] (PD)
For every degree-invariant projective partition (A; : i € N) of 2,
one of the A;’s contains a cone.

Def: A C 2N has Martin measure 1 if A contains a cone.
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Martin's measure

Def: A cone is a set of the form {X € 2 : X >7 Y} for some Y € 2.

Thm:[Martin] (PD)
For every degree-invariant projective partition (A; : i € N) of 2,
one of the A;’s contains a cone.

Def: A C 2N has Martin measure 1 if A contains a cone.

Def: K satisfies hyperarithmetic-is-recursive on a cone if,
AY)(VX >7 Y), every X-hyperarithmetic A € K has X-computable copy.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 18 / 70



Def: A tree T is pointed if (VX € [T]) X >7 T.
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Def: A tree T is pointed if (VX € [T]) X >7 T.

Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.
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Def: A tree T is pointed if (VX € [T]) X >7 T.
Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.

Corollary: {deg(X): X € [T]} = the cone above deg(T).
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Def: A tree T is pointed if (VX € [T]) X >7 T.
Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.
Corollary: {deg(X): X € [T]} = the cone above deg(T).

Lemma[Martin](PD): If P C 2“ is projective and unbounded
(i,e. VYIX >7 Y (X € P)), there is a perfect pointed T with [T] C P.
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Def: A tree T is pointed if (VX € [T]) X >7 T.
Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.
Corollary: {deg(X): X € [T]} = the cone above deg(T).

Lemma[Martin](PD): If P C 2“ is projective and unbounded
(i,e. VYIX >7 Y (X € P)), there is a perfect pointed T with [T] C P.

Pf: Consider the game, where /wins if X >1 Y and X € P.
Player | ‘ X0 X1 e Xe2”
Player Il | Yo yio-- YE2®
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Def: A tree T is pointed if (VX € [T]) X >7 T.
Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.
Corollary: {deg(X): X € [T]} = the cone above deg(T).

Lemma[Martin](PD): If P C 2“ is projective and unbounded
(i,e. VYIX >7 Y (X € P)), there is a perfect pointed T with [T] C P.

Pf: Consider the game, where /wins if X >1 Y and X € P.
Player | ‘ X0 X1 e Xe2”
Player Il | Yo yio-- YE2®

e |l cannot have a winning strategy.
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Def: A tree T is pointed if (VX € [T]) X >7 T.
Obs: A perfect tree T is pointed <= (VX €[T]) T(X)=r X & T.
Corollary: {deg(X): X € [T]} = the cone above deg(T).

Lemma[Martin](PD): If P C 2“ is projective and unbounded
(i,e. VYIX >7 Y (X € P)), there is a perfect pointed T with [T] C P.

Pf: Consider the game, where /wins if X >1 Y and X € P.
Player | ‘ X0 X1 e Xe2”
Player Il | Yo yio-- YE2®

e |l cannot have a winning strategy.

e If sis a strategy for I, {s(Yo @ s) : Yo € 2¥} is a perfect pointed tree C P.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y & P,).

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 20 /70



Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,

then f is constant on a cone.

Pf: For each X, there is e with {e}* = f(X).
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.

Pf: For each X, there is e with {e}X = f(X). On a pointed perfect tree T, this
e is constant.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.

Pf: For each X, there is e with {e}X = f(X). On a pointed perfect tree T, this
e is constant. Consider the map g(Y) = {e}T(¥),

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 20 /70



Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.

Pf: For each X, there is e with {e}X = f(X). On a pointed perfect tree T, this
e is constant. Consider the map g(Y) = {e}"(¥). It is continuous, and for
Y >r T, g(Y) = f(Y).
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.

Pf: For each X, there is e with {e}X = f(X). On a pointed perfect tree T, this
e is constant. Consider the map g(Y) = {e}"(¥). It is continuous, and for
Y >7 T,g(Y)=f(Y). By Zl-bounding, g is bounded below some o < w.
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Martin's theorems

Lemma|Martin](PD): If 2 =, P, is a projective partition,
there a perfect pointed tree T and n such that [T] C P,.

Pf: Suppose that no P, is unbounded.
Then Vn 3X, VY >1 X, (Y € P,). Then @, Xm & P, for any n.

Lemma|[Martin](PD):
If £: 2% — wi is projective, degree-invariant and (VX) f(X) < wy,
then f is constant on a cone.

Pf: For each X, there is e with {e}* = f(X). On a pointed perfect tree T, this
e is constant. Consider the map g(Y) = {e}"(¥). It is continuous, and for

Y >7 T,g(Y)=f(Y). By Zl-bounding, g is bounded below some o < w.
Then, g is constant on a cone, and hence so is f.
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The Main Theorem—once more

Theorem ([M.] (ZFC+PD))
Let T be a theory with uncountably many countable models.

The following are equivalent:
o T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone. <=

=

@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}. )
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A sufficient condition for hyp-is-rec.
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A sufficient condition for hyp-is-rec.

Def: For 8 C 2%, (R,=,r) is a ranked equivalence relation if
= is an equivalence relation on &, and r: R/ =— wj.
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Def: For 8 C 2%, (R,=,r) is a ranked equivalence relation if
= is an equivalence relation on &, and r: R/ =— wj.

Def: (R,=,r) is scattered if
r~1(a) contains countably many equivalence classes for each a € wy.
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A sufficient condition for hyp-is-rec.

Def: For 8 C 2%, (R,=,r) is a ranked equivalence relation if
= is an equivalence relation on &, and r: R/ =— wj.

Def: (R,=,r) is scattered if
r~1(a) contains countably many equivalence classes for each a € wy.

Def: (R, =,r) is projective if
R and = are projective and r has a projective presentation 2% — 2%,
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A sufficient condition for hyp-is-rec.

Def: For 8 C 2%, (R,=,r) is a ranked equivalence relation if
is an equivalence relation on &, and r: 8/ =— w;.

Def: (R,=,r) is scattered if
r~1(a) contains countably many equivalence classes for each a € wy.

Def: (R, =,r) is projective if
R and = are projective and r has a projective presentation 2% — 2%,

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.
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Corollaries

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.
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Corollaries

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone,
every hyperarithmetic linear order is bi-embeddable with a computable one.
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Corollaries

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone,
every hyperarithmetic linear order is bi-embeddable with a computable one.
Using Hausdorff rank.
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Corollaries

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone,
every hyperarithmetic linear order is bi-embeddable with a computable one.
Using Hausdorff rank.

Corollary: [Greenberg—M. 05] On a cone,
every hyperarithmetic p-group is bi-embeddable with a computable one.
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Corollaries

Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone,
every hyperarithmetic linear order is bi-embeddable with a computable one.
Using Hausdorff rank.

Corollary: [Greenberg—M. 05] On a cone,
every hyperarithmetic p-group is bi-embeddable with a computable one.
Using the Ulm rank on p-groups with finite dimensional divisible part.
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation

such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class

with an X-hyperarithmetic member has an X-computable member
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation

such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class

with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank

satisfies hyperarithmetic-is-recursive on a cone.
where:
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such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class

with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank
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where:
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank

satisfies hyperarithmetic-is-recursive on a cone.
where:

Def: p(A) is the least a such that if B =, A, then B2 A.
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank

satisfies hyperarithmetic-is-recursive on a cone.
where:

Def: p(A) is the least « such that if B =, A, then B A.
wit = least{w{ : X computes a copy of A}.
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank
satisfies hyperarithmetic-is-recursive on a cone.
where:
Def: p(A) is the least « such that if B =, A, then B A.
wit = least{w{ : X computes a copy of A}.

Obs: For every structure A, p(A) < wi* + 1.
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Theorem ([M.] (ZFC+PD))

Let (R, =, r) be scattered projective ranked equivalence relation
such thatVZ € &, r(Z) < wf.
For every X on a cone, (i.e. 3YVX >1 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD)
If T is scattered, the class of models of T of low Scott rank

satisfies hyperarithmetic-is-recursive on a cone.
where:

Def: p(A) is the least « such that if B =, A, then B A.
wit = least{w{ : X computes a copy of A}.

Obs: For every structure A, p(A) < wi* + 1.
Def: A has low Scott rank if p(A) < wi.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class
with an X-hyperarithmetic member, but no X-computable member.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class
with an X-hyperarithmetic member, but no X-computable member.
e Let f(X) be the least value of r(Z), among Z's with Z <, X,
but X computes nobody equivalent to Z.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class
with an X-hyperarithmetic member, but no X-computable member.
e Let f(X) be the least value of r(Z), among Z's with Z <, X,
but X computes nobody equivalent to Z.
e Then f is projective, degree-invariant, and f(X) < wf.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class
with an X-hyperarithmetic member, but no X-computable member.
e Let f(X) be the least value of r(Z), among Z's with Z <, X,
but X computes nobody equivalent to Z.
e Then f is projective, degree-invariant, and f(X) < wf.
e Thus, f is constant, say equal «, on a cone.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class

with an X-hyperarithmetic member, but no X-computable member.
e Let f(X) be the least value of r(Z), among Z's with Z <, X,

but X computes nobody equivalent to Z.

e Then f is projective, degree-invariant, and f(X) < wf.
e Thus, f is constant, say equal «, on a cone.
e r~1(a) has countably many classes, so some Y computes a member of each.
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A proof of hyp-is-rec

Theorem ([M.] (ZFC+PD))

Let (R,=, r) be scattered projective ranked equivalence relation
such that VZ € &, r(Z) < wf.
For every X on a cone, (i.e. AYVX >71 Y,) every equivalence class
with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.
e For each X there is and equivalence class

with an X-hyperarithmetic member, but no X-computable member.
e Let f(X) be the least value of r(Z), among Z's with Z <, X,

but X computes nobody equivalent to Z.

e Then f is projective, degree-invariant, and f(X) < wf.
e Thus, f is constant, say equal «, on a cone.
e r~1(a) has countably many classes, so some Y computes a member of each.
e Forthat Y, f(Y) # .
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The Main Theorem— yet again

Theorem ([M.] (ZFC+PD))
Let T be a theory with uncountably many countable models.

