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Motivating questions

Study the complexity of equivalence relations (on natural
numbers) and how they interact with Turing degrees.

As in the study of algebraic structures, investigate how to code
information into structures.

How do we compare the complexity of two ERs?

How else can we compare? Isomorphisms and categoricity.
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Precursor

ERs are well studied in Borel theory.

(Friedman-Stanley) Introduced the notion of Borel reducibility to
compare arbitrary ERs on Borel spaces (classification problems in
math, finding invariants).

To study this in classical recursion theory, we consider ERs on ω.
(Can code many things).

Define the complexity of an equivalence relation R to be the
complexity of R as a set of pairs.
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Other related work

Fokina, Friedman study this for Σ1
1 ERs, and hyperarithmetical

reductions.

Various authors (Fokina, Friedman, Harizanov, Knight, McCoy,
Montalbán) used similar ideas to study computable structures.

We’ll look at low level (arithmetical) ERs and restrict ourselves to
computable reducibilities.

Motivation drawn from Borel theory (while not directly related). In
the low level setting, things turn out to be very different.
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Arithmetical ERs and computable reducibilities

(Bernadi, Sorbi) positive ERs

(Fokina, Friedman) computable reducibilities for Σ1
1 ERs

(Gao, Gerdes) systematic study of c.e. ERs

(Coskey, Hamkins, Miller) comparing standard ERs

(Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs

(Ianovski, Miller, Nies, N, Stephan) completeness for ERs

(Miller, N) finitary reducibilities

(Calvert, Cenzer, Harizanov, Morozov; Cenzer, Harizanov,
Remmel) categoricity of c.e. and Π0

1 ERs

(Melnikov, N) 0′-categorical ERs and Turing degrees.
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Brief history

The study of positive (or c.e.) ERs traces back to the theory of
positive numberings.

Recall that a numbering is a pair (ν,S) where ν : ω 7→ S is onto.

Numberings are ERs in disguise:
Given a numbering (ν,S), we can get xRy iff ν(x) = ν(y).
Conversely we can get a numbering by letting all elements of each
equiv class [x ] number the same object.

A positive numbering is simply a numbering where the induced ER
is c.e.
(e.g. A numbering of a collection of pairwise disjoint r.e. sets.)
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Brief history

Malcev first and later, Ershov studied systematically positive ERs
(c.e. ERs).

Definition (Malcev)
A c.e. ER R is precomplete if for every partial recursive ϕ there is a
total computable function f such that for every n,

ϕ(n) ↓ ⇒ ϕ(n) R f (n)

f is called a totalizer.
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Brief history

The most common (natural?) way of comparing ERs is to say that
R ≤ S iff there is a computable function f such that

x R y ⇔ f (x) R f (y)

Ershov introduced this when considering monomorphisms in the
category of all numberings.

Analogue to the study of Borel equivalence classes, where f is a
Borel function.

Many authors study this reducibility, all under different names!
Bernardi, Sorbi; Gao, Gerdes: m-reducibility,
Fokina, Friedman: FF -reducibility,
Coskey, Hamkins, Miller: computable reducibility.
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C.e. ERs

Definition (Bernadi, Sorbi)
A c.e. ER U is universal if for every c.e. ER S, we have S ≤ U.

Clearly, there are universal c.e. ERs.

(Bernadi, Sorbi) Every precomplete c.e. ER is universal (but not
conversely). For example, the relation

σ ∼ τ iff T ` σ ↔ τ
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C.e. ERs

Some easy facts about the poset of c.e. ERs:
1 There is a greatest element (any universal c.e. ER) and a least

element (≡1).
2 There is an initial segment of type ω + 1:

≡1 < ≡2 < ≡3 < · · · < Id

3 This completely describes the degrees of computable ERs. The
non-computable c.e. ERs are not below this chain.
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C.e. ERs

4 We can embed the c.e. 1-degrees into the poset of c.e. ERs, by
taking

A 7→ RA

where x RA y iff x , y ∈ A.
For instance, if A is simple then Id 6≤ RA.

5 The c.e. 1-degrees ∼= [Id ,RK ]. Hence the c.e. ER is neither an
upper- nor a lower-semilattice.

6 The Π0
3 theory is undecidable.

7 The greatest element is join irreducible. (You get a problem if you
consider the ”natural" join operation).

8 The c.e. ER degrees is upwards dense. (As we will soon see).
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C.e. ERs

To study the structure of c.e. ERs, Gao and Gerdes introduced a
jump operator

Definition (Gao, Gerdes)
Let E be a c.e. ER. The jump of E , written as E ′ is defined

x E ′ y ⇔ ϕx (x) ↓ and ϕy (y) ↓ and ϕx (x) E ϕy (y).

