A computability theoretic equivalent to Vaught's conjecture.

Antonio Montalbán

U.C. Berkeley

April 2013 Buenos Aires

April 2013 1 / 70

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- *T* satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Note that it follows from the Continuum Hypothesis.

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size 2^{\aleph_0} .

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size 2^{\aleph_0} .

Thm [Suslin 1917]: Every Σ_1^1 subset of 2^{ω} either is countable or has size 2^{\aleph_0} .

Continuum Hypothesis

CH: Every subset of 2^{ω} is either countable or has size 2^{\aleph_0} .

Thm [Suslin 1917]: Every Σ_1^1 subset of 2^{ω} either is countable or has a perfect subset.

Thm [Suslin 1917]: Every Σ_1^1 subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_1^1 equivalence relation on 2^{ω} , then either $2^{\omega}/\equiv$ is countable or $2^{\omega}/\equiv$ has size 2^{\aleph_0} .

Thm [Suslin 1917]: Every Σ_1^1 subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_1^1 equivalence relation on 2^{ω} , then either $2^{\omega}/\equiv$ is countable or there is a perfect set of inequivalent reals.

Thm [Suslin 1917]: Every \sum_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_1^1 equivalence relation on 2^{ω} , then either $2^{\omega}/\equiv$ is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Σ_1^1 .

Thm [Suslin 1917]: Every \sum_{1}^{1} subset of 2^{ω} either is countable or has a perfect subset.

Thm [Silver 80]: If \equiv is a Π_1^1 equivalence relation on 2^{ω} , then either $2^{\omega}/\equiv$ is countable or there is a perfect set of inequivalent reals.

Obs: The isomorphism relation on representations of structures is Σ_1^1 .

Obs: There are Σ_1^1 equivalence relation on 2^{ω} such that $|2^{\omega}/\equiv|=\aleph_1$

A word on coding

< □ > < 同 > < 回 >

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Recall that there is an effective bijection between \mathbb{N}^k and \mathbb{N} ,

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Recall that there is an effective bijection between \mathbb{N}^k and \mathbb{N} , and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N} .

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Recall that there is an effective bijection between \mathbb{N}^k and \mathbb{N} , and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N} .

Countable structures can coded by subsets of $\ensuremath{\mathbb{N}}$ in a straightforward way,

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Recall that there is an effective bijection between \mathbb{N}^k and \mathbb{N} , and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N} .

Countable structures can coded by subsets of $\mathbb N$ in a straightforward way, and hence as reals in $2^{\mathbb N}.$

Example: A ordered group $\mathcal{A} = (A, \times_A, \leq_A)$ can be encoded by three sets: $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$.

Recall that there is an effective bijection between \mathbb{N}^k and \mathbb{N} , and three subsets of \mathbb{N} can be encoded as a single subset of \mathbb{N} .

Countable structures can coded by subsets of $\mathbb N$ in a straightforward way, and hence as reals in $2^{\mathbb N}.$

We call such a real a *presentation* of A.

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees,

(a tree is a poset where the predecessors of every element are linearly ordered) .

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees,

(a $\mathit{tree}\xspace$ is a poset where the predecessors of every element are linearly ordered) .

Theorem [Shelah 84] Vaught's conjecture holds for ω -stable theories.

Theorem [Steel 78]

Vaught's conjecture holds for sentences all whose models are trees,

(a $\mathit{tree}\xspace$ is a poset where the predecessors of every element are linearly ordered) .

Theorem [Shelah 84] Vaught's conjecture holds for ω -stable theories.

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Def: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Def: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_1$, a \prod_{α}^{in} formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_i \ \varphi_i(\bar{x}, \bar{y}_i)$, where each φ_i is Σ_{β}^{in} for some $\beta < \alpha$.

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Def: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_1$, a \prod_{α}^{in} formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_i \ \varphi_i(\bar{x}, \bar{y}_i)$, where each φ_i is Σ_{β}^{in} for some $\beta < \alpha$.

Obs: The class of presentations of models of an $L_{\omega_1,\omega}$ sentence is Borel.

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Def: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_1$, a \prod_{α}^{in} formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_i \ \varphi_i(\bar{x}, \bar{y}_i)$, where each φ_i is Σ_{β}^{in} for some $\beta < \alpha$.

Thm[Lopez-Escobar]: For \mathbb{K} a class of structures closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_1,\omega}$ sentence $\iff \mathbb{K}$ is Borel.

Vaught's Conjecture for $L_{\omega_1,\omega}$:

The number of countable models of an $\mathcal{L}_{\omega_1,\omega}$ sentence

is either countable, or 2^{\aleph_0} .

Def: $L_{\omega_1,\omega}$ is the infinitary first-order language, where conjunctions and disjunctions are allowed to be infinitary

Def: For $\alpha \in \omega_1$, a \prod_{α}^{in} formula is one of the form $\bigwedge_{i \in \omega} \forall \bar{y}_i \ \varphi_i(\bar{x}, \bar{y}_i)$, where each φ_i is Σ_{β}^{in} for some $\beta < \alpha$.

Thm[Lopez-Escobar]: For \mathbb{K} a class of structures closed under isomorphisms, \mathbb{K} is axiomatizable by an $\mathcal{L}_{\omega_1,\omega}$ sentence $\iff \mathbb{K}$ is Borel.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an $L_{\omega_1,\omega}$ sentence φ such that if $\mathcal{B} \models \varphi$, then $\mathcal{B} \cong \mathcal{A}$.

Perfect set variation:

Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Perfect set variation:

Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Topological Vaught's conjecture:

Consider a Borel action of a Polish group on a Polish space.

Any Borel invariant set has either countably many orbits or perfectly many.

Perfect set variation:

Given a theory T, either T has countably many countable models, or there is a perfect set of non-isomorphic models of T.

Topological Vaught's conjecture:

Consider a Borel action of a Polish group on a Polish space. Any Borel invariant set has either countably many orbits or perfectly many.

Thm [Becker, Kechris]: The topological Vaught's conjecture for the group S^{∞} is equivalent to Vaught's conjecture for $L_{\omega_1,\omega}$.

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_1 , or 2^{\aleph_0} .

Theorem: [Morley 70] The number of countable models of a theory T is either countable, \aleph_1 , or 2^{\aleph_0} .

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same \prod_{α}^{in} -sentences. **Theorem:** [Morley 70] The number of countable models of a theory T is either countable, \aleph_1 , or 2^{\aleph_0} .

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same \prod_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.
Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same Π_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an ordinal $\rho(\mathcal{A}) \in \omega_1$ s.t. if $\mathcal{B} \equiv_{\rho(\mathcal{A})} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same Π_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an ordinal $\rho(\mathcal{A}) \in \omega_1$ s.t. if $\mathcal{B} \equiv_{\rho(\mathcal{A})} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Proof of Morley's theorem:

• Suppose T has less than 2^{\aleph_0} models.

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same Π_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an ordinal $\rho(\mathcal{A}) \in \omega_1$ s.t. if $\mathcal{B} \equiv_{\rho(\mathcal{A})} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Proof of Morley's theorem:

- Suppose T has less than 2^{\aleph_0} models.
- There are countably many \equiv_{α} -equivalence classes of models of T.

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same Π_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an ordinal $\rho(\mathcal{A}) \in \omega_1$ s.t. if $\mathcal{B} \equiv_{\rho(\mathcal{A})} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Proof of Morley's theorem:

- Suppose T has less than 2^{\aleph_0} models.
- There are countably many \equiv_{α} -equivalence classes of models of T.
- For each $\alpha < \omega_1$, there are countably many $\mathcal{A} \models T$ with $\rho(\mathcal{A}) = \alpha$.

Def: For structures \mathcal{A} and \mathcal{B} , and $\alpha \in \omega_1$, we write $\mathcal{A} \equiv_{\alpha} \mathcal{B}$ if they satisfy the same \prod_{α}^{in} -sentences.

Lemma: For each $\alpha \in \omega_1$, \equiv_{α} is a Borel equivalence relation.

Lemma: [Scott 65] For every structure \mathcal{A} , there is an ordinal $\rho(\mathcal{A}) \in \omega_1$ s.t. if $\mathcal{B} \equiv_{\rho(\mathcal{A})} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Proof of Morley's theorem:

- Suppose T has less than 2^{\aleph_0} models.
- There are countably many \equiv_{α} -equivalence classes of models of T.
- For each $\alpha < \omega_1$, there are countably many $\mathcal{A} \models \mathcal{T}$ with $\rho(\mathcal{A}) = \alpha$.
- So $|\{\text{models of } T\}| \leq \aleph_1$.

Definition: A theory T is *scattered* if, for every $\alpha < \omega_1$, there are only countably many \equiv_{α} -equivalence classes of models of T.

Definition: A theory T is *scattered* if, for every $\alpha < \omega_1$, there are only countably many \equiv_{α} -equivalence classes of models of T.

Definition: T is a *counterexample to Vaught's conjecture* if it is scattered and has uncountably many models. **Definition:** A theory T is *scattered* if, for every $\alpha < \omega_1$, there are only countably many \equiv_{α} -equivalence classes of models of T.

Definition: T is a *counterexample to Vaught's conjecture* if it is scattered and has uncountably many models.

Note: This definition is independent of whether CH holds or not.

Theorem ([M.] (ZFC+ PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- *T* satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Theorem ([M.] (ZFC+ PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- *T* satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Fix a set $A \subseteq \omega^{\omega}$.

< □ > < 同 > < 回 > < □ > <

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		<i>a</i> ₂		• • •
Player II		a_1		a ₃	• • •

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

< 日 > < 同 > < 三 > < 三 >

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		a ₂		•••
Player II		a_1		a ₃	• • •

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

< □ > < 同 >

- < ≣ ≻ <

Player I wins is $\bar{a} \in A$,

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		<i>a</i> ₂		• • •
Player II		a_1		a ₃	

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

< ロ > < 同 > < 回 > <

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$.

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		a ₂		• • •
Player II		a_1		a ₃	• • •

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$.

Fix a set $A \subseteq \omega^{\omega}$.

Player I a_0 a_2 \cdots Player II a_1 a_3 \cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

Fix a set $A \subseteq \omega^{\omega}$.

Player I a_0 a_2 \cdots Player II a_1 a_3 \cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s: \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

Fix a set $A \subseteq \omega^{\omega}$.

Player I a_0 a_2 \cdots Player II a_1 a_3 \cdots

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s: \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots, (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

Def: $A \subseteq 2^{\mathbb{N}}$ is *projective* if it is Σ_n^1 for some *n*.

Fix a set $A \subseteq \omega^{\omega}$.

Player I a_0 a_2 let $\bar{a} = (a_0, a_1, a_2, a_3, ...)$ Player II a_1 aз . . .

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s: \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots, (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

Def: $A \subseteq 2^{\mathbb{N}}$ is *projective* if it is Σ_n^1 for some *n*.

Projective Determinacy (PD): Every projective set is determined.

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- *T* satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.: • X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(0^{(\alpha)}$ is the α th Turing jump of 0.)

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of } 0.)$

• $X \in L(\omega_1^{CK}).$

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of } 0.)$

- $X \in L(\omega_1^{CK})$.
- $X = \{n \in \omega : \varphi(n)\}$, where φ is a computable infinitary formula.

Notation: Let ω_1^{CK} be the least non-computable ordinal. Let ω_1^X be the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \omega$, T.F.A.E.:

- X is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$.

 $(0^{(\alpha)} \text{ is the } \alpha \text{th Turing jump of } 0.)$

X ∈ L(ω₁^{CK}).
X = {n ∈ ω : φ(n)}, where φ is a computable infinitary formula.

A set satisfying the conditions above is said to be hyperarithmetic.

Obs: For instance, all arithmetic sets are hyperarithmetic.

Def: We say \mathcal{A} is *computable*, if $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are computable

Def: We say \mathcal{A} is *computable*, if $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are computable

Def: We say \mathcal{A} is *hyperarithmetic*, if $A \subseteq \mathbb{N}$, $\times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are hyperarithmetic

Def: We say \mathcal{A} is *X*-computable, if $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are computable from *X*.

Def: We say \mathcal{A} is *hyperarithmetic*, if $A \subseteq \mathbb{N}$, $\times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are hyperarithmetic

Def: We say \mathcal{A} is *X*-computable, if $A \subseteq \mathbb{N}, \times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are computable from *X*.

Def: We say \mathcal{A} is *X*-hyperarithmetic, if $A \subseteq \mathbb{N}$, $\times_A \subseteq \mathbb{N}^3$ and $\leq_A \subseteq \mathbb{N}^2$ are hyperarithmetic relative to *X*.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one. (Note: There are ℵ₁ linear orders modulo bi-embeddability [Laver 71].)
Let K be a class of structures. **Def:** K satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one. (Note: There are ℵ₁ linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg–M. 05] Every hyperarithmetic *p*-group is bi-embeddable with a computable one. Let K be a class of structures. **Def:** K satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in K has a computable copy.

Ex: [Spector 55] Countable ordinals satisfies hyperarithmetic-is-recursive.

Ex: [M. 04] Every hyperarithmetic linear order is bi-embeddable with a computable one. (Note: There are ℵ₁ linear orders modulo bi-embeddability [Laver 71].)

Ex: [Greenberg–M. 05] Every hyperarithmetic *p*-group is bi-embeddable with a computable one. (Note: There are ℵ₁ *p*-groups modulo bi-embeddability [Barwise–Eklof71].)

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- *T* satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Thm: [Martin] (PD) For every degree-invariant projective partition $(A_i : i \in \mathbb{N})$ of $2^{\mathbb{N}}$, one of the A_i 's contains a cone.