The following are equivalent:
o T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone. =

=

@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}. )
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The Main Theorem— yet again

Theorem ([M.] (ZFC+PD))
Let T be a theory with uncountably many countable models.

The following are equivalent:
o T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone. =

=

@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}. )

If T has strictly more than X1 many models,
then, relative to every X on a cone,
T has an X-hyperarithemetic model without an X-computable copy.
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Coding within structures

Def: X C N is coded by A if X is c.e. in every copy of A.
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Coding within structures

Def: X C N is coded by A if X is c.e. in every copy of A.

Thm[Knight]: X is coded by A <= (33 € A<Y) X <. L;1-tpa(3).
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Coding within structures

Def: X C N is coded by A if X is c.e. in every copy of A.
Thm[Knight]: X is coded by A <= (33 € A<Y) X <. L;1-tpa(3).

Def: X C N is weakly coded by A if X is left-c.e. in every copy of A.
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Coding within structures

Def: X C N is coded by A if X is c.e. in every copy of A.
Thm[Knight]: X is coded by A <= (33 € A<Y) X <. L;1-tpa(3).
Def: X C N is weakly coded by A if X is left-c.e. in every copy of A.

Thm[M.]: Given K, exactly one of the following holds:
Either

e there are countably many ¥ ;-types realized in K, and
e no set can be coded in any A € K (other than 0);

or

e there are 280 many Y ;-types realized in K, and

e every set can be weakly coded in some A € K;
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Coding within structures

Def: X C N is coded by A if X is c.e. in every copy of A.
Thm[Knight]: X is coded by A <= (33 € A<Y) X <. L;1-tpa(3).
Def: X C N is weakly coded by A if X is left-c.e. in every copy of A.

Thm[M.]: Given K, exactly one of the following holds:
Either

e there are countably many ¥ ;-types realized in K, and
e no set can be coded in any A € K (other than 0);

or

e there are 280 many Y ;-types realized in K, and

e every set can be weakly coded in some A € K;

relative to an oracle.
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Examples

ThmiRitcher]: No set can be coded in a linear ordering.
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ThmiRitcher]: No set can be coded in a linear ordering.

ThmiRitcher]: No set can be coded in a Boolean algebra.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.
Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.
Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.
Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.
Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.
Obs: Every set can be coded in a field.
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ThmiRitcher]: No set can be coded in a linear ordering.
ThmiRitcher]: No set can be coded in a Boolean algebra.
Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.
Obs: Every set can be coded in a group.
Obs: Every set can be coded in a ring.
Obs: Every set can be coded in a field.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:
@ There are countably many ¥ -types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:
@ There are countably many ¥ -types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is ¥1.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:
@ There are countably many ¥ -types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ -types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and

no set can be coded in any A € K (other than 0);  relative to an oracle.
@ There are 2% many ¥i-types realized in K, and

every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.

e Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and

no set can be coded in any A € K (other than 0);  relative to an oracle.
@ There are 2% many ¥i-types realized in K, and

every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.

e Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
e Let T be a perfect set of X1-types realized in K.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:

e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.

e Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).

e Let T be a perfect set of X1-types realized in K.

e Assume T is computable.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.

e Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
e Let T be a perfect set of X1-types realized in K.
e Assume T is computable. Otherwise, we work in the cone above T.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

e If it is countable, then only countably many sets are coded. Choose a cone
above them.

e Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
e Let T be a perfect set of X1-types realized in K.

e Assume T is computable. Otherwise, we work in the cone above T.

e For each X, consider the type T(X), and let Ax € K have X;-type T(X).
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:
e The set of ¥;-types realized in K is 1. So has size either countable or 2%,

If it is countable, then only countably many sets are coded. Choose a cone
above them.

Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
Let T be a perfect set of ¥ ;-types realized in K.

Assume T is computable. Otherwise, we work in the cone above T.

For each X, consider the type T(X), and let Ax € K have Xi-type T(X).
Therefore, T(X) is c.e. in every copy of A.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:

e The set of ¥;-types realized in K is 1. So has size either countable or 2%,
If it is countable, then only countably many sets are coded. Choose a cone
above them.

Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
Let T be a perfect set of ¥ ;-types realized in K.

Assume T is computable. Otherwise, we work in the cone above T.

For each X, consider the type T(X), and let Ax € K have Xi-type T(X).
Therefore, T(X) is c.e. in every copy of A.

Suppose T preserves <je in 2¢.
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Dichotomy for ¥ ;-types

Thm[M.]: Given K, exactly one of the following holds:

@ There are countably many ¥ ;-types realized in K, and
no set can be coded in any A € K (other than 0);  relative to an oracle.

@ There are 2% many ¥i-types realized in K, and
every set can be weakly coded in some A € K; relative to an oracle.

Pf:

e The set of ¥;-types realized in K is 1. So has size either countable or 2%,
If it is countable, then only countably many sets are coded. Choose a cone
above them.

Otherwise, suppose K realizes continuum many 0-X;-types (i.e. no variables).
Let T be a perfect set of ¥ ;-types realized in K.

Assume T is computable. Otherwise, we work in the cone above T.

For each X, consider the type T(X), and let Ax € K have Xi-type T(X).
Therefore, T(X) is c.e. in every copy of A.

Suppose T preserves <jo in 2¢. Hence X is left c.e. in every copy of A.
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Constructing structures

Assume L is relational.
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,

then K has a computable structure.
(where Kfi" is the set of finite substructures of structures in K.)
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,

then K has a computable structure.
(where Kfi" is the set of finite substructures of structures in K.)

Pf: Write the axiom as A; Vyyi(y), where ¢ is ¥f.
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,
then K has a computable structure.
(where Kfi" is the set of finite substructures of structures in K.)

Pf: Write the axiom as A; Vyyi(y), where ¢ is ¥f. _
We define A as a limit of finite structures A; C Ay C ---, with A; € K",
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,
then K has a computable structure.
(where K" is the set of finite substructures of structures in K.)

Pf: Write the axiom as A; Vyyi(y), where ¢ is ¥f. _
We define A as a limit of finite structures A; C Ay C ---, with A; € K",
For each i and elements € € A, we have the requirement A = ¢;(Z).
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,
then K has a computable structure.
(where K" is the set of finite substructures of structures in K.)

Pf: Write the axiom as A; Vyyi(y), where ¢ is ¥f.

We define A as a limit of finite structures A; C Ay C ---, with A; € K",
For each i and elements € € A, we have the requirement A = ¢;(C).

At each stage s, define A; so that it satisfies one more requirement:
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Constructing structures

Assume L is relational.

Thm: Let K be S axiomatizable, and K™ computable,
then K has a computable structure.
(where K" is the set of finite substructures of structures in K.)

Pf: Write the axiom as A; Vyyi(y), where ¢ is ¥f.
We define A as a limit of finite structures A; C Ay C ---, with A; € K",
For each i and elements € € A, we have the requirement A = ¢;(Z).
At each stage s, define A; so that it satisfies one more requirement:
If 0i(€) = V; 3(X)i (T, %), search for j, As € K and 3 € A,
such that As_1 C As and A |= v (G, 3).
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;-type to the theory.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥ ;-types, then
for every X, there is an X-computable structure which weakly codes X,

relative to an oracle.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,

relative to an oracle.

Pf: Let T be a perfect set of X1-types.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,
relative to an oracle.

Pf: Let T be a perfect set of ¥;-types. Assume it's computable, and that so is the
axiom.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,
relative to an oracle.

Pf: Let T be a perfect set of ¥;-types. Assume it's computable, and that so is the
axiom. Given X, use T(X) to build Ax with ¥;-type T(X).
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,
relative to an oracle.

Pf: Let T be a perfect set of ¥;-types. Assume it's computable, and that so is the
axiom. Given X, use T(X) to build Ax with X;-type T(X). Ax weakly codes X.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,
relative to an oracle.

Pf: Let T be a perfect set of ¥;-types. Assume it's computable, and that so is the
axiom. Given X, use T(X) to build Ax with X;-type T(X). Ax weakly codes X.

Corollary: If K is IS, and realizes 2% many ¥i-types, then
for every Y, there is a Y’-computable structure, not Y-computable,
relative to an oracle.
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Constructing structures

Corollary: If K is I15, and t is a computable > ;-type in K,
then there is a computable structure in K realizing t.

Pf: Add the X;i-type to the theory. Use the ¥; to enumerate the finite substructures.

Corollary: If K is M%7, and realizes 2% many ¥-types, then
for every X, there is an X-computable structure which weakly codes X,
relative to an oracle.

Pf: Let T be a perfect set of ¥;-types. Assume it's computable, and that so is the
axiom. Given X, use T(X) to build Ax with X;-type T(X). Ax weakly codes X.

Corollary: If K is IS, and realizes 2% many ¥i-types, then
for every Y, there is a Y’-computable structure, not Y-computable,
relative to an oracle.

Pf: For every Y, Y’ computes an X which is not Y-left c.e.
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Making a theory M4

Let 7 be an L, ., sentence.
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Making a theory M4

Let 7 be an L, ., sentence.

For each sub-formula ¢(X) of T, consider a new relation symbol R,(X)
such that R (X) <= ¢(X).
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Making a theory M4

Let 7 be an L, ., sentence.

For each sub-formula ¢(X) of T, consider a new relation symbol R,(X)
such that R (X) <= ¢(X).

Let £ =LU{R, : ¢ a subformula of T}.
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Making a theory M4

Let 7 be an L, ., sentence.
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For each sub-formula ¢(X) of T, consider a new relation symbol R,(X)
such that R (X) <= ¢(X).
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Making a theory M4

Let 7 be an L, ., sentence.

For each sub-formula ¢(X) of T, consider a new relation symbol R,(X)
such that R (X) <= ¢(X).

Let £ =LU{R, : ¢ a subformula of T}.
Consider the axioms which define these new relations:
For instance, if ¢(x) is of the form (Vy) ¥(x,y)
(V%) Rivyyu(%) < (Vy)Ry(%, y).

The Morleyization, T, of T consist of R7() together with all these axioms.

T is N,

There is 1-1 correspondence between models of T and those of T
If A= T, then A computes A with A = T.

Assuming T is NS, if A= T, then A®) computes A with A |= T.
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The dichotomy

Let K be a Borel class of countable structures.
Let o« be an ordinal.
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Let K be a Borel class of countable structures.
Let o« be an ordinal.

Thm[M. 09]: Either
e There are countably many [1-types realized in K.

or
e There are continuum many M-types realized in K.
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Let K be a Borel class of countable structures.
Let o« be an ordinal.

Thm[M. 09]: Either
e There are countably many [1-types realized in K.
e using a jumps we can distinguish countably many struct. in K;

or
e There are continuum many M-types realized in K.
e using « jumps we can distinguish continuum many struct. in K;
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A,3) <, (B,b) < VB < aVd e B<¥ Ic € A¥ o
(A,a,¢) >3 (B,b,d).

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 34 /70



Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A,3) <, (B,b) < VB < aVd e B<¥ Ic € A¥

(A,3,€) >5 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Antonio Montalban (U.C. Berkeley)

When hyperarithmetic is recursive April 2013 34 /70



Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
O (A 3) <4 (B,b)

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 34 /70



Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
O (A 3) <4 (B,b)
@ Ni-tpa(3) C NY-tps(b) .

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 34 /70



Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
O (A 3) <4 (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,(K) = {(Aa:AcKacd}

=a
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
O (A 3) <4 (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,(K) = %im@\}

= the set of [,-types realized in K.

=, is Borel, so, by [Silver 80], bf,(K) has size either countable or continuum.
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Examples

For K= linear orderings
e bfi(K) and bf,(K) are countable.
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For K= linear orderings

e bf;(K) and bfy(K) are countable.
e bf,(K) has size 2% for o > 3.

For K= equivalence structures

e bf;(K) is countable.
e bf,(K) has size 2% for o > 2.

For K= Boolean algebras

e bf,(K) is countable for all n € w.
e bf,(K) has size 2% for all a > w.
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For K= linear orderings

e bf;(K) and bfy(K) are countable.
e bf,(K) has size 2% for o > 3.

For K= equivalence structures

e bf;(K) is countable.
e bf,(K) has size 2% for o > 2.

For K= Boolean algebras

e bf,(K) is countable for all n € w.
e bf,(K) has size 2% for all a > w.

For K= Fields
e bf,(K) has size 2% for all a.
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The dichotomy

Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either

or
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Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either
e There are countably many l-types realized in K.
e using a jumps we can distinguish countably many struct. in K;

or
e There are continuum many M"-types realized in K.
e using « jumps we can distinguish continuum many struct. in K;
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Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either

e There are countably many M™-types realized in K.

e using a jumps we can distinguish countably many struct. in K;
e there is a countable complete set of N"-formulas;

or

e There are continuum many M-types realized in K.

e using « jumps we can distinguish continuum many struct. in K;
e there is no countable complete set of M"-formulas;
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Complete sets of IM"-formulas

Definition ()

{Py, Py, ...} is a complete set of " formulas for K if
every 3 ' ; L-formula is equivalent to a 21" (LU {Py, ...})-formula.
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Example: T1{ relations on Linear orderings

Let K = linear orderings.
Let Succ = {(a,b) € A2:a< b& Bc (a< c < b)}.
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Example: T1{ relations on Linear orderings

Let K = linear orderings.
Let Succ = {(a,b) € A2:a< b& Bc (a< c < b)}.

Example:
On linear orderins, {Succ} is a complete set of 1§ relations.

Every 35 formula is equivalent in K to a
0’-disjunction of X; finitary formulas in the language {<, Succ}.
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Example: 15 relations on Linear orderings

Let D1 = {(a,b) € A% : a < b & Aco, cyin between , Succ(co, 1)}
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Example: 15 relations on Linear orderings

Let D1 = {(a,b) € A% : a < b & Aco, cyin between , Succ(co, 1)}
Let D, = {(a,b) € A?: a < b& Acy, ..., Coin between , \;,, Succ(ci, cip1)}
Let D> ={ac A?:a<b& Ac,...,cn > a, \;_, Succ(ci, cit1)}
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Example: 15 relations on Linear orderings

Let D1 = {(a,b) € A% : a < b & Aco, cyin between , Succ(co, 1)}
Let D, = {(a,b) € A?: a < b& Acy, ..., Coin between , \;,, Succ(ci, cip1)}
Let D> ={ac A?:a<b& Ac,...,cn > a, \;_, Succ(ci, cit1)}

Example:
The relations {Succ, D1, D>, Ds, ..., Dfoo, ..D ...} are
a complete set of [15 relations.
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Example: 15 relations on Linear orderings

Let D1 = {(a,b) € A% : a < b & Aco, cyin between , Succ(co, 1)}
Let D, = {(a,b) € A?: a < b& Acy, ..., Coin between , \;,, Succ(ci, cip1)}
Let D> ={ac A?:a<b& Ac,...,cn > a, \;_, Succ(ci, cit1)}

Example:
The relations {Succ, D1, D>, Ds, ..., Dfoo, ..D ...} are
a complete set of [15 relations.

Every Y5 formula is equivalent to a 0@-disjunction of
Y, finitary formulas in the language {<, Succ, D1, D, ...}.
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Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R, are a complete sets of ¢, relations:
R = (B, At)
Ry, = (B, At, Inf, Atless).
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Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R, are a complete sets of ¢, relations:
R = (B, At)

Ry, = (B, At, Inf, Atless).

Rs = (B, At, Inf, Atless, atomic, 1-atom, atominf).
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Boolean algebras

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R, are a complete sets of ¢, relations:
Ry = (Ba At)
Ry, = (B, At, Inf, Atless).
Rs = (B, At, Inf, Atless, atomic, 1-atom, atominf).
R4 = (B, At, Inf, Atless, atomic, 1-atom, atominf, ~-inf,
Int(w + n), infatomicless, 1-atomless, nomaxatomless).
Furthermore, Vn there is a finite complete set of 1, relations
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The dichotomy

Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either

or

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 41 / 70



The dichotomy

Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either
e There are countably many [1-types realized in K.

or
e There are continuum many M-types realized in K.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 41 / 70



Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either
e There are countably many [1-types realized in K.
e using « jumps we can distinguish countably many struct. in K;

or
e There are continuum many M-types realized in K.
e using a jumps we can distinguish continuum many struct. in K;
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Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either

e There are countably many M™-types realized in K.

e using « jumps we can distinguish countably many struct. in K;
e there is a countable complete set of M"-formulas;

or

e There are continuum many M-types realized in K.

e using a jumps we can distinguish continuum many struct. in K;
e there is no countable complete set of M"-formulas;
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The dichotomy

Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M. 09]: Either

e There are countably many M™-types realized in K.

e using « jumps we can distinguish countably many struct. in K;
e there is a countable complete set of M"-formulas;

e no non-trivial set can be ¥%-encoded in any structure in K;

or
There are continuum many M-types realized in K.

e using a jumps we can distinguish continuum many struct. in K;

there is no countable complete set of M-formulas;
e any set can be weakly-X2-encoded in some structure in K;

relative to some oracle.
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Coding in the ath jump.