Thm: [Martin] (PD) For every degree-invariant projective partition $(A_i : i \in \mathbb{N})$ of $2^{\mathbb{N}}$, one of the A_i 's contains a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Thm: [Martin] (PD) For every degree-invariant projective partition $(A_i : i \in \mathbb{N})$ of $2^{\mathbb{N}}$, one of the A_i 's contains a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: I satisfies hyperarithmetic-is-recursive on a cone if, $(\exists Y)(\forall X \geq_T Y)$, every X-hyperarithmetic $\mathcal{A} \in \mathbb{K}$ has X-computable copy.

< ロ > < 同 > < 回 > <

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

<ロ> <同> <同> <同> < 三> <

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

Corollary: $\{deg(X) : X \in [T]\} =$ the cone above deg(T).

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

Corollary: $\{deg(X) : X \in [T]\} =$ the cone above deg(T).

Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and *unbounded* (i.e. $\forall Y \exists X \ge_T Y \ (X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

イロト イポト イヨト ・ヨ

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

Corollary: $\{deg(X) : X \in [T]\} =$ the cone above deg(T).

Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and *unbounded* (i.e. $\forall Y \exists X \ge_T Y \ (X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where *I* wins if $X \ge_T Y$ and $X \in P$.

Player I	X_0		x_1		•••	$X\in 2^\omega$
Player II		y_0		y_1	•••	$Y\in 2^\omega$

イロト イポト イヨト ・ヨ

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

Corollary: $\{deg(X) : X \in [T]\} =$ the cone above deg(T).

Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and *unbounded* (i.e. $\forall Y \exists X \ge_T Y \ (X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where *I* wins if $X \ge_T Y$ and $X \in P$. Player I $\begin{vmatrix} x_0 & x_1 & \cdots & X \in 2^{\omega} \end{vmatrix}$ Player II $\begin{vmatrix} y_0 & y_1 & \cdots & Y \in 2^{\omega} \end{vmatrix}$

• Il cannot have a winning strategy.

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Obs: A perfect tree T is pointed \iff $(\forall X \in [T])$ $T(X) \equiv_T X \oplus T$.

Corollary: $\{deg(X) : X \in [T]\} =$ the cone above deg(T).

Lemma[Martin](PD): If $P \subseteq 2^{\omega}$ is projective and *unbounded* (i.e. $\forall Y \exists X \geq_T Y \ (X \in P)$), there is a perfect pointed T with $[T] \subseteq P$.

Pf: Consider the game, where *I* wins if $X \ge_T Y$ and $X \in P$.

Player I	x_0		x_1		•••	$X\in 2^\omega$
Player II		<i>y</i> ₀		y_1	• • •	$Y\in 2^\omega$

- II cannot have a winning strategy.
- If s is a strategy for I, $\{s(Y_0 \oplus s) : Y_0 \in 2^{\omega}\}$ is a perfect pointed tree $\subseteq P$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y >_T X_n (Y \notin P_n)$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded.

Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any *n*.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$. On a pointed perfect tree T, this e is constant.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y) = \{e\}^{T(Y)}$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y) = \{e\}^{T(Y)}$. It is continuous, and for $Y \ge_T T$, $g(Y) \cong f(Y)$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y) = \{e\}^{T(Y)}$. It is continuous, and for $Y \ge_T T$, $g(Y) \cong f(Y)$. By Σ_1^1 -bounding, g is bounded below some $\alpha < \omega_1$.

Lemma[Martin](PD): If $2^{\omega} = \bigcup_n P_n$ is a projective partition, there a perfect pointed tree T and n such that $[T] \subseteq P_n$.

Pf: Suppose that no P_n is unbounded. Then $\forall n \exists X_n \forall Y \geq_T X_n (Y \notin P_n)$. Then $\bigoplus_m X_m \notin P_n$ for any n.

Lemma[Martin](PD): If $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $(\forall X) f(X) < \omega_1^X$, then f is constant on a cone.

Pf: For each X, there is e with $\{e\}^X \cong f(X)$. On a pointed perfect tree T, this e is constant. Consider the map $g(Y) = \{e\}^{T(Y)}$. It is continuous, and for $Y \ge_T T$, $g(Y) \cong f(Y)$. By Σ_1^1 -bounding, g is bounded below some $\alpha < \omega_1$. Then, g is constant on a cone, and hence so is f.

Let T be a theory with uncountably many countable models. The following are equivalent:

- *T* is a counterexample to Vaught's conjecture. ⇒
- T satisfies hyperarithmetic-is-recursive on a cone. <=
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a *ranked equivalence relation* if \equiv is an equivalence relation on \mathfrak{K} , and $r : \mathfrak{K} / \equiv \rightarrow \omega_1$.

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a *ranked equivalence relation* if \equiv is an equivalence relation on \mathfrak{K} , and $r : \mathfrak{K} / \equiv \rightarrow \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *scattered* if

 $r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a *ranked equivalence relation* if \equiv is an equivalence relation on \mathfrak{K} , and $r : \mathfrak{K} / \equiv \rightarrow \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *scattered* if $r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *projective* if \mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \rightarrow 2^{\omega}$.

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a *ranked equivalence relation* if \equiv is an equivalence relation on \mathfrak{K} , and $r : \mathfrak{K} / \equiv \rightarrow \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *scattered* if $r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *projective* if \mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \rightarrow 2^{\omega}$.

Theorem ([M.] (ZFC+PD))

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

・ロト ・同ト ・ヨト ・ヨト

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Corollary: [Greenberg–M. 05] On a cone, every hyperarithmetic *p*-group is bi-embeddable with a computable one.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: [M. 04] On a cone, every hyperarithmetic linear order is bi-embeddable with a computable one. Using Hausdorff rank.

Corollary: [Greenberg–M. 05] On a cone, every hyperarithmetic *p*-group is bi-embeddable with a computable one. Using the Ulm rank on *p*-groups with finite dimensional divisible part.

(*) *) *) *)
Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If T is scattered, the class of models of T of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If T is scattered, the class of models of T of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If *T* is scattered, the class of models of *T* of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If *T* is scattered, the class of models of *T* of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Def:
$$\rho(\mathcal{A})$$
 is the least α such that if $\mathcal{B} \equiv_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$.
 $\omega_1^{\mathcal{A}} = \text{least}\{\omega_1^{\mathcal{X}} : \mathcal{X} \text{ computes a copy of } \mathcal{A}\}.$

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If *T* is scattered, the class of models of *T* of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$. $\omega_1^{\mathcal{A}} = \text{least}\{\omega_1^{\mathcal{X}} : \mathcal{X} \text{ computes a copy of } \mathcal{A}\}.$

Obs: For every structure \mathcal{A} , $\rho(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1$.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Corollary: (ZFC+PD) If *T* is scattered, the class of models of *T* of *low Scott rank* satisfies hyperarithmetic-is-recursive on a cone.

where:

Def: $\rho(\mathcal{A})$ is the least α such that if $\mathcal{B} \equiv_{\alpha} \mathcal{A}$, then $\mathcal{B} \cong \mathcal{A}$. $\omega_1^{\mathcal{A}} = \text{least}\{\omega_1^X : X \text{ computes a copy of } \mathcal{A}\}.$

Obs: For every structure \mathcal{A} , $\rho(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1$.

Def: \mathcal{A} has *low Scott rank* if $\rho(\mathcal{A}) < \omega_1^{\mathcal{A}}$.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Pf: Suppose not. So, on a cone, the opposite is true.

• For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

- Pf: Suppose not. So, on a cone, the opposite is true.
- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let f(X) be the least value of r(Z), among Z's with $Z \leq_{hyp} X$,

but X computes nobody equivalent to Z.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

- Pf: Suppose not. So, on a cone, the opposite is true.
- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let f(X) be the least value of r(Z), among Z's with $Z \leq_{hyp} X$,

but X computes nobody equivalent to Z.

• Then f is projective, degree-invariant, and $f(X) < \omega_1^X$.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

- Pf: Suppose not. So, on a cone, the opposite is true.
- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let f(X) be the least value of r(Z), among Z's with $Z \leq_{hyp} X$,

but X computes nobody equivalent to Z.

- Then f is projective, degree-invariant, and $f(X) < \omega_1^X$.
- Thus, f is constant, say equal α , on a cone.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

- Pf: Suppose not. So, on a cone, the opposite is true.
- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let f(X) be the least value of r(Z), among Z's with $Z \leq_{hyp} X$,

but X computes nobody equivalent to Z.

・ロト ・得ト ・ヨト ・ヨト

- Then f is projective, degree-invariant, and $f(X) < \omega_1^X$.
- Thus, f is constant, say equal α , on a cone.
- $r^{-1}(\alpha)$ has countably many classes, so some Y computes a member of each.

Let $(\mathfrak{K}, \equiv, r)$ be scattered projective ranked equivalence relation such that $\forall Z \in \mathfrak{K}, r(Z) < \omega_1^Z$. For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

- **Pf:** Suppose not. So, on a cone, the opposite is true.
- For each X there is and equivalence class with an X-hyperarithmetic member, but no X-computable member.
- Let f(X) be the least value of r(Z), among Z's with $Z \leq_{hyp} X$,

but X computes nobody equivalent to Z.

・ロト ・同ト ・ヨト ・ヨト

- Then f is projective, degree-invariant, and $f(X) < \omega_1^X$.
- Thus, f is constant, say equal α , on a cone.
- $r^{-1}(\alpha)$ has countably many classes, so some Y computes a member of each.
- For that Y, $f(Y) \neq \alpha$.

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture. 🛛 ⇐
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture. 🛛 ⇐
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Theorem

If T has strictly more than \aleph_1 many models,

then, relative to every X on a cone,

T has an X-hyperarithemetic model without an X-computable copy.

Coding within structures

Def: $X \subseteq \mathbb{N}$ is *coded* by \mathcal{A} if X is c.e. in every copy of \mathcal{A} .

 $\mathbf{Thm}[\mathsf{Knight}]: X \text{ is coded by } \mathcal{A} \iff (\exists \bar{a} \in \mathcal{A}^{<\omega}) X \leq_{e} \Sigma_{1} \cdot tp_{\mathcal{A}}(\bar{a}).$

Thm[Knight]: X is coded by $\mathcal{A} \iff (\exists \bar{a} \in \mathcal{A}^{<\omega}) X \leq_e \Sigma_1 - tp_{\mathcal{A}}(\bar{a}).$

Def: $X \subseteq \mathbb{N}$ is *weakly coded* by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A} .

Thm[Knight]: X is coded by $\mathcal{A} \iff (\exists \bar{a} \in \mathcal{A}^{<\omega}) X \leq_e \Sigma_1 - tp_{\mathcal{A}}(\bar{a}).$

Def: $X \subseteq \mathbb{N}$ is *weakly coded* by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A} .

Thm[M.]: Given $\mathbb{K},$ exactly one of the following holds: Either

- there are countably many $\Sigma_1\text{-types}$ realized in $\mathbb K,$ and
- no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0);

or

- there are 2^{\aleph_0} many Σ_1 -types realized in $\mathbb K$, and
- every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$;

Thm[Knight]: X is coded by $\mathcal{A} \iff (\exists \bar{a} \in \mathcal{A}^{<\omega}) X \leq_e \Sigma_1 - tp_{\mathcal{A}}(\bar{a}).$

Def: $X \subseteq \mathbb{N}$ is *weakly coded* by \mathcal{A} if X is left-c.e. in every copy of \mathcal{A} .

Thm[M.]: Given $\mathbb{K},$ exactly one of the following holds: Either

- there are countably many Σ_1 -types realized in \mathbb{K} , and
- no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0);

or

- there are 2^{\aleph_0} many $\Sigma_1\text{-types}$ realized in $\mathbb K,$ and
- every set can be weakly coded in some $\mathcal{A} \in \mathbb{K}$;

relative to an oracle.

< □ > < 同 >

∃ >

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph. **Obs**: Every set can be coded in a group.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph. **Obs**: Every set can be coded in a group. **Obs**: Every set can be coded in a ring.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.Obs: Every set can be coded in a group.Obs: Every set can be coded in a ring.Obs: Every set can be coded in a field.

Thm[Ritcher]: No set can be coded in a Boolean algebra.

Obs: No set can be coded in an equivalence structure.

Obs: Every set can be coded in a graph.Obs: Every set can be coded in a group.Obs: Every set can be coded in a ring.Obs: Every set can be coded in a field.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.
- One of the set 2^{ℵ0} many Σ₁-types realized in K, and every set can be weakly coded in some A ∈ K;
 relation of the set of th

relative to all oracle.

relative to an oracle.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ_1 -types realized in \mathbb{K} , and no set can be coded in any $\mathcal{A} \in \mathbb{K}$ (other than 0); relative t
- ② There are 2^{ℵ₀} many Σ₁-types realized in K, and every set can be weakly coded in some A ∈ K; rel

relative to an oracle.

relative to an oracle.

Pf:

The set of Σ₁-types realized in K is Σ₁¹.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

The set of Σ₁-types realized in K is Σ₁¹. So has size either countable or 2^{ℵ0}.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ_1 -types realized in \mathbb{K} .

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ_1 -types realized in \mathbb{K} .
- Assume *T* is computable.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ₁-types realized in K.
- Assume T is computable. Otherwise, we work in the cone above T.

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ₁-types realized in K.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type T(X), and let $A_X \in \mathbb{K}$ have Σ_1 -type T(X).

< 日 > < 同 > < 三 > < 三 >

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ₁-types realized in K.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type T(X), and let $\mathcal{A}_X \in \mathbb{K}$ have Σ_1 -type T(X).
- Therefore, T(X) is c.e. in every copy of A.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

Pf:

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ₁-types realized in K.
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type T(X), and let $\mathcal{A}_X \in \mathbb{K}$ have Σ_1 -type T(X).
- Therefore, T(X) is c.e. in every copy of A.
- Suppose T preserves \leq_{lex} in 2^{ω} .

< 日 > < 同 > < 三 > < 三 >

Thm[M.]: Given \mathbb{K} , exactly one of the following holds:

- There are countably many Σ₁-types realized in K, and no set can be coded in any A ∈ K (other than 0); relative to an oracle.

- The set of Σ_1 -types realized in \mathbb{K} is Σ_1^1 . So has size either countable or 2^{\aleph_0} .
- If it is countable, then only countably many sets are coded. Choose a cone above them.
- Otherwise, suppose \mathbb{K} realizes continuum many 0- Σ_1 -types (i.e. no variables).
- Let T be a perfect set of Σ_1 -types realized in \mathbb{K} .
- Assume T is computable. Otherwise, we work in the cone above T.
- For each X, consider the type T(X), and let $\mathcal{A}_X \in \mathbb{K}$ have Σ_1 -type T(X).
- Therefore, T(X) is c.e. in every copy of A.
- Suppose T preserves \leq_{lex} in 2^{ω} . Hence X is left c.e. in every copy of A.

Assume \mathcal{L} is relational.

Thm: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)

- **Thm**: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)
- **Pf:** Write the axiom as $\bigwedge_i \forall \bar{y} \varphi_i(\bar{y})$, where φ is Σ_1^c .

Thm: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)

Pf: Write the axiom as $\bigwedge_i \forall \bar{y} \varphi_i(\bar{y})$, where φ is Σ_1^c . We define \mathcal{A} as a limit of finite structures $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$, with $\mathcal{A}_i \in \mathbb{K}^{fin}$.

Thm: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)

Pf: Write the axiom as $\bigwedge_i \forall \bar{y} \varphi_i(\bar{y})$, where φ is Σ_1^c . We define \mathcal{A} as a limit of finite structures $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$, with $\mathcal{A}_i \in \mathbb{K}^{fin}$. For each *i* and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_i(\bar{c})$.

Thm: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)

Pf: Write the axiom as $\bigwedge_i \forall \bar{y} \varphi_i(\bar{y})$, where φ is Σ_1^c . We define \mathcal{A} as a limit of finite structures $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$, with $\mathcal{A}_i \in \mathbb{K}^{fin}$. For each *i* and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_i(\bar{c})$. At each stage *s*, define \mathcal{A}_s so that it satisfies one more requirement:

Thm: Let \mathbb{K} be Π_2^c axiomatizable, and \mathbb{K}^{fin} computable, then \mathbb{K} has a computable structure. (where \mathbb{K}^{fin} is the set of finite substructures of structures in \mathbb{K} .)

Pf: Write the axiom as $\bigwedge_i \forall \bar{y} \varphi_i(\bar{y})$, where φ is Σ_1^c . We define \mathcal{A} as a limit of finite structures $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$, with $\mathcal{A}_i \in \mathbb{K}^{fin}$. For each *i* and elements $\bar{c} \in \mathcal{A}$, we have the requirement $\mathcal{A} \models \varphi_i(\bar{c})$. At each stage *s*, define \mathcal{A}_s so that it satisfies one more requirement: If $\varphi_i(\bar{c}) \equiv \bigvee_j \exists (\bar{x}) \psi_{i,j}(\bar{c}, \bar{x})$, search for *j*, $\mathcal{A}_s \in \mathbb{K}^{fin}$ and $\bar{a} \in \mathcal{A}_s$ such that $\mathcal{A}_{s-1} \subseteq \mathcal{A}_s$ and $\mathcal{A}_s \models \psi_{i,j}(\bar{c}, \bar{a})$.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory.

Corollary: If \mathbb{K} is Π_2^c , and *t* is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing *t*.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^c , and *t* is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing *t*.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_1 -types.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let \mathcal{T} be a perfect set of Σ_1 -types. Assume it's computable, and that so is the axiom.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_1 -types. Assume it's computable, and that so is the axiom. Given X, use T(X) to build A_X with Σ_1 -type T(X).

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_1 -types. Assume it's computable, and that so is the axiom. Given X, use T(X) to build A_X with Σ_1 -type T(X). A_X weakly codes X.

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_1 -types. Assume it's computable, and that so is the axiom. Given X, use T(X) to build A_X with Σ_1 -type T(X). A_X weakly codes X.

Corollary: If \mathbb{K} is Π_2^c , and realizes 2^{\aleph_0} many Σ_1 -types, then for every Y, there is a Y'-computable structure, not Y-computable, relative to an oracle.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary: If \mathbb{K} is Π_2^c , and t is a computable Σ_1 -type in \mathbb{K} , then there is a computable structure in \mathbb{K} realizing t.

Pf: Add the Σ_1 -type to the theory. Use the Σ_1 to enumerate the finite substructures.

Corollary: If \mathbb{K} is Π_2^{in} , and realizes 2^{\aleph_0} many Σ_1 -types, then for every X, there is an X-computable structure which weakly codes X, relative to an oracle.

Pf: Let T be a perfect set of Σ_1 -types. Assume it's computable, and that so is the axiom. Given X, use T(X) to build A_X with Σ_1 -type T(X). A_X weakly codes X.

Corollary: If \mathbb{K} is Π_2^c , and realizes 2^{\aleph_0} many Σ_1 -types, then for every Y, there is a Y'-computable structure, not Y-computable, relative to an oracle.

Pf: For every Y, Y' computes an X which is not Y-left c.e.

イロト 不得 とうせい かほとう ほ

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

< A

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations:

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{ R_{\varphi} : \varphi \text{ a subformula of } T \}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{ R_{\varphi} : \varphi \text{ a subformula of } T \}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

The *Morleyization*, \hat{T} , of T consist of $R_T()$ together with all these axioms.

T is Πⁱⁿ₂.

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

- \hat{T} is Π_2^{in} .
- There is 1-1 correspondence between models of T and those of \hat{T} :

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

- \hat{T} is Π_2^{in} .
- There is 1-1 correspondence between models of T and those of \hat{T} :
- If $\hat{\mathcal{A}} \models \hat{\mathcal{T}}$, then $\hat{\mathcal{A}}$ computes \mathcal{A} with $\mathcal{A} \models \mathcal{T}$.

Let T be an $\mathcal{L}_{\omega_1,\omega}$ sentence.

For each sub-formula $\varphi(\bar{x})$ of T, consider a new relation symbol $R_{\varphi}(\bar{x})$ such that $R_{\varphi}(\bar{x}) \iff \varphi(\bar{x})$.

Let $\hat{\mathcal{L}} = \mathcal{L} \cup \{R_{\varphi} : \varphi \text{ a subformula of } T\}.$

Consider the axioms which define these new relations: For instance, if $\varphi(\bar{x})$ is of the form $(\forall y) \ \psi(\bar{x}, y)$ $(\forall \bar{x}) \ R_{(\forall y)\psi}(\bar{x}) \leftrightarrow (\forall y)R_{\psi}(\bar{x}, y).$

- \hat{T} is Π_2^{in} .
- There is 1-1 correspondence between models of \mathcal{T} and those of $\hat{\mathcal{T}}$:
- If $\hat{\mathcal{A}} \models \hat{\mathcal{T}}$, then $\hat{\mathcal{A}}$ computes \mathcal{A} with $\mathcal{A} \models \mathcal{T}$.
- Assuming T is Π_{α}^{c} , if $\mathcal{A} \models T$, then $\mathcal{A}^{(\alpha)}$ computes $\hat{\mathcal{A}}$ with $\hat{\mathcal{A}} \models \hat{T}$.

Let $\mathbb K$ be a Borel class of countable structures. Let α be an ordinal.
Thm[M. 09]: Either

• There are countably many Π^{in}_{α} -types realized in \mathbb{K} .

or

• There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (\mathcal{A}, \bar{a}) and (\mathcal{B}, \bar{b}) be structures. TFAE **(** \mathcal{A}, \bar{a}) $\leq_{\alpha} (\mathcal{B}, \bar{b})$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

 $\begin{array}{l} \bullet \quad (\mathcal{A},\bar{a}) \leq_{\alpha} (\mathcal{B},\bar{b}) \\ \bullet \quad \Pi^{in}_{\alpha} \text{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \text{-} tp_{\mathcal{B}}(\bar{b}) \ . \end{array}$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$
- $\ \mathbf{0} \ \ \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{B}}(\bar{b}) \ .$
- Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$
- $\ \mathbf{0} \ \ \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{B}}(\bar{b}) .$
- Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

Let
$$\mathsf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{a}) : \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}$$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash-Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $\bullet \ (\mathcal{A},\bar{a}) \leq_{\alpha} (\mathcal{B},\bar{b})$
- $\ \mathbf{0} \ \ \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{B}}(\bar{b}) \ .$
- Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

Let
$$\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{\mathfrak{a}}): \mathcal{A} \in \mathbb{K}, \bar{\mathfrak{a}} \in \mathcal{A}\}}{\equiv_{\alpha}} = \text{the set of } \Pi_{\alpha}\text{-types realized in } \mathbb{K}.$$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $\textcircled{1}(\mathcal{A},\bar{a})\leq_{\alpha}(\mathcal{B},\bar{b})$
- $\ \mathbf{0} \ \ \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{B}}(\bar{b}) \ .$
- Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

Let $\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A},\bar{a}):\mathcal{A}\in\mathbb{K},\bar{a}\in\mathcal{A}\}}{\equiv_{\alpha}} = \text{the set of } \Pi_{\alpha}\text{-types realized in } \mathbb{K}.$

 \equiv_{α} is Borel, so, by [Silver 80], **bf**_{α}(K) has size either countable or continuum.

For $\mathbb{K}{=}$ linear orderings

• $\mathbf{bf}_1(\mathbb{K})$ and $\mathbf{bf}_2(\mathbb{K})$ are countable.

For $\mathbb{K}=$ linear orderings

- $\mathbf{bf}_1(\mathbb{K})$ and $\mathbf{bf}_2(\mathbb{K})$ are countable.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for $\alpha \geq 3$.

For $\mathbb{K}=$ linear orderings

- $\mathbf{bf}_1(\mathbb{K})$ and $\mathbf{bf}_2(\mathbb{K})$ are countable.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for $\alpha \geq 3$.

For $\mathbb{K}=$ equivalence structures

- $\mathbf{bf}_1(\mathbb{K})$ is countable.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for $\alpha \geq 2$.

For $\mathbb{K}=$ linear orderings

- $\mathbf{bf}_1(\mathbb{K})$ and $\mathbf{bf}_2(\mathbb{K})$ are countable.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for $\alpha \geq 3$.

For $\mathbb{K}=$ equivalence structures

- $\mathbf{bf}_1(\mathbb{K})$ is countable.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for $\alpha \geq 2$.

For $\mathbb{K}=$ Boolean algebras

- **bf**_n(\mathbb{K}) is countable for all $n \in \omega$.
- $\mathbf{bf}_{\alpha}(\mathbb{K})$ has size 2^{\aleph_0} for all $\alpha \geq \omega$.

For \mathbb{K} = linear orderings

- $\mathbf{bf}_1(\mathbb{K})$ and $\mathbf{bf}_2(\mathbb{K})$ are countable.
- **bf**_{α}(K) has size 2^{\aleph_0} for $\alpha > 3$.

For \mathbb{K} = equivalence structures

- bf₁(𝔅) is countable.
- **bf**_{α}(K) has size 2^{\aleph_0} for $\alpha > 2$.

For \mathbb{K} = Boolean algebras

- **bf**_n(\mathbb{K}) is countable for all $n \in \omega$.
- **bf**_{α}(K) has size 2^{\aleph_0} for all $\alpha \geq \omega$.

For \mathbb{K} = Fields

• **bf**_{α}(K) has size 2^{\aleph_0} for all α .

Thm[M. 09]: Either

or

Thm[M. 09]: Either

• There are countably many Π^{in}_{α} -types realized in \mathbb{K} .

or

• There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;
- there is a countable complete set of Π_{α}^{in} -formulas;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;
- there is no countable complete set of Π^{in}_{α} -formulas;

Definition ([M])

 $\{P_0, P_1, ...\}$ is a *complete set* of Π_{α}^{in} formulas for \mathbb{K} if every $\Sigma_{\alpha+1}^{in} \mathcal{L}$ -formula is equivalent to a $\Sigma_1^{in} (\mathcal{L} \cup \{P_0, ...\})$ -formula.

Example: Π_1^c relations on Linear orderings

Let $\mathbb{K} = \text{linear orderings.}$ Let $Succ = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c \ (a < c < b)\}.$ Let $\mathbb{K} = \text{linear orderings.}$ Let $Succ = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c \ (a < c < b)\}.$

Example:

On linear orderins, $\{Succ\}$ is a complete set of Π_1^c relations.

Let $\mathbb{K} = \text{linear orderings.}$ Let $Succ = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c \ (a < c < b)\}.$

Example:

On linear orderins, $\{Succ\}$ is a complete set of Π_1^c relations.

Every Σ_2^c formula is equivalent in \mathbb{K} to a 0'-disjunction of Σ_1 finitary formulas in the language $\{\leq, Succ\}$.