Def: A set D is ¥0 coded in A if D is £0 in every copy of A.
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Coding in the ath jump.

Def: A set D is ¥0 coded in A if D is £0 in every copy of A.

Thm: [Ask, Knight] TFAE
e is Y0 coded in A;

e D is enumeration-reducible to X.5-tp4(3) for some 3 € A.
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e is Y0 coded in A;

e D is enumeration-reducible to X.5-tp4(3) for some 3 € A.

bf,(K) countable = only countably many sets can be ¥2-coded
by some struc. in K.
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Coding in the ath jump.

Def: A set D is ¥0 coded in A if D is £0 in every copy of A.

Thm: [Ask, Knight] TFAE
e is Y0 coded in A;
e D is enumeration-reducible to X.5-tp4(3) for some 3 € A.

bf,(K) countable = only countably many sets can be ¥2-coded

by some struc. in K.
Thus, there is an oracle, relative to which,

no non-trivial set can be ¥%-encoded in any structure in K
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Coding in the ath jump.

Def: A set D is ¥0 coded in A if D is £0 in every copy of A.

Thm: [Ask, Knight] TFAE
e is Y0 coded in A;
e D is enumeration-reducible to X.5-tp4(3) for some 3 € A.

bf,(K) countable = only countably many sets can be ¥2-coded
by some struc. in K.
Thus, there is an oracle, relative to which,
no non-trivial set can be ¥%-encoded in any structure in K

Def: A set D is weakly ¥ coded in A if D is left-X2 in every copy of A.
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The dichotomy

Let K be a Borel class of countable structures.
Let o be an ordinal.

Thm[M™m. 09]: Either
e There are countably many M"-types realized in K.

e using a jumps we can distinguish countably many struct. in K;
e there is a countable complete set of I'Ig'—formulas;

e no non-trivial set can be Zg—encoded in any structure in K;

or

e There are continuum many M-types realized in K.
e using « jumps we can distinguish continuum many struct. in K;
e there is no countable complete set of M"-formulas;

e any set can be weakly-X2-encoded in some structure in K;

relative to some oracle.
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The Main Theorem— so you don't forget

Theorem ([M.] (ZFC+PD))
Let T be a theory with uncountably many countable models.

The following are equivalent:
o T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone. =

=

@ There exists an oracle relative to which

{Sp(A): AET} = {{Xe2¥:wf>a}:acuw}

If |bf ,(K)| = 2% for some «, then, relative to every X on a cone,
K has an X-hyperarithemetic model without an X-computable copy.

April 2013 44 / 70
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Naming the types

Let o be the least such that |bf,(K)| = 2%,
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Naming the types

Let o be the least such that |bf,(K)| = 2%,

For each 8 < « and each I—Ig'—type p € bfg(K),
let R, be the relation such that for A € K,

AERy(X) <= A= ¢(X), for every o(X) € p
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Naming the types

Let o be the least such that |bf,(K)| = 2%,

For each 8 < « and each I—Ig'—type p € bfg(K),
let R, be the relation such that for A € K,

AE Ry)(x) <= A ¢(x), for every p(X) € p <= p C Mi"-tp(3).

Let £, be LU{R,: B < o, p € bfg(K)}.
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Naming the types

Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.
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Naming the types

Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.

Lemma: For 8 < «,
every [ formula is equivalent to a X"-over-Lg formula.
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Naming the types

Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.

Lemma: For 8 < «,
every [ formula is equivalent to a X"-over-Lg formula.

Pf: o = vabfg(K),tpEp Rp.

Antonio Montalban (U.C. Berkeley)

When hyperarithmetic is recursive April 2013 46 / 70



Naming the types

Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.

Lemma: For 8 < «,
every [ formula is equivalent to a X"-over-Lg formula.
PE: 0 =V o, (1).0cp Ro-

Corollary: Every ¥ 3 formula is equivalent to a Zi”—over L-formula.
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Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.
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every [ formula is equivalent to a X"-over-Lg formula.

Pf: o = vpebfg(K),cpEp Rp.
Corollary: Every ¥ 3 formula is equivalent to a Zi”—over L-formula.

Lemma: For p € bf(K), R, is M7, and hence is Mi"-over Lg.
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Corollary: Every ¥ 3 formula is equivalent to a Zi”—over L-formula.

Lemma: For p € bf(K), R, is M7, and hence is Mi"-over Lg.
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Naming the types

Recall: For 8 < a and p € bfs(K), A E R,(X) <= A ¢(x), for every ¢(X) € p.

Lemma: For 8 < «,
every [ formula is equivalent to a X"-over-Lg formula.

Pf: o = Vpebfg(K),vEp Rp.
Corollary: Every ¥ 3 formula is equivalent to a Zi”—over L-formula.

Lemma: For p € bf(K), R, is M7, and hence is Mi"-over Lg.
Pf: For each g € bfs(K) with p Z q, pick ¢4 € p~ q.
Claim: Ry(X) <— /\qufﬁ(K),qu(TQQ'

For p € bf3(KK), let 1, the the Mi™-over Lg formula defining it.
Let T, be the set of M L,-sentences
“(VX) Rp(X) <= 1p(X)" for p € bf,(K).
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(2) implies (1)

Recall:
e «is the least with |bf, (K)| = 2%,
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e «is the least with |bf, (K)| = 2%,
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Every ¥, formula is equivalent to a Zi"-over L-formula.
For p € bf5(K), R, is Mi-over Lg. v, is that formula.
Ta = {(¥5) Ro(X) <= (%) : p € bfa(K)}.
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Antonio Montalban (U.C. Berkeley)

When hyperarithmetic is recursive April 2013



(2) implies (1)

Recall:

e «is the least with |bf, (K)| = 2%,

o Lo =LU{R,: B <a,p e bfg(K)}.

e Every ¥, formula is equivalent to a Zi"-over L-formula.
e For p € bfs(K), R, is Mi™-over Lg. v, is that formula.

o To = {(%) Ro(R) = (%) : p € bfa(K)}.

Cor: Every ¥ ,-type is equivalent to a finitary ¥1-type of L,.

Let 7A'a be T, U T, where T is the Morleyization of T.
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(2) implies (1)

Recall:

e «is the least with |bf, (K)| = 2%,

o Lo =LU{R,: B <a,p e bfg(K)}.

e Every ¥, formula is equivalent to a Zi"-over L-formula.
e For p € bfs(K), R, is Mi™-over Lg. v, is that formula.

o To = {(%) Ro(R) = (%) : p € bfa(K)}.

Cor: Every ¥ ,-type is equivalent to a finitary ¥1-type of L,.

A A

Let T, be T, U T, where T is the Morleyization of T.

A~

So, Ta is M, and there are 2% many 2 1-types over T.
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(2) implies (1)

Recall:

e «is the least with |bf, (K)| = 2%,

o Lo =LU{R,: B <a,p e bfg(K)}.

e Every ¥, formula is equivalent to a Zi"-over L-formula.
e For p € bfs(K), R, is Mi™-over Lg. v, is that formula.

o To = {(%) Ro(R) = (%) : p € bfa(K)}.

Cor: Every ¥ ,-type is equivalent to a finitary ¥1-type of L,.

A A

Let T, be T, U T, where T is the Morleyization of T.

A~

So, Ta is M, and there are 2% many 2 1-types over T.

Then, for every Y on a cone,
there is a Y’-computable model of T,, without a Y-computable copy,
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(2) implies (1)

Recall:

e «is the least with |bf,(K)| = 2%,
o Lo =LU{R,:B < a,pebfsg(K)}.

e For p € bfg(K), R, is Nj.

Antonio Montalban (U.C. Berkeley)
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o To=T,UT where T is the Morleyization of T

For every Y on a cone, there is a Y’-computable model of Tw, not Y-computable.

Let v be the maximum between « and the complexity of T.
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(2) implies (1)

Recall:

e «is the least with |bf,(K)| = 2%,
o Lo=LU{R,: B <a,pebfs(K)}
e For p € bfg(K), R, is Nj.

o To=T,UT where T is the Morleyization of T
e For every Y on a cone, there is a Y'-computable model of T,, not Y-computable.

Let v be the maximum between « and the complexity of T.

So, if AE=T, A®) computes A, such that A, = 7.
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e For p € bfg(K), R, is Nj.

o To=T,UT where T is the Morleyization of T

e For every Y on a cone, there is a Y'-computable model of Tw, not Y-computable.

Let v be the maximum between « and the complexity of T.
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Given every X on the cone, let Y = X(), then
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(2) implies (1)

Recall:

e «is the least with |bf,(K)| = 2%,

o Lo=LU{R,: B <a,pebfs(K)}

e For p € bfg(K), R, is Nj.

o To=T,UT where T is the Morleyization of T

e For every Y on a cone, there is a Y'-computable model of Tw, not Y-computable.

Let v be the maximum between « and the complexity of T.
So, if AE=T, A®) computes A, such that A, = 7.