Example: Π_2^c relations on Linear orderings

Let $D_1 = \{(a, b) \in \mathcal{A}^2 : a < b \And otin \mathsf{between}, \mathsf{Succ}(c_0, c_1)\}$

Example: Π_2^c relations on Linear orderings

Let $D_1 = \{(a, b) \in \mathcal{A}^2 : a < b \& \not\exists c_0, c_1 \text{ in between }, Succ(c_0, c_1)\}$ Let $D_n = \{(a, b) \in \mathcal{A}^2 : a < b \& \not\exists c_0, ..., c_n \text{ in between }, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$ Let $D_n^{+\infty} = \{a \in \mathcal{A}^2 : a < b \& \not\exists c_0, ..., c_n > a, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$

Example: Π_2^c relations on Linear orderings

Let $D_1 = \{(a, b) \in \mathcal{A}^2 : a < b \& \not\exists c_0, c_1 \text{ in between }, Succ(c_0, c_1)\}$ Let $D_n = \{(a, b) \in \mathcal{A}^2 : a < b \& \not\exists c_0, ..., c_n \text{ in between }, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$ Let $D_n^{+\infty} = \{a \in \mathcal{A}^2 : a < b \& \not\exists c_0, ..., c_n > a, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$

Example: The relations $\{Succ, D_1, D_2, D_3, ..., D_1^{+\infty}, ... D_1^{-\infty}...\}$ are a complete set of Π_2^c relations.

Let $D_1 = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c_0, c_1 \text{ in between }, Succ(c_0, c_1)\}$ Let $D_n = \{(a, b) \in \mathcal{A}^2 : a < b \& \exists c_0, ..., c_n \text{ in between }, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$ Let $D_n^{+\infty} = \{a \in \mathcal{A}^2 : a < b \& \exists c_0, ..., c_n > a, \bigwedge_{i < n} Succ(c_i, c_{i+1})\}$

Example:

The relations $\{Succ, D_1, D_2, D_3, ..., D_1^{+\infty}, ... D_1^{-\infty}...\}$ are a complete set of Π_2^c relations.

Every Σ_3^c formula is equivalent to a $0^{(2)}$ -disjunction of Σ_1 finitary formulas in the language $\{\leq, Succ, D_1, D_2, ...\}$.

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R_n are a complete sets of Π_n^c relations: $R_1 = (\mathcal{B}, At)$ $R_2 = (\mathcal{B}, At, Inf, Atless).$

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R_n are a complete sets of Π_n^c relations: $R_1 = (\mathcal{B}, At)$ $R_2 = (\mathcal{B}, At, Inf, Atless).$ $R_3 = (\mathcal{B}, At, Inf, Atless, atomic, 1-atom, atominf).$

Theorem ([Harris, M] rels. used by Downey-Jockusch, Thurber, Knight-Stob)

The sets R_n are a complete sets of Π_n^c relations: $R_1 = (\mathcal{B}, At)$ $R_2 = (\mathcal{B}, At, Inf, Atless).$ $R_3 = (\mathcal{B}, At, Inf, Atless, atomic, 1-atom, atominf).$ $R_4 = (\mathcal{B}, At, Inf, Atless, atomic, 1-atom, atominf, ~-inf, Int(\omega + \eta), infatomicless, 1-atomless, nomaxatomless).$ Furthermore, $\forall n$ there is a finite complete set of Π_n^c relations

The dichotomy

Let $\mathbb K$ be a Borel class of countable structures. Let α be an ordinal.

Thm[M. 09]: Either

or

Thm[M. 09]: Either

• There are countably many Π^{in}_{α} -types realized in \mathbb{K} .

or

• There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .

Thm[M. 09]: Either

- There are countably many Π_{α}^{in} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;
- there is a countable complete set of Π^{in}_{α} -formulas;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;
- there is no countable complete set of Π^{in}_{α} -formulas;

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;
- there is a countable complete set of Π^{in}_{α} -formulas;
- no non-trivial set can be Σ⁰_α-encoded in any structure in K;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;
- there is no countable complete set of Π^{in}_{α} -formulas;
- any set can be weakly- Σ^0_{α} -encoded in some structure in \mathbb{K} ;

relative to some oracle.

Coding in the α th jump.

Def: A set *D* is Σ^0_{α} coded in *A* if *D* is Σ^0_{α} in every copy of *A*.
Def: A set *D* is Σ^0_{α} coded in *A* if *D* is Σ^0_{α} in every copy of *A*.

Thm: [Ask, Knight] TFAE

- is Σ^0_{α} coded in \mathcal{A} ;
- D is enumeration-reducible to Σ^c_α-tp_A(ā) for some ā ∈ A.

Def: A set *D* is Σ^0_{α} coded in *A* if *D* is Σ^0_{α} in every copy of *A*.

Thm: [Ask, Knight] TFAE

- is Σ^0_{α} coded in \mathcal{A} ;
- D is enumeration-reducible to Σ^c_α-tp_A(ā) for some ā ∈ A.

$$\begin{split} \mathbf{bf}_{\alpha}(\mathbb{K}) \text{ countable } \implies \text{ only countably many sets can be } \Sigma^{0}_{\alpha}\text{-coded} \\ & \text{ by some struc. in } \mathbb{K}. \end{split}$$

Def: A set *D* is Σ^0_{α} coded in *A* if *D* is Σ^0_{α} in every copy of *A*.

Thm: [Ask, Knight] TFAE

- is Σ^0_{α} coded in \mathcal{A} ;
- D is enumeration-reducible to Σ^c_α-tp_A(ā) for some ā ∈ A.

$$\begin{split} \mathbf{bf}_{\alpha}(\mathbb{K}) \text{ countable } \implies \text{ only countably many sets can be } \Sigma^{0}_{\alpha}\text{-coded} \\ & \text{ by some struc. in } \mathbb{K}. \end{split}$$

Thus, there is an oracle, relative to which, no non-trivial set can be Σ^0_{lpha} -encoded in any structure in $\mathbb K$

Def: A set *D* is Σ^0_{α} coded in *A* if *D* is Σ^0_{α} in every copy of *A*.

Thm: [Ask, Knight] TFAE

- is Σ^0_{α} coded in \mathcal{A} ;
- D is enumeration-reducible to Σ^c_α-tp_A(ā) for some ā ∈ A.

 $\begin{aligned} \mathbf{bf}_{\alpha}(\mathbb{K}) \text{ countable } \implies \text{ only countably many sets can be } \Sigma^{0}_{\alpha}\text{-coded} \\ & \text{ by some struc. in } \mathbb{K}. \end{aligned}$

Thus, there is an oracle, relative to which, no non-trivial set can be Σ^0_{α} -encoded in any structure in $\mathbb K$

Def: A set *D* is weakly Σ_{α}^{0} coded in *A* if *D* is left- Σ_{α}^{0} in every copy of *A*.

Let $\mathbb K$ be a Borel class of countable structures. Let α be an ordinal.

Thm[M. 09]: Either

- There are countably many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish countably many struct. in \mathbb{K} ;
- there is a countable complete set of Π^{in}_{α} -formulas;
- no non-trivial set can be Σ^0_{α} -encoded in any structure in \mathbb{K} ;

or

- There are continuum many Π^{in}_{α} -types realized in \mathbb{K} .
- using α jumps we can distinguish continuum many struct. in \mathbb{K} ;
- there is no countable complete set of Π^{in}_{α} -formulas;
- any set can be weakly- Σ^0_{α} -encoded in some structure in \mathbb{K} ;

relative to some oracle.

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture. 🛛 ⇐
- T satisfies hyperarithmetic-is-recursive on a cone. \Rightarrow
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Theorem

If $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$ for some α , then, relative to every X on a cone, \mathbb{K} has an X-hyperarithemetic model without an X-computable copy.

 $\begin{array}{l} \text{For each } \beta < \alpha \text{ and each } \Pi_{\beta}^{\textit{in}} \text{-type } p \in \mathbf{bf}_{\beta}(\mathbb{K}), \\ \quad \text{let } R_{p} \text{ be the relation such that for } \mathcal{A} \in \mathbb{K}, \end{array}$

 $\mathcal{A}\models \mathsf{R}_{\mathsf{p}}(ar{x})\iff \mathcal{A}\models arphi(ar{x}), ext{ for every } arphi(ar{x})\in \mathsf{p}$

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, let R_{p} be the relation such that for $\mathcal{A} \in \mathbb{K}$,

 $\mathcal{A}\models R_p(\bar{x})\iff \mathcal{A}\models \varphi(\bar{x}), \text{ for every } \varphi(\bar{x})\in p\iff p\subseteq \Pi^{in}_{\alpha}\text{-tp}_{\mathcal{A}}(\bar{a}).$

For each
$$\beta < \alpha$$
 and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$,
let R_p be the relation such that for $\mathcal{A} \in \mathbb{K}$,
 $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{a})$.

Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}.$

 $\mathsf{Recall}: \ \mathsf{For} \ \beta < \alpha \ \mathsf{and} \ p \in \mathsf{bf}_\beta(\mathbb{K}), \ \mathcal{A} \models \mathsf{R}_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \ \mathsf{for} \ \mathsf{every} \ \varphi(\bar{x}) \in p.$

Recall: For $\beta < \alpha$ and $p \in \mathbf{bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$.

 $\mathsf{Recall}: \ \mathsf{For} \ \beta < \alpha \ \mathsf{and} \ p \in \mathsf{bf}_\beta(\mathbb{K}), \ \mathcal{A} \models \mathsf{R}_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \ \mathsf{for \ every} \ \varphi(\bar{x}) \in p.$

Lemma: For $\beta < \alpha$, every Π_{β}^{in} formula is equivalent to a Σ_1^{in} -over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

 $\mathsf{Recall}: \ \mathsf{For} \ \beta < \alpha \ \mathsf{and} \ p \in \mathsf{bf}_\beta(\mathbb{K}), \ \mathcal{A} \models \mathsf{R}_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \ \mathsf{for} \ \mathsf{every} \ \varphi(\bar{x}) \in p.$

Lemma: For $\beta < \alpha$, every Π_{β}^{in} formula is equivalent to a Σ_1^{in} -over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_p$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

 $\mbox{Recall: For } \beta < \alpha \mbox{ and } p \in {\bf bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models \mathcal{R}_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \mbox{ for every } \varphi(\bar{x}) \in p.$

Lemma: For $\beta < \alpha$, every Π_{β}^{in} formula is equivalent to a Σ_{1}^{in} -over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

Lemma: For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} ,

 $\mbox{Recall: For } \beta < \alpha \mbox{ and } p \in {\bf bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \mbox{ for every } \varphi(\bar{x}) \in p.$

Lemma: For $\beta < \alpha$, every Π_{β}^{in} formula is equivalent to a Σ_{1}^{in} -over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

Lemma: For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} , and hence is Π_1^{in} -over L_{β} .

 $\mbox{Recall: For } \beta < \alpha \mbox{ and } p \in {\bf bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models \mathcal{R}_{p}(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \mbox{ for every } \varphi(\bar{x}) \in p.$

Lemma: For $\beta < \alpha$, every Π_{β}^{in} formula is equivalent to a Σ_{1}^{in} -over- \mathcal{L}_{β} formula. Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

Lemma: For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} , and hence is Π_1^{in} -over L_{β} . **Pf:** For each $q \in \mathbf{bf}_{\beta}(\mathbb{K})$ with $p \not\subseteq q$, pick $\varphi_q \in p \setminus q$. Claim: $R_p(\bar{x}) \iff \bigwedge_{q \in \mathbf{bf}_{\beta}(\mathbb{K}), p \not\subseteq q} \varphi_q$. $\mbox{Recall: For } \beta < \alpha \mbox{ and } p \in {\bf bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models \mathcal{R}_{p}(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \mbox{ for every } \varphi(\bar{x}) \in p.$

Lemma: For
$$\beta < \alpha$$
,
every Π_{β}^{in} formula is equivalent to a Σ_{1}^{in} -over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

Lemma: For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} , and hence is Π_1^{in} -over L_{β} . **Pf:** For each $q \in \mathbf{bf}_{\beta}(\mathbb{K})$ with $p \not\subseteq q$, pick $\varphi_q \in p \setminus q$. Claim: $R_p(\bar{x}) \iff \bigwedge_{q \in \mathbf{bf}_{\beta}(\mathbb{K}), p \not\subseteq q} \varphi_q$.

For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, let ψ_p the the Π_1^{in} -over L_{β} formula defining it.

 $\mbox{Recall: For } \beta < \alpha \mbox{ and } p \in {\bf bf}_{\beta}(\mathbb{K}), \ \mathcal{A} \models \mathcal{R}_{p}(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \mbox{ for every } \varphi(\bar{x}) \in p.$

Lemma: For
$$\beta < \alpha$$
,
every Π_{β}^{in} formula is equivalent to a Σ_{1}^{in} -over- \mathcal{L}_{β} formula.
Pf: $\varphi \equiv \bigvee_{p \in \mathbf{bf}_{\beta}(\mathbb{K}), \varphi \in p} R_{p}$.

Corollary: Every Σ_{β} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{β} -formula.

Lemma: For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} , and hence is Π_1^{in} -over L_{β} . **Pf:** For each $q \in \mathbf{bf}_{\beta}(\mathbb{K})$ with $p \not\subseteq q$, pick $\varphi_q \in p \setminus q$. Claim: $R_p(\bar{x}) \iff \bigwedge_{q \in \mathbf{bf}_{\beta}(\mathbb{K}), p \not\subseteq q} \varphi_q$.

For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, let ψ_p the the Π_1^{in} -over L_{β} formula defining it. Let T_{α} be the set of $\Pi_2^{in} \mathcal{L}_{\alpha}$ -sentences " $(\forall \bar{x}) R_p(\bar{x}) \iff \psi_p(\bar{x})$ " for $p \in \mathbf{bf}_{\alpha}(\mathbb{K})$.

Recall:

• α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.

<ロ> <同> <同> < 同> < 同>

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$

< 日 > < 同 > < 三 > < 三 >

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in bf_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.