Given every X on the cone, let Y = X(), then
there is a X(“/H)—computable model A, = Ta,
without a X(") computable copy.
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(2) implies (1)

Recall:

e «is the least with |bf,(K)| = 2%,

o Lo=LU{R,: B <a,pebfs(K)}

e For p € bfg(K), R, is Nj.

o To=T,UT where T is the Morleyization of T

e For every Y on a cone, there is a Y'-computable model of Tw, not Y-computable.

Let v be the maximum between « and the complexity of T.
So, if AE=T, A®) computes A, such that A, = 7.

Given every X on the cone, let Y = X(), then
there is a X(“/H)—computable model fla = 7A'a,

without a X(") computable copy.
So, A does not have an X-computable copy.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 48 / 70



The Main Theorem—again

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.

The following are equivalent:
e T is a counterexample to Vaught's conjecture.

o T satisfies hyperarithmetic-is-recursive on a cone.

@ There exists an oracle relative to which

{Sp(A): AETY = ({XeX: wf>a}:acwl

April 2013

When hyperarithmetic is recursive

Antonio Montalban (U.C. Berkeley)



The main direction of the theorem

Def: Sp (A) ={X €2¥:X  computes a copy of A}.
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The main direction of the theorem
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The main direction of the theorem

Def: SpY(A) = {X €2 : XY computes a copy of A}.

Recall: w{’ is the least ordinal without an X-computable copy.
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Ex: Sp(wF) = {X : wi > wfK}.
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The main direction of the theorem

Def: SpY(A) = {X €2 : XY computes a copy of A}.

Recall: w{’ is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then wf < wf.

Ex: Sp(wF) = {X : wi > wfK}.

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then,
there is Y € 2% such that, for every C C 2V, the following are equivalent:

o C=SpY(A) forsome A=T,
o C={X: wi@y > a} for some a < wj.
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The main direction of the theorem

Def: SpY(A) = {X €2 : XY computes a copy of A}.

Recall: w{’ is the least ordinal without an X-computable copy.
Recall: If Z is hyperarithmetic in X, then wf < wf.

Ex: Sp(wF) = {X : wi > wfK}.

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then,
there is Y € 2¥ such that, for every C C 2N the following are equivalent:

o C=SpY(A) forsome A=T,
o C={X: wi@y > a} for some a < wj.

Corollary: If T is a counterexample to Vaught's conjecture,
then T satisfies hyperarithmetic-is-recursive on a cone.
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An observation

Suppose you have a proof of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
continuum many B with B |= N5-Th(A).”
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in a way that relativizes
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An observation

Suppose you have a proof of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
continuum many B with B |= N5-Th(A).”

in a way that relativizes

or of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
a hypeartithmetic B with B |= M5-Th(.A) and no computable copy.”

in a way that relativizes
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An observation

Suppose you have a proof of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
continuum many B with B |= N5-Th(A).”
in a way that relativizes

or of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
a hypeartithmetic B with B |= M5-Th(.A) and no computable copy.”
in a way that relativizes

then you have a proof of Vaught's Conjecture.
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An observation

Suppose you have a proof of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
continuum many B with B |= N5-Th(A).”
in a way that relativizes

or of:
“If you have a structure A with Sp(A) = Sp(w{K), there exists
a hypeartithmetic B with B |= M5-Th(.A) and no computable copy.”
in a way that relativizes

then you have a proof of Vaught's Conjecture.

Question: What can we say about the structures with Sp(.A) = Sp(w{K)?
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CK
1

Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:
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@ any ordinal «, wICK <a< w2CK,
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CK
1

Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:
o wik
@ any ordinal «, wICK <a< w2CK,

o wsk-(1+Q),
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CK
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Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:
o wik
@ any ordinal «, wICK <a< w2CK,
° wi- (1+Q),

@ the interval algebra of any of the linear ordering above,
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Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:
o weK
@ any ordinal «, wICK <a< w2CK,
° wi (1+Q),
@ the interval algebra of any of the linear ordering above,

@ the tree of descending sequence of any of the linear ordering above,
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CK
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Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:
° wy

any ordinal «, wICK <a< w2CK,

ws - (1+Q),

the interval algebra of any of the linear ordering above,

the tree of descending sequence of any of the linear ordering above,

the p-group given by the tree above,
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CK

Structures with the same spectrum as wy

The structures A we know that have Sp(A) = Sp(w{K) are:
® wy
any ordinal «, wICK <a< w2CK,
ws - (1+Q),
the interval algebra of any of the linear ordering above,
the tree of descending sequence of any of the linear ordering above,

the p-group given by the tree above,

In all these examples, we know that
if A €K, and K is axiomatizable by a computable L, , sentence,
then K has 2% many structures.
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the tree of descending sequence of any of the linear ordering above,
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CK

Structures with the same spectrum as wy

The structures A we know that have Sp(A) = Sp(w{K) are:

o Wi

@ any ordinal «, wICK <a< w2CK,

o wSK. (1+Q),

@ the interval algebra of any of the linear ordering above,

@ the tree of descending sequence of any of the linear ordering above,
@ the p-group given by the tree above,

o .

In all these examples, we know that
if A €K, and K is axiomatizable by a computable L, , sentence,
then K has 2% many structures.

For instance: Suppose ¢ is 1S and wiX |= ¢.
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CK

Structures with the same spectrum as wy

The structures A we know that have Sp(A) = Sp(w{K) are:

o Wi

e any ordinal o, wfK < a < WK,

o wSK. (1+Q),

@ the interval algebra of any of the linear ordering above,

@ the tree of descending sequence of any of the linear ordering above,
@ the p-group given by the tree above,

o .

In all these examples, we know that
if A €K, and K is axiomatizable by a computable L, , sentence,
then K has 2% many structures.

For instance: Suppose ¢ is 1S and wiX |= ¢.
It is known that for any linear orderings L1, L, w® - L1 =q w® - Ls.
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CK
1

Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:

o Wi

e any ordinal o, wfK < a < WK,

o wSK. (1+Q),

@ the interval algebra of any of the linear ordering above,

@ the tree of descending sequence of any of the linear ordering above,
@ the p-group given by the tree above,

o .

In all these examples, we know that
if A €K, and K is axiomatizable by a computable L, , sentence,

then K has 2% many structures.
For instance: Suppose ¢ is 1S and wiX |= ¢.

It is known that for any linear orderings L1, Lo, w® - L1 =4 w® - Lo.

Since WK = w . WK,
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CK
1

Structures with the same spectrum as w

The structures A we know that have Sp(A) = Sp(w{K) are:

o Wi

e any ordinal o, wfK < a < WK,

o wSK. (1+Q),

@ the interval algebra of any of the linear ordering above,

@ the tree of descending sequence of any of the linear ordering above,
@ the p-group given by the tree above,

o .

In all these examples, we know that
if A €K, and K is axiomatizable by a computable L, , sentence,

then K has 2% many structures.
For instance: Suppose ¢ is 1S and wiX |= ¢.

It is known that for any linear orderings L1, Lo, w® - L1 =4 w® - Lo.

Since wi = w* - WK, for any £ we have that w® - £ = .
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Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering H such that
HwK + 0wk Q
and H has no hyperarithmetic descending sequence.
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Thm: [Harrison '66] There is a computable linear ordering H such that
HwK + 0wk Q
and H has no hyperarithmetic descending sequence.

Overspill Argument:
If PCHis X1 and wK C P, thereis a* € P\ wikK.
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If PCHis X1 and wK C P, thereis a* € P\ wikK.
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Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering H such that
HwK + 0wk Q
and H has no hyperarithmetic descending sequence.

Overspill Argument:

If PCHis X1 and wK C P, thereis a* € P\ wikK.
Pf: Because wiK is M}, and if P = w&K, it would be Al. We could then find a
hyp descending sequence in H . wSK.

A variation: If w¥ = wK, and P C H is T1(X), the same holds.
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Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering H such that
HwK + 0wk Q
and H has no hyperarithmetic descending sequence.

Overspill Argument:
If PCHis X1 and wK C P, thereis a* € P\ wikK.
Pf: Because wiK is M}, and if P = w&K, it would be Al. We could then find a

hyp descending sequence in H . wSK.

A variation: If w¥ = wK, and P C H is T1(X), the same holds.

Relativization: There is a computable operator X — HX,
such that HX is the Harrison linear ordering relative to X.
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Harrison's Linear Ordering

Thm: [Harrison '66] There is a computable linear ordering ‘H such that
H = wl CK + CL) Q,
and H has no hyperarithmetic descending sequence.

Overspill Argument:
If PCHis¥l and wiK C P, there is o € P~ wiK.
Pf: Because wiK is M}, and if P = w&K, it would be Al. We could then find a

hyp descending sequence in H . wSK.

A variation: If w¥ = wK, and P C H is T1(X), the same holds.
Relativization: There is a computable operator X — HX,

such that #X is the Harrison linear ordering relative to X.
i.e. HX 2w 4w Q has no X-hyp descending sequences.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.