18 D

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in bf_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} .

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in bf_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.

- *α* is the least with |bf_α(K)| = 2^{ℵ0}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.
- $T_{\alpha} = \{ (\forall \bar{x}) \ R_{\rho}(\bar{x}) \iff \psi_{\rho}(\bar{x}) : \rho \in \mathbf{bf}_{\alpha}(\mathbb{K}) \}.$

Recall:

- *α* is the least with |bf_α(𝔅)| = 2^{ℵ₀}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in bf_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.
- $T_{\alpha} = \{ (\forall \bar{x}) \ R_{\rho}(\bar{x}) \iff \psi_{\rho}(\bar{x}) : \rho \in \mathbf{bf}_{\alpha}(\mathbb{K}) \}.$

Cor: Every Σ_{α} -type is equivalent to a finitary Σ_1 -type of \mathcal{L}_{α} .

Recall:

- *α* is the least with |bf_α(𝔅)| = 2^{ℵ₀}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in bf_{\beta}(\mathbb{K}) \}.$
- Every Σ_{α} formula is equivalent to a Σ_1^{in} -over \mathcal{L}_{α} -formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.
- $T_{\alpha} = \{ (\forall \bar{x}) \ R_{\rho}(\bar{x}) \iff \psi_{\rho}(\bar{x}) : \rho \in \mathbf{bf}_{\alpha}(\mathbb{K}) \}.$

Cor: Every Σ_{α} -type is equivalent to a finitary Σ_1 -type of \mathcal{L}_{α} .

Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.

Recall:

- *α* is the least with |bf_α(𝔅)| = 2^{ℵ₀}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- Every Σ_α formula is equivalent to a Σ₁ⁱⁿ-over L_α-formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.
- $T_{\alpha} = \{ (\forall \bar{x}) \ R_{\rho}(\bar{x}) \iff \psi_{\rho}(\bar{x}) : \rho \in \mathbf{bf}_{\alpha}(\mathbb{K}) \}.$

Cor: Every Σ_{α} -type is equivalent to a finitary Σ_1 -type of \mathcal{L}_{α} .

- Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.
- So, \hat{T}_{α} is Π_2^{in} , and there are 2^{\aleph_0} many Σ_1 -types over \hat{T} .

Recall:

- *α* is the least with |bf_α(K)| = 2^{ℵ0}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- Every Σ_α formula is equivalent to a Σ₁ⁱⁿ-over L_α-formula.
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_1^{in} -over L_{β} . ψ_p is that formula.
- $T_{\alpha} = \{ (\forall \bar{x}) \ R_{\rho}(\bar{x}) \iff \psi_{\rho}(\bar{x}) : \rho \in \mathbf{bf}_{\alpha}(\mathbb{K}) \}.$

Cor: Every Σ_{α} -type is equivalent to a finitary Σ_1 -type of \mathcal{L}_{α} .

Let \hat{T}_{α} be $T_{\alpha} \cup \hat{T}$, where \hat{T} is the Morleyization of T.

So, \hat{T}_{α} is Π_2^{in} , and there are 2^{\aleph_0} many Σ_1 -types over \hat{T} .

Then, for every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , without a Y-computable copy,

Recall:

• α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.

< 日 > < 同 > < 三 > < 三 >

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$

(日)

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T

I ≥

- *α* is the least with |bf_α(𝔅)| = 2^{ℵ₀}.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_p is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Let γ be the maximum between α and the complexity of T.

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_{p} is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Let γ be the maximum between α and the complexity of T.

So, if
$$\mathcal{A}\models \mathcal{T}$$
, $\mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{lpha}$ such that $\hat{\mathcal{A}}_{lpha}\models \hat{\mathcal{T}}_{lpha}.$

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_{p} is Π_{β}^{in} .
- $\hat{T}_{\alpha} = T_{\alpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Let γ be the maximum between α and the complexity of T.

So, if
$$\mathcal{A}\models \mathcal{T}$$
, $\mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{lpha}$ such that $\hat{\mathcal{A}}_{lpha}\models \hat{\mathcal{T}}_{lpha}.$

Given every X on the cone, let $Y = X^{(\gamma)}$, then
(2) implies (1)

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_{p} is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Let γ be the maximum between α and the complexity of T.

So, if
$$\mathcal{A}\models \mathcal{T}$$
, $\mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{lpha}$ such that $\hat{\mathcal{A}}_{lpha}\models \hat{\mathcal{T}}_{lpha}.$

Given every X on the cone, let $Y = X^{(\gamma)}$, then there is a $X^{(\gamma+1)}$ -computable model $\hat{\mathcal{A}}_{\alpha} \models \hat{\mathcal{T}}_{\alpha}$, without a $X^{(\gamma)}$ computable copy.

(2) implies (1)

Recall:

- α is the least with $|\mathbf{bf}_{\alpha}(\mathbb{K})| = 2^{\aleph_0}$.
- $\mathcal{L}_{\alpha} = \mathcal{L} \cup \{ R_{p} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K}) \}.$
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, R_{p} is Π_{β}^{in} .
- $\hat{T}_{lpha} = T_{lpha} \cup \hat{T}$ where \hat{T} is the Morleyization of T
- For every Y on a cone, there is a Y'-computable model of \hat{T}_{α} , not Y-computable.

Let γ be the maximum between α and the complexity of T.

So, if
$$\mathcal{A}\models \mathcal{T}$$
, $\mathcal{A}^{(\gamma)}$ computes $\hat{\mathcal{A}}_{lpha}$ such that $\hat{\mathcal{A}}_{lpha}\models \hat{\mathcal{T}}_{lpha}.$

Given every X on the cone, let $Y = X^{(\gamma)}$, then there is a $X^{(\gamma+1)}$ -computable model $\hat{\mathcal{A}}_{\alpha} \models \hat{\mathcal{T}}_{\alpha}$, without a $X^{(\gamma)}$ computable copy.

So, \mathcal{A} does not have an X-computable copy.

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

 $\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$

Def: Sp $(\mathcal{A}) = \{X \in 2^{\omega} : X \text{ computes a copy of } \mathcal{A}\}.$

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Recall: ω_1^{χ} is the least ordinal without an X-computable copy.

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Recall: ω_1^X is the least ordinal without an *X*-computable copy. **Recall:** If *Z* is hyperarithmetic in *X*, then $\omega_1^Z < \omega_1^X$.

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Recall: ω_1^X is the least ordinal without an *X*-computable copy. **Recall:** If *Z* is hyperarithmetic in *X*, then $\omega_1^Z < \omega_1^X$.

Ex: $Sp(\omega_1^{CK}) = \{X : \omega_1^X > \omega_1^{CK}\}.$

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Recall: ω_1^X is the least ordinal without an *X*-computable copy. **Recall:** If *Z* is hyperarithmetic in *X*, then $\omega_1^Z \leq \omega_1^X$.

Ex:
$$Sp(\omega_1^{CK}) = \{X : \omega_1^X > \omega_1^{CK}\}.$$

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then, there is $Y \in 2^{\omega}$ such that, for every $C \subseteq 2^{\mathbb{N}}$, the following are equivalent:

•
$$C = Sp^{Y}(\mathcal{A})$$
 for some $\mathcal{A} \models T_{i}$

•
$$C = \{X : \omega_1^{X \oplus Y} \ge \alpha\}$$
 for some $\alpha < \omega_1$.

Def: $Sp^{Y}(\mathcal{A}) = \{X \in 2^{\omega} : X \oplus Y \text{ computes a copy of } \mathcal{A}\}.$

Recall: ω_1^X is the least ordinal without an *X*-computable copy. **Recall:** If *Z* is hyperarithmetic in *X*, then $\omega_1^Z \leq \omega_1^X$.

Ex:
$$Sp(\omega_1^{CK}) = \{X : \omega_1^X > \omega_1^{CK}\}.$$

Theorem ([M.] (ZFC+PD))

If T is a counterexample to Vaught's conjecture, then, there is $Y \in 2^{\omega}$ such that, for every $C \subseteq 2^{\mathbb{N}}$, the following are equivalent:

•
$$C = Sp^{Y}(\mathcal{A})$$
 for some $\mathcal{A} \models T$,

•
$$C = \{X : \omega_1^{X \oplus Y} \ge \alpha\}$$
 for some $\alpha < \omega_1$.

Corollary: If T is a counterexample to Vaught's conjecture, then T satisfies hyperarithmetic-is-recursive on a cone. Suppose you have a proof of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \prod_2^c - Th(\mathcal{A})$." Suppose you have a proof of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \Pi_2^c - Th(\mathcal{A})$." in a way that relativizes Suppose you have a proof of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \prod_2^c - Th(\mathcal{A})$." in a way that relativizes

or of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_2^c - Th(\mathcal{A})$ and no computable copy." in a way that relativizes Suppose you have a proof of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \prod_{2}^{c} Th(\mathcal{A})$." in a way that relativizes

or of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_2^c - Th(\mathcal{A})$ and no computable copy." in a way that relativizes

then you have a proof of Vaught's Conjecture.

Suppose you have a proof of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists continuum many \mathcal{B} with $\mathcal{B} \models \prod_2^c - Th(\mathcal{A})$." in a way that relativizes

or of: "If you have a structure \mathcal{A} with $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$, there exists a hypeartithmetic \mathcal{B} with $\mathcal{B} \models \Pi_2^c \text{-} Th(\mathcal{A})$ and no computable copy." in a way that relativizes

then you have a proof of Vaught's Conjecture.

Question: What can we say about the structures with $Sp(A) = Sp(\omega_1^{CK})$?

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are: • ω_1^{CK}

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are: • ω_1^{CK}

• any ordinal α , $\omega_1^{CK} \leq \alpha < \omega_2^{CK}$,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

- ω₁^{CK}
- any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

- ω₁^{CK}
- any ordinal α , $\omega_1^{\mathit{CK}} \leq \alpha < \omega_2^{\mathit{CK}}$,
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

• any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$

•
$$\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$$
,

- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

- any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

ω₁^{CK}

- any ordinal α , $\omega_1^{\mathit{CK}} \leq \alpha < \omega_2^{\mathit{CK}}$,
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

• ...

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

...

- any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

- any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

For instance:

...

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

- any ordinal $\alpha \text{, } \omega_1^{\textit{CK}} \leq \alpha < \omega_2^{\textit{CK}} \text{,}$
- $\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$,
- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

• ...

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{CK} \models \varphi$.

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

• any ordinal α , $\omega_1^{\mathit{CK}} \leq \alpha < \omega_2^{\mathit{CK}}$,

•
$$\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$$
,

- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

• ...

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{CK} \models \varphi$. It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$.

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

• any ordinal α , $\omega_1^{\mathit{CK}} \leq \alpha < \omega_2^{\mathit{CK}}$,

•
$$\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$$
,

- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

• ...

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{CK} \models \varphi$. It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$. Since $\omega_{1}^{CK} = \omega^{\alpha} \cdot \omega_{1}^{CK}$,

The structures \mathcal{A} we know that have $Sp(\mathcal{A}) = Sp(\omega_1^{CK})$ are:

• any ordinal α , $\omega_1^{\mathit{CK}} \leq \alpha < \omega_2^{\mathit{CK}}$,

•
$$\omega_2^{\mathit{CK}} \cdot (1 + \mathbb{Q})$$
,

- the interval algebra of any of the linear ordering above,
- the tree of descending sequence of any of the linear ordering above,
- the *p*-group given by the tree above,

• ...

In all these examples, we know that

if $\mathcal{A} \in \mathbb{K}$, and \mathbb{K} is axiomatizable by a computable $L_{\omega_1,\omega}$ sentence,

then \mathbb{K} has 2^{\aleph_0} many structures.

For instance: Suppose φ is Π_{α}^{c} and $\omega_{1}^{CK} \models \varphi$. It is known that for any linear orderings $\mathcal{L}_{1}, \mathcal{L}_{2}, \, \omega^{\alpha} \cdot \mathcal{L}_{1} \equiv_{\alpha} \omega^{\alpha} \cdot \mathcal{L}_{2}$. Since $\omega_{1}^{CK} = \omega^{\alpha} \cdot \omega_{1}^{CK}$, for any \mathcal{L} we have that $\omega^{\alpha} \cdot \mathcal{L} \models \varphi$.

and ${\mathcal H}$ has no hyperarithmetic descending sequence.

and ${\mathcal H}$ has no hyperarithmetic descending sequence.

Overspill Argument:

If
$$P \subseteq \mathcal{H}$$
 is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \smallsetminus \omega_1^{CK}$

and $\mathcal H$ has no hyperarithmetic descending sequence.

Overspill Argument:

If $P \subseteq \mathcal{H}$ is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \smallsetminus \omega_1^{CK}$. **Pf:** Because ω_1^{CK} is Π_1^1 , and if $P = \omega_1^{CK}$, it would be Δ_1^1 .

and $\mathcal H$ has no hyperarithmetic descending sequence.

Overspill Argument:

If $P \subseteq \mathcal{H}$ is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \setminus \omega_1^{CK}$. **Pf:** Because ω_1^{CK} is Π_1^1 , and if $P = \omega_1^{CK}$, it would be Δ_1^1 . We could then find a hyp descending sequence in $\mathcal{H} \setminus \omega_1^{CK}$.

and $\mathcal H$ has no hyperarithmetic descending sequence.

Overspill Argument:

If $P \subseteq \mathcal{H}$ is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \setminus \omega_1^{CK}$. **Pf:** Because ω_1^{CK} is Π_1^1 , and if $P = \omega_1^{CK}$, it would be Δ_1^1 . We could then find a hyp descending sequence in $\mathcal{H} \setminus \omega_1^{CK}$.