Then
Sp(Z* - Q) = {X : wf > a},
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then

Sp(Z® - Q) = {X : wi > a},

((2): if a < wi, then X computes Z* - Q.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then

Sp(Z® - Q) = {X : wi > a},

((D): if @ < Wi, then X computes Z* - Q. For a = wy', 2% -Q = 2°7* ¢ = A
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then

Sp(Z® - Q) = {X : wi > a},

(D) if a < wf, then X computes Z* - Q. For o = wy, Z® - Q = Z*T Q _ gH*
(C): if X computes Z* - Q, it computes Z” for every 3 < a.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : wf > a},

(D) if a < wf, then X computes Z* - Q. For o = wy, Z® - Q = Z*T Q _ gH*

(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z“’i(, because

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 54 / 70



Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : i > a},
(D) if a < wf, then X computes Z* - Q. For o = wy, Z® - Q = Z*T Q _ gH*

(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then

SP(Z* - Q) = (X : wX = a},
((D): if a < wf, then X computes Z* - Q. For a = w{, Z* - Q = zoteQ — gH*
(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)

and hence

{Sp(A): AeK}={{X:wff>al:a<w}
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : wf > a},

((D): if a < wf, then X computes Z* - Q. For a = w{, Z* - Q = zoteQ — gH*
(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)

and hence
{Sp(A): AeK}={{X:wff>al:a<w}

Obs:
o Kis 1.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : wf > a},

((D): if a < wf, then X computes Z* - Q. For a = w{, Z* - Q = zoteQ — gH*
(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)

and hence
{Sp(A): AeK}={{X:wff>al:a<w}

Obs:
o Kis 1.
L € K if Q embeds in £ and Va, b € L there is automorphism mapping a — b.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : wf > a},

((D): if a < wf, then X computes Z* - Q. For a = w{, Z* - Q = zoteQ — gH*
(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)

and hence
{Sp(A): AeK}={{X:wff>al:a<w}

Obs:
o Kis 1.
L € K if Q embeds in £ and Va, b € L there is automorphism mapping a — b.

e Kis not L, ., axiomatizable.
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Kunen's Example

Let K={Z* - Q:a < w1} aslinear orders.
Then
Sp(Z* - Q) = {X : wf > a},

(D) if a < wf, then X computes Z* - Q. For o = wy, Z® - Q = Z*T Q _ gH*
(©): if X computes Z* - Q, it computes 7° for every B < «. But X computes no copy
of Z*1 | because the tree {p: (2", <iex) — Z"} is WF and has rank > f3.)

and hence
{Sp(A): AeK}={{X:wff>al:a<w}

Obs:
o Kis 1.
L € K if Q embeds in £ and Va, b € L there is automorphism mapping a — b.

e Kis not L, ., axiomatizable.
Again, for a < wk, for any two lin.ord L1, Lo, Z% - L1 =4 7% - Lo.
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A bit more background

Def: An ordinal « is admissible if
there is no unbounded, Xi-in-L,, function f: § — « for any ¢ < a.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 55 / 70



A bit more background

Def: An ordinal « is admissible if
there is no unbounded, Xi-in-L,, function f: § — « for any ¢ < a.

Thm [Sacks]: « is admissible <— a = wf for some X.
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A bit more background

Def: An ordinal « is admissible if
there is no unbounded, Xi-in-L,, function f: § — « for any ¢ < a.

Thm [Sacks]: « is admissible <— a = wf for some X.

Gandy’s Basis Theorem:
If ¢ is X1, and IXp(X), then there is such an X with wf’ = w{K.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:
Let g: w — w be a generic permutation of w.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:

Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:

Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = wf @ w - Q.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 56 / 70



Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy = wf@G =wf = wf@y wy .

Pf:

Let g: w—wbea generic permutation of w. Let G be the pull back of HX
through g Then G = w @ w - Q. Conclude that
wl < wl
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy = wf@G =wf = wf@y wy .

Pf:

Let g: w—wbea generic permutation of w. Let G be the pull back of HX
through g Then G = w @ w - Q. Conclude that
wl < wl < wlc@X
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:

Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that
wif Swf <P <
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:

Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that
Wil wf <wfPX < wf@x < wf.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:
Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that

wf <wf <wlX < (EPX < )X

Let f: HX — H" be an isomorphism.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:
Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that

wf <wf <wlX < (EPX < )X

Let f: HX — H" be an isomorphism. It's a permutation of w.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:

Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that
Wil wf <wfPX < wf@x < wf.

Let f: HX — H" be an isomorphism. It's a permutation of w. If g is generic
enough, sois f o g.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:
Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that

wf <wf <wlX < (EPX < )X
Let f: HX — H" be an isomorphism. It's a permutation of w. If g is generic
enough, so is f o g. Notice that G is be the pull back of %Y through f o g.
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Interpolation lemma

Lemma: If wi = w)’, then there is G such that

wy :wf@G = wf :wf@y = wy.

Pf:
Let g: w — w be a generic permutation of w. Let G be the pull back of HX
through g. Then G = w{ ® wf - Q. Conclude that

X
Wi < wf < WX < WES < WK

Let f: HX — H" be an isomorphism. It's a permutation of w. If g is generic
enough, so is f o g. Notice that G is be the pull back of #Y through f o g.

Conclude that w) = wf = wW®Y
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A,3) <, (B,b) < VB < aVd e B<¥ Ic € A<¥ o
(A,3,¢) >5 (B, b,d).
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A,3) <, (B,b) < VB < aVd e B<¥ Ic € A<¥

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
@ Ni-tpa(3) C NY-tps(b) .
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,,(K) = {A2AKIEA)

[e3
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,(K) = {(A2)AKIcA}

=a

= the set of [,-types realized in K.
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A, 3) <4 (B,b) <= VB <aVd e B<¥ 3cc A

(A,3,E) >3 (B, b, d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
© (A 3) <a (B,b)
@ Ni-tpa(3) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,(K) = {(A2)AKIcA}

=a

= the set of [,-types realized in K.

=, is Borel, so, by [Silver 80], bf,(K) has size either countable or continuum.
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Back and forth relations

If so we say that (A, 3) is a-back-and-forth below (B, b):
(A,3) <, (B,b) < VB < aVd e B<¥ Ic € A<¥ L
(A, 3,¢) >p (B, b,d).
(A, 3) <o (B, b) if they satisfy the same atomic formulas.
Theorem[Ash-Knight; Karp] Let (A, 3) and (B, b) be structures. TFAE
Q (A 3) <, (B,b)
@ Ny-tpa(a) C NY-tps(b) .

© Given (C, €) that's isomorphic to either (A, 3) or (B, b),
deciding whether (C, ) = (A, 3) is £2-hard.

Let bf,(K) = MﬁKSGA} = the set of ,-types realized in K.

=, is Borel, so, by [Silver 80], bf,(K) has size either countable or continuum.
T being scattered means that bf,(KK) is countable for all .
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
Thm [Nadel 74] If A, B are computable, and A =¢c B, then A= B.
wrtw

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 58 / 70



Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
Thm [Nadel 74] If A, B are computable, and A =¢c B, then A= B.
wrtw

Cor: If A computable, then p4(3) < wfk,
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
Thm [Nadel 74] If A, B are computable, and A =¢c B, then A= B.
wrtw

Cor: If A computable, then p4(3) < wK, and hence SR(A) < wK + 1.
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
Thm [Nadel 74] If A, B are computable, and A =¢c B, then A= B.
wrtw

Cor: If A computable, then p4(3) < wK, and hence SR(A) < wK + 1.

Relativizing: SR(A) < wi' + 1.
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Def: For 3 € A<Y, let pA(é) be the least «, such that
if (A,3) =4 (A, b), then 3 and b are automorphic.

Def: The Scott rank of Ais SR(A) = sup{pa(3) +1:3€ A<“}.

Thm [Scott 65]: If A, B are structures, and A=, , B, then A= B.
Thm [Nadel 74] If A, B are computable, and A =¢c B, then A= B.
wrtw

Cor: If A computable, then p4(3) < wK, and hence SR(A) < wK + 1.
Relativizing: SR(A) < wi' + 1.

Since T is scattered and uncountable,
it has models of arbitrarily high Scott rank.
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The two steps

Suppose T is a scattered theory with uncountably many models.
We want to show:
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Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

{Sp(A): AET} = {{Xe2¥:wf>a}:acuw}
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There is an oracle relative to which
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Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

{Sp(A): AET} = {{Xe2¥:wf>a}:acuw}

= {{Xe2¥:w>a}:acw),aadmissible}.

And to get that we will prove two things:
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And to get that we will prove two things:

@ For every admissible a, there is A = T with wf‘ = q.
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Let a be admissible. We want A |= T, with wi' = a.
Let X be so that o = we’.

Obs: Let SR-., be the I'Ig"7+2 sentence so that A = SR>, <= SR(A) > v

SR<’Y is El)_(,)_/()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis ¥1(X) and wX C P.
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The first step

Let a be admissible. We want A |= T, with wi' = a.
Let X be so that o = we’.

Obs: Let SR-., be the I'Ig"7+2 sentence so that A = SR>, <= SR(A) > v

SR<’Y is El)_(,)_/()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis ¥1(X) and w C P. There is a* € P\ wf,

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013



The first step
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Let X be so that o = we’.
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Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis T1(X) and w C P. Thereis a* € P\ wf, and let A be the witness.
By Gandy’s thm, we can take A with w{‘ < wik.
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The first step

Let a be admissible. We want A |= T, with wi' = a.
Let X be so that o = we’.