A variation: If $\omega_1^X = \omega_1^{CK}$, and $P \subseteq \mathcal{H}$ is $\Sigma_1^1(X)$, the same holds.

and $\mathcal H$ has no hyperarithmetic descending sequence.

Overspill Argument:

If $P \subseteq \mathcal{H}$ is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \setminus \omega_1^{CK}$. **Pf:** Because ω_1^{CK} is Π_1^1 , and if $P = \omega_1^{CK}$, it would be Δ_1^1 . We could then find a hyp descending sequence in $\mathcal{H} \setminus \omega_1^{CK}$.

A variation: If $\omega_1^X = \omega_1^{CK}$, and $P \subseteq \mathcal{H}$ is $\Sigma_1^1(X)$, the same holds.

Relativization: There is a computable operator $X \mapsto \mathcal{H}^X$, such that \mathcal{H}^X is the Harrison linear ordering relative to X.

and $\mathcal H$ has no hyperarithmetic descending sequence.

Overspill Argument:

If $P \subseteq \mathcal{H}$ is Σ_1^1 and $\omega_1^{CK} \subseteq P$, there is $\alpha^* \in P \setminus \omega_1^{CK}$. **Pf:** Because ω_1^{CK} is Π_1^1 , and if $P = \omega_1^{CK}$, it would be Δ_1^1 . We could then find a hyp descending sequence in $\mathcal{H} \setminus \omega_1^{CK}$.

A variation: If $\omega_1^X = \omega_1^{CK}$, and $P \subseteq \mathcal{H}$ is $\Sigma_1^1(X)$, the same holds.

Relativization: There is a computable operator $X \mapsto \mathcal{H}^X$, such that \mathcal{H}^X is the Harrison linear ordering relative to X. i.e. $\mathcal{H}^X \cong \omega_1^X + \omega_1^X \cdot \mathbb{Q}$ has no X-hyp descending sequences.

・ロ・ ・ 四・ ・ ヨ・ ・
Let $\mathbb{K} = \{\mathbb{Z}^{\alpha} \cdot \mathbb{Q} : \alpha < \omega_1\}\$ as linear orders.

< ロ > < 同 > < 回 > <

Let $\mathbb{K} = \{\mathbb{Z}^{\alpha} \cdot \mathbb{Q} : \alpha < \omega_1\}$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

< ロ > < 同 > < 回 > <

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;\text{as linear orders.}\;$ Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

 $((\supseteq): \text{ if } \alpha < \omega_1^X \text{, then } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}.$

< ∃ >

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

 $((\supseteq): \text{ if } \alpha < \omega_1^X \text{, then } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}. \text{ For } \alpha = \omega_1^X \text{, } \mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}.$

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$.

Let $\mathbb{K} = \{\mathbb{Z}^{lpha} \cdot \mathbb{Q} : \alpha < \omega_1\}$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

 $((\supseteq): \text{ if } \alpha < \omega_1^X, \text{ then } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}.$ For $\alpha = \omega_1^X, \mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}.$ $(\subseteq): \text{ if } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}, \text{ it computes } \mathbb{Z}^{\beta} \text{ for every } \beta < \alpha.$ But $X \text{ computes no copy of } \mathbb{Z}^{\omega_1^X}, \text{ because}$

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

 $\begin{array}{l} ((\supseteq): \text{ if } \alpha < \omega_1^X, \text{ then } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}. \text{ For } \alpha = \omega_1^X, \mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}. \\ (\subseteq): \text{ if } X \text{ computes } \mathbb{Z}^{\alpha} \cdot \mathbb{Q}, \text{ it computes } \mathbb{Z}^{\beta} \text{ for every } \beta < \alpha. \text{ But } X \text{ computes no copy } \\ \text{of } \mathbb{Z}^{\omega_1^X}, \text{ because the tree } \{p: (2^{<n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\} \text{ is WF and has rank } \geq \beta. \end{array}$

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$. But X computes no copy of $\mathbb{Z}^{\omega_1^X}$, because the tree $\{p: (2^{< n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\}$ is WF and has rank $\geq \beta$.) and hence

$${Sp(\mathcal{A}) : \mathcal{A} \in \mathbb{K}} = {\{X : \omega_1^X \ge \alpha\} : \alpha < \omega_1\}.$$

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$. But X computes no copy of $\mathbb{Z}^{\omega_1^X}$, because the tree $\{p: (2^{< n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\}$ is WF and has rank $\geq \beta$.) and hence

$${Sp(\mathcal{A}) : \mathcal{A} \in \mathbb{K}} = {\{X : \omega_1^X \ge \alpha\} : \alpha < \omega_1\}.$$

Obs:

• \mathbb{K} is Σ_1^1 .

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$. But X computes no copy of $\mathbb{Z}^{\omega_1^X}$, because the tree $\{p: (2^{< n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\}$ is WF and has rank $\geq \beta$.) and hence

$${Sp(\mathcal{A}) : \mathcal{A} \in \mathbb{K}} = {\{X : \omega_1^X \ge \alpha\} : \alpha < \omega_1\}.$$

Obs:

• \mathbb{K} is Σ_1^1 . $\mathcal{L} \in \mathbb{K}$ if \mathbb{Q} embeds in \mathcal{L} and $\forall a, b \in \mathcal{L}$ there is automorphism mapping $a \mapsto b$.

Let $\mathbb{K}=\{\mathbb{Z}^{\alpha}\cdot\mathbb{Q}:\alpha<\omega_1\}\;\;$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$. But X computes no copy of $\mathbb{Z}^{\omega_1^X}$, because the tree $\{p: (2^{< n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\}$ is WF and has rank $\geq \beta$.) and hence

$${Sp(\mathcal{A}) : \mathcal{A} \in \mathbb{K}} = {\{X : \omega_1^X \ge \alpha\} : \alpha < \omega_1\}.$$

Obs:

K is Σ¹₁.
L ∈ K if Q embeds in L and ∀a, b ∈ L there is automorphism mapping a → b.
K is not L_{ω1,ω} axiomatizable.

Let $\mathbb{K} = \{\mathbb{Z}^{lpha} \cdot \mathbb{Q} : \alpha < \omega_1\}$ as linear orders. Then

$$Sp(\mathbb{Z}^{\alpha} \cdot \mathbb{Q}) = \{X : \omega_1^X \ge \alpha\},\$$

((\supseteq): if $\alpha < \omega_1^X$, then X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$. For $\alpha = \omega_1^X$, $\mathbb{Z}^{\alpha} \cdot \mathbb{Q} = \mathbb{Z}^{\alpha + \alpha \cdot \mathbb{Q}} = \mathbb{Z}^{\mathcal{H}^X}$. (\subseteq): if X computes $\mathbb{Z}^{\alpha} \cdot \mathbb{Q}$, it computes \mathbb{Z}^{β} for every $\beta < \alpha$. But X computes no copy of $\mathbb{Z}^{\omega_1^X}$, because the tree $\{p: (2^{< n}, \leq_{lex}) \to \mathbb{Z}^{\beta}\}$ is WF and has rank $\geq \beta$.) and hence

$${Sp(\mathcal{A}) : \mathcal{A} \in \mathbb{K}} = {\{X : \omega_1^X \ge \alpha\} : \alpha < \omega_1\}.$$

Obs:

• \mathbb{K} is Σ_1^1 . $\mathcal{L} \in \mathbb{K}$ if \mathbb{Q} embeds in \mathcal{L} and $\forall a, b \in \mathcal{L}$ there is automorphism mapping $a \mapsto b$.

• \mathbb{K} is not $L_{\omega_1,\omega}$ axiomatizable.

Again, for $\alpha < \omega_1^{CK}$, for any two lin.ord \mathcal{L}_1 , \mathcal{L}_2 , $\mathbb{Z}^{\alpha} \cdot \mathcal{L}_1 \equiv_{\alpha} \mathbb{Z}^{\alpha} \cdot \mathcal{L}_2$.

Thm [Sacks]: α is admissible $\iff \alpha = \omega_1^X$ for some X.

Thm [Sacks]: α is admissible $\iff \alpha = \omega_1^X$ for some X.

Thm [Sacks]: α is admissible $\iff \alpha = \omega_1^X$ for some X.

Gandy's Basis Theorem: If φ is Σ_1^1 , and $\exists X \varphi(X)$, then there is such an X with $\omega_1^X = \omega_1^{CK}$.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf: Let $g: \omega \to \omega$ be a generic permutation of ω .

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G$

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X}$

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X}$

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Let $f: \mathcal{H}^X \to \mathcal{H}^Y$ be an isomorphism.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Let $f: \mathcal{H}^X \to \mathcal{H}^Y$ be an isomorphism. It's a permutation of ω .

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Let $f: \mathcal{H}^X \to \mathcal{H}^Y$ be an isomorphism. It's a permutation of ω . If g is generic enough, so is $f \circ g$.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Let $f: \mathcal{H}^X \to \mathcal{H}^Y$ be an isomorphism. It's a permutation of ω . If g is generic enough, so is $f \circ g$. Notice that G is be the pull back of \mathcal{H}^Y through $f \circ g$.

Lemma: If $\omega_1^X = \omega_1^Y$, then there is G such that

$$\omega_1^{\mathbf{X}} = \omega_1^{\mathbf{X} \oplus \mathbf{G}} = \omega_1^{\mathbf{G}} = \omega_1^{\mathbf{G} \oplus \mathbf{Y}} = \omega_1^{\mathbf{Y}}.$$

Pf:

Let $g: \omega \to \omega$ be a generic permutation of ω . Let G be the pull back of \mathcal{H}^X through g. Then $G \cong \omega_1^X \oplus \omega_1^X \cdot \mathbb{Q}$. Conclude that $\omega_1^X \le \omega_1^G \le \omega_1^{G \oplus X} \le \omega_1^{g \oplus X} \le \omega_1^X$.

Let $f: \mathcal{H}^X \to \mathcal{H}^Y$ be an isomorphism. It's a permutation of ω . If g is generic enough, so is $f \circ g$. Notice that G is be the pull back of \mathcal{H}^Y through $f \circ g$. Conclude that $\omega_1^Y = \omega_1^G = \omega_1^{G \oplus Y}$.

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$
- $\square \quad \square_{\alpha}^{in} tp_{\mathcal{A}}(\bar{a}) \subseteq \prod_{\alpha}^{in} tp_{\mathcal{B}}(\bar{b}) .$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

- $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$
- $\ \mathbf{0} \ \ \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{A}}(\bar{a}) \subseteq \Pi^{in}_{\alpha} \mathsf{-} tp_{\mathcal{B}}(\bar{b}) .$
- Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

$$\bullet (\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$$

• Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^0_{α} -hard.

Let
$$\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{a}) : \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}$$

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

$$(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$$

• Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^{0}_{α} -hard.

Let
$$\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{\mathfrak{a}}): \mathcal{A} \in \mathbb{K}, \bar{\mathfrak{a}} \in \mathcal{A}\}}{\equiv_{\alpha}} = \mathsf{the set of } \Pi_{\alpha}\mathsf{-types realized in } \mathbb{K}.$$
Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

$$\bullet (\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$$

• Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^0_{α} -hard.

Let $\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{a}): \mathcal{A} \in \mathbb{K}, \bar{a} \in \mathcal{A}\}}{\equiv_{\alpha}}$ = the set of Π_{α} -types realized in \mathbb{K} .

 \equiv_{α} is Borel, so, by [Silver 80], **bf**_{α}(K) has size either countable or continuum.

Back and forth relations

If so we say that (\mathcal{A}, \bar{a}) is α -back-and-forth below (\mathcal{B}, \bar{b}) : $(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b}) \iff \forall \beta < \alpha \forall \bar{d} \in \mathcal{B}^{<\omega} \exists \bar{c} \in \mathcal{A}^{<\omega}$ $(\mathcal{A}, \bar{a}, \bar{c}) \geq_{\beta} (\mathcal{B}, \bar{b}, \bar{d}).$

 $(\mathcal{A}, \bar{a}) \leq_0 (\mathcal{B}, \bar{b})$ if they satisfy the same atomic formulas.

Theorem[Ash–Knight; Karp] Let (A, \bar{a}) and (B, \bar{b}) be structures. TFAE

$$(\mathcal{A}, \bar{a}) \leq_{\alpha} (\mathcal{B}, \bar{b})$$

• Given (\mathcal{C}, \bar{c}) that's isomorphic to either (\mathcal{A}, \bar{a}) or (\mathcal{B}, \bar{b}) , deciding whether $(\mathcal{C}, \bar{c}) \cong (\mathcal{A}, \bar{a})$ is Σ^0_{α} -hard.

Let
$$\mathbf{bf}_{\alpha}(\mathbb{K}) = \frac{\{(\mathcal{A}, \bar{\mathfrak{a}}): \mathcal{A} \in \mathbb{K}, \bar{\mathfrak{a}} \in \mathcal{A}\}}{\equiv_{\alpha}} = \text{the set of } \Pi_{\alpha}\text{-types realized in } \mathbb{K}.$$

 \equiv_{α} is Borel, so, by [Silver 80], **bf**_{α}(K) has size either countable or continuum. *T* being scattered means that **bf**_{α}(K) is countable for all α .

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. **Thm** [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1}^c \mathcal{K}, \omega}^c \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. **Thm** [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1}^c \mathcal{K}, \omega}^c \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_1^{CK}$,

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. **Thm** [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1}^c \mathcal{K}, \omega}^c \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_1^{CK}$, and hence $SR(\mathcal{A}) \leq \omega_1^{CK} + 1$.

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. **Thm** [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1}^c \mathcal{K}, \omega}^c \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_1^{CK}$, and hence $SR(\mathcal{A}) \leq \omega_1^{CK} + 1$.