Obs: Let SR-.., be the M3 ,, sentence so that A = SR>, <= SR(A) > :
SR<’Y is El)_(,)_/()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis T1(X) and w C P. Thereis a* € P\ wf, and let A be the witness.
By Gandy’s thm, we can take A with w{‘ < wik.

Then AT,
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The first step

Let a be admissible. We want A |= T, with wi = a.
Let X be so that o = we’.

Obs: Let SR-.., be the M3 ,, sentence so that A = SR>, <= SR(A) > :
SR<’Y is El)_(,)_/()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis £1(X) and w* C P. Thereis a* € P \wl , and let A be the witness.
By Gandy’s thm, we can take A with wl < wik.

Then A= T, and Vy < a*, v < wf, 7 < SR(A).
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The first step

Let  be admissible. We want A = T, with wi' = a.

Let X be so that o = we’.

Obs: Let SR-., be the I'IQ’L/+2 sentence so that A = SR>, <= SR(A) > v
SR<’Y is El)_(,y()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis T1(X) and w C P. Thereis a* € P\ wf, and let A be the witness.
By Gandy’s thm, we can take A with w{‘ < wik.

Then A= T, and Vy < a*, v < wf, 7 < SR(A).
Thus
wf < SR(A)
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Let X be so that o = we’.

Obs: Let SR-., be the I'IQ’L/+2 sentence so that A = SR>, <= SR(A) > v
SR<’Y is El)_(,y()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.
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We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.
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Obs: Let SR-., be the I'IQ’L/+2 sentence so that A = SR>, <= SR(A) > v
SR<’Y is El)_(,y()_( =~ _)7 A X ¢7+1 }7)
We know that for every ~, there is a model of T which has SR> ~.

Let P = {B € HX : there exists A, A |= T and /\7<5A = SR>+ }.

Pis T1(X) and w C P. Thereis a* € P\ wf, and let A be the witness.
By Gandy’s thm, we can take A with w{‘ < wik.

Then A= T, and Vy < a*, v < wf, 7 < SR(A).
Thus
W <SR(A) wit +1 <w +1.

Thus wf‘ = w{<.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 60 / 70



Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

{Sp(A): AET} = {{Xe2¥:wf>a}:acuw}

= {{Xe2¥:w>a}:acw),aadmissible}.
And to get that we will prove two things:

© For every admissible «, there is A = T with wf‘ = q.
@ Forevery A= T, Sp(A) = {X : wf > wi'}.
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Recall

Using Morleyization, we can assume T is [15.
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Recall

Using Morleyization, we can assume T is [15.

For each 8 < « and each I'Ig'—type p € bfg(K), we define a relation R:
AE Ry(X) <= A= ¢(X), for every p(X) € p <= p C NI-tpa(X).
Let us also consider a relation R

AE Ry (X) <= X has IN7-type exactly p.

Let L, be LU{R,: 8 < a,p € bfg(K)} U{R; : B < a, p € bfs(K)}.
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Recall

Using Morleyization, we can assume T is [15.

For each 8 < « and each I'Ig'—type p € bfg(K), we define a relation R:
AE Ry(X) <= A= ¢(X), for every p(X) € p <= p C NI-tpa(X).
Let us also consider a relation R

AE Ry (X) <= X has IN7-type exactly p.

Let L, be LU{R,: 8 < a,p € bfg(K)} U{R; : B < a, p € bfs(K)}.

e Every I'Ifﬁ” formula is equivalent to a I'Ii"—over—ﬁﬁ formula.
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Recall

Using Morleyization, we can assume T is [15.

For each 8 < « and each I'Ig'—type p € bfg(K), we define a relation R:
AE Ry(X) <= A= ¢(X), for every p(X) € p <= p C NI-tpa(X).
Let us also consider a relation R

AE Ry (X) <= X has IN7-type exactly p.

Let L, be LU{R,: 8 < a,p € bfg(K)} U{R; : B < a, p € bfs(K)}.

e Every I'Ifﬁ” formula is equivalent to a I'Ii"—over—ﬁﬁ formula.
e Every I'Ig’-type is equivalent to a finitary ;-type of Lg.
e For p € bfg(K), let 1), the conjunction of these finitary M;-£g-formulas.
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Recall

Using Morleyization, we can assume T is [15.

For each 8 < « and each I'Ig'—type p € bfg(K), we define a relation R:
AE Ry(X) <= A= ¢(X), for every p(X) € p <= p C NI-tpa(X).
Let us also consider a relation R

AE Ry (X) <= X has IN7-type exactly p.

Let L, be LU{R,: 8 < a,p € bfg(K)} U{R; : B < a, p € bfs(K)}.

Every I'Ifﬁ” formula is equivalent to a I'Ii"—over—ﬁg formula.

Every M-type is equivalent to a finitary My-type of L.
For p € bfs(K), let 9, the conjunction of these finitary M;-£g-formulas.
Yp is MiM-in-L5 and is equivalent to Rp.
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e < q,
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e R, is a relation symbol of the same arity as p.
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e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where
® Bq < a,
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where
L Bq < ay
e Ry is a relation symbol.
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where

® Bq < q,

e R, is a relation symbol.

e Sy is as a finitary ﬂl—ﬁg—type, where EIE ={Rs,R; :s€B,[s < S}

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 63 / 70



The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where

® Bq < q,

e R, is a relation symbol.

e S, is as a finitary ﬂl—ﬁg—type, where EIE ={Rs,R; :s€B,[s < S}

Let T2 be T, together with the set of M L,-sentences
o (VX) Ry(X) <= Nyes, ¥(X), for g € B,
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where
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e R, is a relation symbol.
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The a-bf-structure

The a-bf-structure of T is the set of all the triples (3, Rp, Sp) where
e B<a,

e pebfsg(T) ie isa I'Ig] type of T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary ;-Ls-type.

An a-bf-structure is a set B of triples g = (4, Rq, Sq) Where

® Bq < q,

e R, is a relation symbol.

e S, is as a finitary ﬂl—ﬁg—type, where EIE ={Rs,R; :s€B,[s < S}

Let TE be T, together with the set of ﬂg’ L,-sentences
o (V%) Ry(X) <= Ayes, (%), for g € B,

o (VX) Ry (X) <= Rp(X) A Ayen, s, 7. for g € B,

o Aea V% Vcn s, Ry (3).

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 63 / 70



Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,
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Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
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e Ry is a relation symbol.
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < S}
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < S}

Lemma: If K is 15, t is a X1-type, there is a t-computable structure in K realizing t.
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < S}

Lemma: If K is 15, t is a X1-type, there is a t-computable structure in K realizing t.

Def: We say that an L-structure A satisfies an a-bf-structure B,
if one can find interpretations of the relations in £Z so that A = TZ.
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < S}

Lemma: If K is 15, t is a X1-type, there is a t-computable structure in K realizing t.

Def: We say that an L-structure A satisfies an a-bf-structure B,
if one can find interpretations of the relations in £Z so that A = TZ.

Corollary: If B is the a-bf-structure of T, and p a X1-in-L,, type,
there is a model of T2 of type p computable from B and p.
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < S}

Lemma: If K is 15, t is a X1-type, there is a t-computable structure in K realizing t.

Def: We say that an L-structure A satisfies an a-bf-structure B,
if one can find interpretations of the relations in £Z so that A = TZ.

Corollary: If B is the a-bf-structure of T, and p a X1-in-L,, type,
there is a model of T2 of type p computable from B and p.

Lemma: An a-bf-structure B is the a-bf-structure of T iff
Vp € B there is a model satisfying B, realizing p, and
every model of T satisfies B.
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Building models out of a-bf-structures

Recall: An a-bf-structure is a set B of triples g = (B4, Ry, Sq) Where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < S}

Lemma: If K is 15, t is a X1-type, there is a t-computable structure in K realizing t.

Def: We say that an L-structure A satisfies an a-bf-structure B,
if one can find interpretations of the relations in £Z so that A = TZ.

Corollary: If B is the a-bf-structure of T, and p a X1-in-L,, type,
there is a model of T2 of type p computable from B and p.

Lemma: An a-bf-structure B is the a-bf-structure of T iff
Vp € B there is a model satisfying B, realizing p, and
every model of T satisfies B.

Obs: Being the a-bf-structure of T is 1.
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T neral idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.
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o B4 <a,
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Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where
o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}

Lemma: Suppose B is a computable a*-bf-structure for a* € H \ wiK
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}

Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}

Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.
Suppose that A = T and wi' = wiK.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: Theset P = {8 < o* : A satisfies B[ 8} CH
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is 8* € P\ wfk.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E]g ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.
There is a computable B satisfying B [ 3* and R,
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.

There is a computable B satisfying B [ 3* and R,

For B<w{® and geB|B, AER; < BER;.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < B}

Lemma: Suppose B is a computable a*-bf-structure for a* € H \ w
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.
Suppose that A = T and wi' = wiK.

CK
1 .

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.