Relativizing: $SR(A) \leq \omega_1^A + 1$.

Def: For $\bar{a} \in \mathcal{A}^{<\omega}$, let $\rho_{\mathcal{A}}(\bar{a})$ be the least α , such that if $(\mathcal{A}, \bar{a}) \equiv_{\alpha} (\mathcal{A}, \bar{b})$, then \bar{a} and \bar{b} are automorphic.

Def: The Scott rank of \mathcal{A} is $SR(\mathcal{A}) = \sup\{\rho_{\mathcal{A}}(\bar{a}) + 1 : \bar{a} \in \mathcal{A}^{<\omega}\}.$

Thm [Scott 65]: If \mathcal{A}, \mathcal{B} are structures, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1,\omega}} \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$. **Thm** [Nadel 74] If \mathcal{A}, \mathcal{B} are computable, and $\mathcal{A} \equiv_{\mathcal{L}_{\omega_1}^c \mathcal{K}, \omega}^c \mathcal{B}$, then $\mathcal{A} \cong \mathcal{B}$.

Cor: If \mathcal{A} computable, then $\rho_{\mathcal{A}}(\bar{a}) \leq \omega_1^{CK}$, and hence $SR(\mathcal{A}) \leq \omega_1^{CK} + 1$.

Relativizing: $SR(A) \leq \omega_1^A + 1$.

Since T is scattered and uncountable, it has models of arbitrarily high Scott rank. Suppose T is a scattered theory with uncountably many models. We want to show:

Suppose \mathcal{T} is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}$$

Suppose \mathcal{T} is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$\{ Sp(\mathcal{A}) : \mathcal{A} \models T \} = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1 \}$$

= $\{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1, \alpha \text{ admissible} \}.$

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$\{ \mathsf{Sp}(\mathcal{A}) : \mathcal{A} \models \mathsf{T} \} = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1 \} \\ = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1, \alpha \text{ admissible} \}.$$

And to get that we will prove two things:

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$\{ Sp(\mathcal{A}) : \mathcal{A} \models T \} = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1 \} \\ = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1, \alpha \text{ admissible} \}.$$

And to get that we will prove two things:

For every admissible α, there is A ⊨ T with ω₁^A = α.
For every A ⊨ T, Sp(A) = {X : ω₁^X ≥ ω₁^A}.

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$.

Let α be admissible. We want $\mathcal{A} \models T$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$:

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \ \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$ $P \text{ is } \Sigma_1^1(X) \text{ and } \omega_1^X \subseteq P.$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \ \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \smallsetminus \omega_1^X$,

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \ \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \smallsetminus \omega_1^X$, and let \mathcal{A} be the witness.

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models T$,

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models \mathcal{T}$, and $\forall \gamma < \alpha^*, \gamma < \omega_1^X$, $\gamma < SR(\mathcal{A})$.

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models T$, and $\forall \gamma < \alpha^*, \gamma < \omega_1^X$, $\gamma < SR(\mathcal{A})$. Thus

$$\omega_1^X \leq SR(\mathcal{A})$$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models T$, and $\forall \gamma < \alpha^*, \gamma < \omega_1^X$, $\gamma < SR(\mathcal{A})$. Thus

$$\omega_1^X \leq SR(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1$$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models T$, and $\forall \gamma < \alpha^*, \gamma < \omega_1^X$, $\gamma < SR(\mathcal{A})$. Thus

$$\omega_1^X \leq SR(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1 \leq \omega_1^X + 1.$$

Let α be admissible. We want $\mathcal{A} \models \mathcal{T}$, with $\omega_1^{\mathcal{A}} = \alpha$. Let X be so that $\alpha = \omega_1^X$.

Obs: Let $SR_{>\gamma}$ be the $\prod_{2\gamma+2}^{in}$ sentence so that $\mathcal{A} \models SR_{>\gamma} \iff SR(\mathcal{A}) > \gamma$: $SR_{<\gamma}$ is $\exists \bar{x}, \bar{y}(\bar{x} \equiv_{\gamma} \bar{y} \land \bar{x} \neq_{\gamma+1} \bar{y}).$

We know that for every γ , there is a model of T which has SR> γ .

Let $P = \{\beta \in \mathcal{H}^X : \text{there exists } \mathcal{A}, \mathcal{A} \models T \text{ and } \bigwedge_{\gamma < \beta} \mathcal{A} \models SR_{>\gamma} \}.$

P is $\Sigma_1^1(X)$ and $\omega_1^X \subseteq P$. There is $\alpha^* \in P \setminus \omega_1^X$, and let \mathcal{A} be the witness. By Gandy's thm, we can take \mathcal{A} with $\omega_1^{\mathcal{A}} \leq \omega_1^X$.

Then $\mathcal{A} \models T$, and $\forall \gamma < \alpha^*, \gamma < \omega_1^X$, $\gamma < SR(\mathcal{A})$. Thus

$$\omega_1^X \leq SR(\mathcal{A}) \leq \omega_1^{\mathcal{A}} + 1 \leq \omega_1^X + 1.$$

Thus $\omega_1^{\mathcal{A}} = \omega_1^{\mathcal{X}}$.

Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

$$\{ Sp(\mathcal{A}) : \mathcal{A} \models T \} = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1 \} \\ = \{ \{ X \in 2^{\omega} : \omega_1^X \ge \alpha \} : \alpha \in \omega_1, \alpha \text{ admissible} \}.$$

And to get that we will prove two things:

For every admissible α, there is A ⊨ T with ω₁^A = α.
For every A ⊨ T, Sp(A) = {X : ω₁^X ≥ ω₁^A}.

Using Morleyization, we can assume T is Π_2^c .

< 一型

< E

Recall

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p$

Recall

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{x})$.
Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_p^=$: $\mathcal{A} \models R_p^=(\bar{x}) \iff \bar{x}$ has Π_{α}^{in} -type exactly p.

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_p^{=}$: $\mathcal{A} \models R_p^{=}(\bar{x}) \iff \bar{x}$ has Π_{α}^{in} -type exactly p. Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\} \cup \{R_p^{=} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}$.

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_p^=$: $\mathcal{A} \models R_p^=(\bar{x}) \iff \bar{x}$ has Π_{α}^{in} -type exactly p. Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\} \cup \{R_p^= : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}$.

• Every Π_{β}^{in} formula is equivalent to a Π_{1}^{in} -over- \mathcal{L}_{β} formula.

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each \prod_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \text{ for every } \varphi(\bar{x}) \in p \iff p \subseteq \prod_{\alpha}^{in} tp_{\mathcal{A}}(\bar{x}).$ Let us also consider a relation $R_p^{=}$: $\mathcal{A} \models R_p^{=}(\bar{x}) \iff \bar{x}$ has \prod_{α}^{in} -type exactly p. Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\} \cup \{R_p^= : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}.$

- Every Π_{β}^{in} formula is equivalent to a Π_{1}^{in} -over- \mathcal{L}_{β} formula.
- Every Π_{β}^{in} -type is equivalent to a finitary Π_1 -type of \mathcal{L}_{β} .

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each \prod_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_{p} : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x}), \text{ for every } \varphi(\bar{x}) \in p \iff p \subseteq \prod_{\alpha}^{in} tp_{\mathcal{A}}(\bar{x}).$ Let us also consider a relation $R_p^{=}$: $\mathcal{A} \models R_p^{=}(\bar{x}) \iff \bar{x}$ has \prod_{α}^{in} -type exactly p. Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\} \cup \{R_p^= : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}.$

- Every Π^{in}_{β} formula is equivalent to a Π^{in}_1 -over- \mathcal{L}_{β} formula.
- Every Π_{β}^{in} -type is equivalent to a finitary Π_1 -type of \mathcal{L}_{β} .
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, let ψ_p the conjunction of these finitary Π_1 - \mathcal{L}_{β} -formulas.

- 4 同 2 4 日 2 4 日 2 - 日

Using Morleyization, we can assume T is Π_2^c .

For each $\beta < \alpha$ and each Π_{β}^{in} -type $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, we define a relation R_p : $\mathcal{A} \models R_p(\bar{x}) \iff \mathcal{A} \models \varphi(\bar{x})$, for every $\varphi(\bar{x}) \in p \iff p \subseteq \Pi_{\alpha}^{in}$ - $tp_{\mathcal{A}}(\bar{x})$. Let us also consider a relation $R_p^{=}$: $\mathcal{A} \models R_p^{=}(\bar{x}) \iff \bar{x}$ has Π_{α}^{in} -type exactly p. Let \mathcal{L}_{α} be $\mathcal{L} \cup \{R_p : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\} \cup \{R_p^{=} : \beta < \alpha, p \in \mathbf{bf}_{\beta}(\mathbb{K})\}$.

- Every Π_{β}^{in} formula is equivalent to a Π_{1}^{in} -over- \mathcal{L}_{β} formula.
- Every Π_{β}^{in} -type is equivalent to a finitary Π_1 -type of \mathcal{L}_{β} .
- For $p \in \mathbf{bf}_{\beta}(\mathbb{K})$, let ψ_p the conjunction of these finitary Π_1 - \mathcal{L}_{β} -formulas.
- ψ_p is Π_1^{in} -in- \mathcal{L}_β and is equivalent to R_p .

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$,

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.

The $\alpha\text{-bf-structure}$

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where • $\beta_q < \alpha$,

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set $\mathbb B$ of triples $q = \langle eta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}$.

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Let $T_{\alpha}^{\mathbb{B}}$ be T, together with the set of $\Pi_{2}^{in} \mathcal{L}_{\alpha}$ -sentences • $(\forall \bar{x}) R_{q}(\bar{x}) \iff \bigwedge_{\psi \in S_{q}} \psi(\bar{x})$, for $q \in \mathbb{B}$,

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Let $T_{\alpha}^{\mathbb{B}}$ be T, together with the set of $\Pi_{2}^{in} \mathcal{L}_{\alpha}$ -sentences • $(\forall \bar{x}) R_{q}(\bar{x}) \iff \bigwedge_{\psi \in S_{q}} \psi(\bar{x})$, for $q \in \mathbb{B}$,

• $(\forall \bar{x}) \ R_q^{=}(\bar{x}) \iff R_p(\bar{x}) \land \bigwedge_{\varphi \in \Pi_1 \smallsetminus S_1} \neg \varphi$, for $q \in \mathbb{B}$,

The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where

- $\beta < \alpha$,
- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}$.

Let $\mathcal{T}^{\mathbb{B}}_{\alpha}$ be \mathcal{T} , together with the set of $\Pi^{in}_2 \mathcal{L}_{\alpha}$ -sentences

- $(\forall \bar{x}) R_q(\bar{x}) \iff \bigwedge_{\psi \in S_q} \psi(\bar{x}), \text{ for } q \in \mathbb{B},$
- $(\forall \bar{x}) \ R_q^=(\bar{x}) \iff R_p(\bar{x}) \land \bigwedge_{\varphi \in \Pi_1 \smallsetminus S_1} \neg \varphi$, for $q \in \mathbb{B}$,
- $\bigwedge_{\gamma < \alpha} \forall \bar{x} \bigvee_{q \in \mathbb{B}, \beta_q = \gamma} R_q^{=}(\bar{x}).$

Recall: An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where • $\beta_q < \alpha$,

Recall: An α -*bf*-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.

Recall: An α -*bf*-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Recall: An α -*bf*-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: If \mathbb{K} is Π_2^c , *t* is a Σ_1 -type, there is a *t*-computable structure in \mathbb{K} realizing *t*.

Recall: An α -*bf*-*structure* is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: If \mathbb{K} is Π_2^c , *t* is a Σ_1 -type, there is a *t*-computable structure in \mathbb{K} realizing *t*.

Def: We say that an \mathcal{L} -structure \mathcal{A} satisfies an α -bf-structure \mathbb{B} , if one can find interpretations of the relations in $\mathcal{L}^{\mathbb{B}}_{\alpha}$ so that $\mathcal{A} \models \mathcal{T}^{\mathbb{B}}_{\alpha}$.

Recall: An α -*bf*-*structure* is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: If \mathbb{K} is Π_2^c , *t* is a Σ_1 -type, there is a *t*-computable structure in \mathbb{K} realizing *t*.

Def: We say that an \mathcal{L} -structure \mathcal{A} satisfies an α -bf-structure \mathbb{B} , if one can find interpretations of the relations in $\mathcal{L}^{\mathbb{B}}_{\alpha}$ so that $\mathcal{A} \models \mathcal{T}^{\mathbb{B}}_{\alpha}$.

Corollary: If \mathbb{B} is the α -bf-structure of \mathcal{T} , and p a Σ_1 -in- \mathcal{L}_{α} type, there is a model of $\mathcal{T}_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Recall: An α -*bf*-*structure* is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: If \mathbb{K} is Π_2^c , t is a Σ_1 -type, there is a t-computable structure in \mathbb{K} realizing t.

Def: We say that an \mathcal{L} -structure \mathcal{A} satisfies an α -bf-structure \mathbb{B} , if one can find interpretations of the relations in $\mathcal{L}^{\mathbb{B}}_{\alpha}$ so that $\mathcal{A} \models \mathcal{T}^{\mathbb{B}}_{\alpha}$.

Corollary: If \mathbb{B} is the α -bf-structure of \mathcal{T} , and p a Σ_1 -in- \mathcal{L}_{α} type, there is a model of $\mathcal{T}_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Lemma: An α -bf-structure \mathbb{B} is the α -bf-structure of T iff $\forall p \in \mathbb{B}$ there is a model satisfying \mathbb{B} , realizing p, and every model of T satisfies \mathbb{B} .