There is a computable B satisfying B [ 3* and R,

For B<w{® and geB|B, AER; < BER;. So A=3B.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.

There is a computable B satisfying B [ 3* and R,

For B<w{® and geB|B, AER; < BER;. So A=3B.

So A Ewch B.
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The general idea

Recall: We want to show Sp(A) = {X : wf > wi'} for A= T.

An a-bf-structure is a set B of triples g = (84, Rq, Sq) where

o B4 <a,

e Ry is a relation symbol.

e S is as a finitary I'Il-E]g-type, where E% ={Rs,R; :s€B, [ < B}
Lemma: Suppose B is a computable a*-bf-structure for o* € H ~ wiK.
Suppose that B [ 5 is the correct 5-bf-structure of T for all g < wch.

Suppose that A = T and wi' = w&K.

Then A has a computable copy.

Pf: The set P = {3 < a* : A satisfies B | 3} C H is £1(A) and contains wiK.
There is * € P\ w{X. Let p € B be such that 3, = 8*, and A = R>.

There is a computable B satisfying B [ 3* and R,

For B<w{® and geB|B, AER; < BER;. So A=3B.

So A Ewch B. So A= B.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.
Let f(X) be the least such a.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.

Let f(X) be the least such a. f: 2% — wy is projective, degree-invariant and
f(X) < wf.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.

Let f(X) be the least such a. f: 2% — wy is projective, degree-invariant and
f(X) < wf.

Then, by Martin’s lemma, f is constant on a cone.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.

Let f(X) be the least such a. f: 2% — wy is projective, degree-invariant and
f(X) < wf.

Then, by Martin’s lemma, f is constant on a cone.

But for every a, there is some Y in the cone with f(X) > a.
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Computing a-bf-structures.

Lemma (PD): For every X on a cone,
if a < wch, then X computes a copy of the a-bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an a < w&K, such that X
does not computes a copy of the a-bf-structure of T.

Let f(X) be the least such a. f: 2% — wy is projective, degree-invariant and
f(X) < wf.

Then, by Martin’s lemma, f is constant on a cone.

But for every a, there is some Y in the cone with f(X) > a.

From now on, we work relative to the base of this cone.
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Computing non-standard «o*-bf-structures

Recall: The a-bf-structure of T is the set of all the triples (3, Ry, Sp) where
e f< a,

e pebfs(T), ie isalf typeof T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary IN:-Lg-type.
Obs: Being the correct a-bf-structure of T is }.
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Computing non-standard «o*-bf-structures

Recall: The a-bf-structure of T is the set of all the triples (3, Ry, Sp) where
e <,

e pebfs(T), ie isalf typeof T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary IN:-Lg-type.

Obs: Being the correct a-bf-structure of T is }.

Lemma: Every X computes an o*-bf-structure, for some o € HX \w{(
B, such that (Vo < wy’) B | a is correct for T.
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e <,

e pebfs(T), ie isalf typeof T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary IN:-Lg-type.

Obs: Being the correct a-bf-structure of T is }.

Lemma: Every X computes an o*-bf-structure, for some o € HX \w{(
B, such that (Vo < wy’) B | a is correct for T.

Two a-bf-structures B and B are equivalent
if there is a way of matching the relations symbols...
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Computing non-standard «o*-bf-structures

Recall: The a-bf-structure of T is the set of all the triples (3, Ry, Sp) where
o f<a,

e pebfs(T), ie isalf typeof T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary IN:-Lg-type.

Obs: Being the correct a-bf-structure of T is }.

Lemma: Every X computes an o*-bf-structure, for some o € HX \w{(
B, such that (Vo < wy’) B | a is correct for T.

Two a-bf-structures B and B are equivalent
if there is a way of matching the relations symbols...

Obs: Equivalence of a-bf-structures is ¥}.

Let P = {a € HX : X computes an a-bf-structure B such that

(VB < a) (for all B-bf-structures B) N y
if B < w and B is correct, then B | 3 = B}.
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Computing non-standard «o*-bf-structures

Recall: The a-bf-structure of T is the set of all the triples (3, Ry, Sp) where
o f<a,

e pebfs(T), ie isalf typeof T.

e R, is a relation symbol of the same arity as p.

e S, is the representation of p as a finitary IN:-Lg-type.

Obs: Being the correct a-bf-structure of T is }.

Lemma: Every X computes an o*-bf-structure, for some o € HX \w{(
B, such that (Vo < wy’) B | a is correct for T.

Two a-bf-structures B and B are equivalent
if there is a way of matching the relations symbols...

Obs: Equivalence of a-bf-structures is ¥}.

Let P = {a € HX : X computes an a-bf-structure B such that

(VB < a) (for all B-bf-structures B) N y
if B < w and B is correct, then B | 3 = B}.

Pis X!, and wch C P.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,
provided
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 68 / 70



Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

e Y computes an a*-bf-structure B, correct up to wy, with a* € HY \ w/.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

e Y computes an a*-bf-structure B, correct up to w), with a* € HY \ w)”

v
e A satisfies B up to some 5* € a* \ wy,
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Almost there

Lemma: Suppose wi' < w; and A= T. Then Y computes a copy of A,
provided A has an X-computable model, with wi’ = w) = w®Y.

e Y computes an a*-bf-structure B, correct up to wy, with a* € HY \ w/.

e A satisfies B up to some 8* € a* \ wy’, because w) is not T}(X @ Y).
e Let p* be such that A |= R, and B, = 3*.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Y computes an a*-bf-structure B, correct up to wy’, with a* € HY ~ w/.
A satisfies B up to some 3* € a* \ wy, because w{ is not Ti(X @ Y).
Let p* be such that A |= R.., and 3, = *.

Y computes B which satisfies B | 5*, and has same 8*-type as A.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Y computes an a*-bf-structure B, correct up to wy’, with a* € HY ~ w/.

A satisfies B up to some 8* € o* \ w/, because w) is not T} (X @ Y).
Let p* be such that A |= R.., and 3, = *.

Y computes B which satisfies B | 5*, and has same 8*-type as A.

SO, A Ewly B.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Y computes an a*-bf-structure B, correct up to wl , with a* € HY N w.

A satisfies B up to some 3* € a* \ wy, because w{ is not Ti(X @ Y).
Let p* be such that A |= R.., and 3, = *.

Y computes B which satisfies B | 5*, and has same 8*-type as A.

So, A =.y B.

Both B and A are computable in X @ Y, and A = WX B.

Antonio Montalban (U.C. Berkeley) When hyperarithmetic is recursive April 2013 68 / 70



Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Y computes an a*-bf-structure B, correct up to wl , with a* € HY N w.

A satisfies B up to some 3* € a* \ wy, because w{ is not Ti(X @ Y).
Let p* be such that A |= R.., and 3, = *.

Y computes B which satisfies B | 5*, and has same 8*-type as A.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

e Y computes an o*-bf-structure B, correct up to wl , with a* € HY N w.

e A satisfies B up to some 8* € a* \ wy’, because w) is not T}(X @ Y).
e Let p* be such that A |= R, and B, = 3*.

e Y computes BB which satisfies B | 5*, and has same 8*-type as A.

* So, A=,y B.

e Both B and A are computable in X @ Y, and A = WX B. So A B.

A has an X-computable model, for some X with w = w) < W@,
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

e Y computes an o*-bf-structure B, correct up to wl , with a* € HY N w.

e A satisfies B up to some 8* € a* \ wy’, because w) is not T}(X @ Y).
e Let p* be such that A |= R, and B, = 3*.

e Y computes BB which satisfies B | 5*, and has same 8*-type as A.

* So, A=,y B.

e Both B and A are computable in X @ Y, and A = WX B. So A B.

A has an X- computable model, for some X with wf = w) < w{®Y.
Let G be such that wf = wi“BG =wf = EBwGEBY =w/.
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Almost there

Lemma: Suppose wf‘ <wy and A= T. Then Y computes a copy of A,

provided A has an X-computable model, with wi’ = w) = w®Y.

Y computes an a*-bf-structure B, correct up to wl , with a* € HY N w.

A satisfies B up to some 3* € a* \ wy, because w{ is not Ti(X @ Y).
Let p* be such that A |= R.., and 3, = *.

Y computes B which satisfies B | 5*, and has same 8*-type as A.

So, A =.y B.

Both B and A are computable in X @ Y, and A = WX B. So A B.

A has an X- computable model, for some X with wf = w) < w{®Y.
Let G be such that wf = wi“BG =wf = EBwG@Y =w/.

Apply the lemma above twice.
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Suppose T is a scattered theory with uncountably many models.
We want to show:

There is an oracle relative to which

© For every admissible «, there is A = T with wf‘ =a.
@ Forevery A= T, Sp(A) = {X : wf > wi'}.

As we would then get:

(Sp(A): AET} = {{Xe2®:wf>a)l:acwl}
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The main theorem—for the last time

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models.
The following are equivalent:

o T is a counterexample to Vaught's conjecture.
o T satisfies hyperarithmetic-is-recursive on a cone.
@ There exists an oracle relative to which

{(Sp(A): AET} = {({Xe2¥:w>a}:acuw}.
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