Recall: An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_a, R_a, S_a \rangle$ where

- $\beta_a < \alpha$,
- R_a is a relation symbol.
- S_a is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}$.

Lemma: If K is Π_2^c , t is a Σ_1 -type, there is a t-computable structure in K realizing t.

Def: We say that an \mathcal{L} -structure \mathcal{A} satisfies an α -bf-structure \mathbb{B} , if one can find interpretations of the relations in $\mathcal{L}^{\mathbb{B}}_{\alpha}$ so that $\mathcal{A} \models \mathcal{T}^{\mathbb{B}}_{\alpha}$.

Corollary: If \mathbb{B} is the α -bf-structure of T, and $p \ge \Sigma_1$ -in- \mathcal{L}_{α} type, there is a model of $T_{\alpha}^{\mathbb{B}}$ of type p computable from \mathbb{B} and p.

Lemma: An α -bf-structure \mathbb{B} is the α -bf-structure of T iff $\forall p \in \mathbb{B}$ there is a model satisfying \mathbb{B} , realizing p, and every model of T satisfies \mathbb{B} .

Obs: Being the α -bf-structure of T is Π_1^1 .

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models \mathcal{T}$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

• $\beta_q < \alpha$,

∃ >

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^A\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.

.≣ . ►

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^A\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^A\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H}$

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \setminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$.
Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^*$ and $R_p^=$.

イロト イポト イヨト イヨト 二日

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \cdot \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^*$ and $R_p^=$. For $\beta < \omega_1^{CK}$, and $q \in \mathbb{B} \upharpoonright \beta$, $\mathcal{A} \models R_q^= \iff \mathcal{B} \models R_q^=$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^*$ and $R_p^=$. For $\beta < \omega_1^{CK}$, and $q \in \mathbb{B} \upharpoonright \beta$, $\mathcal{A} \models R_q^= \iff \mathcal{B} \models R_q^=$. So $\mathcal{A} \equiv_\beta \mathcal{B}$.

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^*$ and $R_p^=$. For $\beta < \omega_1^{CK}$, and $q \in \mathbb{B} \upharpoonright \beta$, $\mathcal{A} \models R_q^= \iff \mathcal{B} \models R_q^=$. So $\mathcal{A} \equiv_\beta \mathcal{B}$. So $\mathcal{A} \equiv_{\omega_1^{CK}} \mathcal{B}$.

イロト イポト イヨト イヨト 二日

Recall: We want to show $Sp(\mathcal{A}) = \{X : \omega_1^X \ge \omega_1^{\mathcal{A}}\}$ for $\mathcal{A} \models T$. An α -bf-structure is a set \mathbb{B} of triples $q = \langle \beta_q, R_q, S_q \rangle$ where

- $\beta_q < \alpha$,
- R_q is a relation symbol.
- S_q is as a finitary $\Pi_1 \mathcal{L}_{\beta}^{\mathbb{B}}$ -type, where $\mathcal{L}_{\beta}^{\mathbb{B}} = \{R_s, R_s^{=} : s \in \mathbb{B}, \beta_s < \beta\}.$

Lemma: Suppose \mathbb{B} is a computable α^* -bf-structure for $\alpha^* \in \mathcal{H} \smallsetminus \omega_1^{CK}$. Suppose that $\mathbb{B} \upharpoonright \beta$ is the correct β -bf-structure of T for all $\beta < \omega_1^{CK}$. Suppose that $\mathcal{A} \models T$ and $\omega_1^{\mathcal{A}} = \omega_1^{CK}$.

Then \mathcal{A} has a computable copy.

Pf: The set $P = \{\beta \leq \alpha^* : \mathcal{A} \text{ satisfies } \mathbb{B} \upharpoonright \beta\} \subseteq \mathcal{H} \text{ is } \Sigma_1^1(\mathcal{A}) \text{ and contains } \omega_1^{CK}.$ There is $\beta^* \in P \smallsetminus \omega_1^{CK}$. Let $p \in \mathbb{B}$ be such that $\beta_p = \beta^*$, and $\mathcal{A} \models R_p^=$. There is a computable \mathcal{B} satisfying $\mathbb{B} \upharpoonright \beta^*$ and $R_p^=$. For $\beta < \omega_1^{CK}$, and $q \in \mathbb{B} \upharpoonright \beta$, $\mathcal{A} \models R_q^= \iff \mathcal{B} \models R_q^=$. So $\mathcal{A} \equiv_\beta \mathcal{B}$. So $\mathcal{A} \equiv_{\omega_1^{CK}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

イロト イポト イヨト イヨト 二日

Pf: Suppose not.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T. Let f(X) be the least such α .

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T. Let f(X) be the least such α . $f: 2^{\omega} \to \omega_1$ is projective, degree-invariant and $f(X) < \omega_1^X$.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T. Let f(X) be the least such α . $f: 2^{\omega} \rightarrow \omega_1$ is projective, degree-invariant and $f(X) < \omega_1^X$. Then, by Martin's lemma, f is constant on a cone.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T. Let f(X) be the least such α . $f: 2^{\omega} \rightarrow \omega_1$ is projective, degree-invariant and $f(X) < \omega_1^X$. Then, by Martin's lemma, f is constant on a cone. But for every α , there is some Y in the cone with $f(X) > \alpha$.

Pf: Suppose not. So, for every X on a cone, there is an $\alpha < \omega_1^{CK}$, such that X does not computes a copy of the α -bf-structure of T. Let f(X) be the least such α . $f: 2^{\omega} \rightarrow \omega_1$ is projective, degree-invariant and $f(X) < \omega_1^X$. Then, by Martin's lemma, f is constant on a cone. But for every α , there is some Y in the cone with $f(X) > \alpha$.

From now on, we work relative to the base of this cone.

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where $\beta < \alpha$.

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary $\prod_1 \mathcal{L}_\beta$ -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$.

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Lemma: Every X computes an α^* -bf-structure, for some $\alpha^* \in \mathcal{H}^X \setminus \omega_1^X$, \mathbb{B} , such that $(\forall \alpha < \omega_1^X) \mathbb{B} \upharpoonright \alpha$ is correct for \mathcal{T} .

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$.

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Lemma: Every X computes an α^* -bf-structure, for some $\alpha^* \in \mathcal{H}^X \setminus \omega_1^X$, \mathbb{B} , such that $(\forall \alpha < \omega_1^X) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α -bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are *equivalent* if there is a way of matching the relations symbols...

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$.

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Lemma: Every X computes an α^* -bf-structure, for some $\alpha^* \in \mathcal{H}^X \setminus \omega_1^X$, \mathbb{B} , such that $(\forall \alpha < \omega_1^X) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α -bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are *equivalent* if there is a way of matching the relations symbols... **Obs:** Equivalence of α -bf-structures is Σ_1^1 .

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$,

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Lemma: Every X computes an α^* -bf-structure, for some $\alpha^* \in \mathcal{H}^X \setminus \omega_1^X$, \mathbb{B} , such that $(\forall \alpha < \omega_1^X) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α -bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are *equivalent* if there is a way of matching the relations symbols... **Obs:** Equivalence of α -bf-structures is Σ_1^1 .

Let $P = \{ \alpha \in \mathcal{H}^X : X \text{ computes an } \alpha \text{-bf-structure } \mathbb{B} \text{ such that} \\ (\forall \beta < \alpha) \text{ (for all } \beta \text{-bf-structures } \tilde{\mathbb{B}}) \\ \text{ if } \beta < \omega_1^X \text{ and } \tilde{\mathbb{B}} \text{ is correct, then } \mathbb{B} \upharpoonright \beta \equiv \tilde{\mathbb{B}} \}.$

- 4 同 2 4 日 2 4 日 2 4

Recall: The α -bf-structure of T is the set of all the triples $\langle \beta, R_p, S_p \rangle$ where • $\beta < \alpha$,

- $p \in \mathbf{bf}_{\beta}(T)$, i.e. is a Π_{β}^{in} type of T.
- R_p is a relation symbol of the same arity as p.
- S_p is the representation of p as a finitary Π_1 - \mathcal{L}_β -type.

Obs: Being the correct α -bf-structure of T is Π_1^1 .

Lemma: Every X computes an α^* -bf-structure, for some $\alpha^* \in \mathcal{H}^X \setminus \omega_1^X$, \mathbb{B} , such that $(\forall \alpha < \omega_1^X) \mathbb{B} \upharpoonright \alpha$ is correct for T.

Two α -bf-structures \mathbb{B} and $\tilde{\mathbb{B}}$ are *equivalent* if there is a way of matching the relations symbols... **Obs:** Equivalence of α -bf-structures is Σ_1^1 .

Let
$$P = \{ \alpha \in \mathcal{H}^X : X \text{ computes an } \alpha \text{-bf-structure } \mathbb{B} \text{ such that} \\ (\forall \beta < \alpha) \text{ (for all } \beta \text{-bf-structures } \tilde{\mathbb{B}}) \\ \text{ if } \beta < \omega_1^X \text{ and } \tilde{\mathbb{B}} \text{ is correct, then } \mathbb{B} \upharpoonright \beta \equiv \tilde{\mathbb{B}} \}.$$

 $P \text{ is } \Sigma_1^1$, and $\omega_1^{CK} \subseteq P$.

Lemma: Suppose $\omega_1^{\mathcal{A}} \leq \omega_1^{Y}$ and $\mathcal{A} \models T$. Then Y computes a copy of \mathcal{A} , provided

- 4 同 🕨 - 4 🖻 🕨 - 4

Lemma: Suppose $\omega_1^{\mathcal{A}} \leq \omega_1^{Y}$ and $\mathcal{A} \models \mathcal{T}$. Then Y computes a copy of \mathcal{A} , provided \mathcal{A} has an X-computable model, with $\omega_1^{X} = \omega_1^{Y} = \omega_1^{X \oplus Y}$.

• Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$,

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A}\equiv_{\omega_1^Y}\mathcal{B}.$

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A} \equiv_{\omega_1^Y} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_1^{X \oplus Y}} \mathcal{B}$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A} \equiv_{\omega_1^Y} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_1^{X \oplus Y}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

Lemma: Suppose $\omega_1^{\mathcal{A}} \leq \omega_1^{Y}$ and $\mathcal{A} \models \mathcal{T}$. Then Y computes a copy of \mathcal{A} , provided \mathcal{A} has an X-computable model, with $\omega_1^{X} = \omega_1^{Y} = \omega_1^{X \oplus Y}$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A} \equiv_{\omega_1^Y} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_1^{X \oplus Y}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

 \mathcal{A} has an X-computable model, for some X with $\omega_1^X = \omega_1^Y \leq \omega_1^{X \oplus Y}$.

Lemma: Suppose $\omega_1^{\mathcal{A}} \leq \omega_1^{Y}$ and $\mathcal{A} \models \mathcal{T}$. Then Y computes a copy of \mathcal{A} , provided \mathcal{A} has an X-computable model, with $\omega_1^{X} = \omega_1^{Y} = \omega_1^{X \oplus Y}$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A} \equiv_{\omega_1^Y} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_1^{X \oplus Y}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

 \mathcal{A} has an X-computable model, for some X with $\omega_1^X = \omega_1^Y \le \omega_1^{X \oplus Y}$. Let G be such that $\omega_1^X = \omega_1^{X \oplus G} = \omega_1^G = \oplus \omega_1^{G \oplus Y} = \omega_1^Y$.

Lemma: Suppose $\omega_1^{\mathcal{A}} \leq \omega_1^{Y}$ and $\mathcal{A} \models \mathcal{T}$. Then Y computes a copy of \mathcal{A} , provided \mathcal{A} has an X-computable model, with $\omega_1^{X} = \omega_1^{Y} = \omega_1^{X \oplus Y}$.

- Y computes an α^* -bf-structure \mathbb{B} , correct up to ω_1^Y , with $\alpha^* \in \mathcal{H}^Y \smallsetminus \omega_1^Y$.
- \mathcal{A} satisfies \mathbb{B} up to some $\beta^* \in \alpha^* \smallsetminus \omega_1^Y$, because ω_1^Y is not $\Sigma_1^1(X \oplus Y)$.
- Let p^* be such that $\mathcal{A} \models R_{p^*}^=$, and $\beta_{p^*} = \beta^*$.
- Y computes \mathcal{B} which satisfies $\mathbb{B} \upharpoonright \beta^*$, and has same β^* -type as \mathcal{A} .
- So, $\mathcal{A} \equiv_{\omega_1^Y} \mathcal{B}$.
- Both \mathcal{B} and \mathcal{A} are computable in $X \oplus Y$, and $\mathcal{A} \equiv_{\omega_1^{X \oplus Y}} \mathcal{B}$. So $\mathcal{A} \cong \mathcal{B}$.

 \mathcal{A} has an X-computable model, for some X with $\omega_1^X = \omega_1^Y \le \omega_1^{X \oplus Y}$. Let G be such that $\omega_1^X = \omega_1^{X \oplus G} = \omega_1^G = \bigoplus \omega_1^{G \oplus Y} = \omega_1^Y$. Apply the lemma above twice. Suppose T is a scattered theory with uncountably many models. We want to show:

There is an oracle relative to which

For every admissible α, there is A ⊨ T with ω^A₁ = α.
For every A ⊨ T, Sp(A) = {X : ω^X₁ ≥ ω^A₁}.

As we would then get:

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$

Theorem ([M.] (ZFC+PD))

Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- T satisfies hyperarithmetic-is-recursive on a cone.
- There exists an oracle relative to which

$$\{Sp(\mathcal{A}): \mathcal{A} \models T\} = \{\{X \in 2^{\omega}: \omega_1^X \ge \alpha\}: \alpha \in \omega_1\}.$$