For example, the jump of the smallest element, (≡1)′ = RK .

(Id)′ is the c.e. ER yielding the partition
{Ki : i ∈ ω} ∪ {{x} : x 6∈ K}, where Ki = {e : ϕe(e) ↓= i}.
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C.e. ERs

Theorem (Gao, Gerdes)
1 R ≤ R′

2 S ≤ R iff S′ ≤ R′

3 If R is not universal then R′ is not universal.

Clearly if R is universal then R′ ≡ R. Is there a non-universal ER
with this property?
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C.e. ERs

Theorem (Andrews, Lempp, Miller, N, Sorbi)
Let E be a c.e. ER. If E ′ ≤ E then E is universal.

Corollary
The c.e. ERs is upwards dense.
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C.e. ERs

The universal c.e. ERs are exactly the ones closed under the
jump. Look at notable subclasses.

Recall each precomplete c.e. ER is universal.

Effectively inseparable sets play a crucial role in the study of c.e.
sets. Visser, Bernadi study this for ERs.

A c.e. ER is effectively inseparable if it yields a partition into
effectively inseparable sets.

A c.e. ER is uniformly effectively inseparable if one can uniformly
get a production function.
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C.e. ERs

Theorem (Andrews, Lempp, Miller, N, San Mauro, Sorbi)
1 Each precomplete ER is uniformly effectively inseparable.

2 Each uniformly effectively inseparable ER is universal (and of
course, effectively inseparable).

3 Universality and effective inseparability do not imply each other.

It was also shown that u.e.i. coincides with a number of previously
studied notions in Bernadi, Sorbi.
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Natural arithmetical ERs

Arithmetical ERs.

Coskey, Hamkins and Miller studied ERs based on c.e. analogues
of the standard Borel relations.

The well-studied ERs in Borel study are:
E1 = {(A,B) : ∀∞n (An = Bn)}
E3 = {(A,B) : ∀n (An =∗ Bn)}
Eset = {(A,B) : {An} = {Bn}}
Z0 = {(A,B) | limn

|(A4B)�n|
n = 0}
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Natural arithmetical ERs

They considered the c.e. analogues of these relations, and
showed that the situation there is different.

Theorem (Coskey, Hamkins, Miller)
Ece
=∗ ≡ Ece

1 , where Ece
1 = {(A,B) : ∀∞n (An = Bn)}.

Theorem (Miller, N)

Ece
3 ≡ Z ce

0 .

Ece
3 < Ece

set .
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Natural arithmetical ERs

To study naturally arising (low-level) arithmetical ERs, Coskey,
Hamkins and Miller considered:

Ece
min = {(W ,V ) : min W = min V}

Ece
max = {(W ,V ) : max W = max V}

These are Π0
2 relations, and in fact:

Theorem (Coskey, Hamkins, Miller)
Ece

max and Ece
min are incomparable and below Ece

= .

Proof.
If Ece

max ≤ Ece
min via f , we build (by the Recursion Theorem) Wi and Wj

and watch Wf (i) and Wf (j).
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Universal arithmetical ERs

We’ve seen several examples of naturally occurring arithmetical
ERs and tried to classify them.

One can also look at algebraic structures known to have simple
isomorphism problems.

Let’s instead look at the general theory – universality.

For c.e. ERs, we’ve seen that this yields a rich theory (jump
operator, u.e.i.).

What about for arithmetical ERs (at different levels)?
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Universal arithmetical ERs

By putting together all c.e. ERs, we can obtain a universal c.e.
ER. Relativize this to get a universal Σ0

n ER for each n.

Doing this does not work to produce a universal Π0
1 ER.

The transitive closure of a c.e. set of pairs is c.e., but not for Π0
1

sets of pairs. Nevertheless,

Theorem (Ianovski, Miller, Nies, N)

There is a universal Π0
1 ER.

Keng Meng Ng (NTU) Equivalence relations May 2013 21 / 26



Universal arithmetical ERs

By putting together all c.e. ERs, we can obtain a universal c.e.
ER. Relativize this to get a universal Σ0

n ER for each n.

Doing this does not work to produce a universal Π0
1 ER.

The transitive closure of a c.e. set of pairs is c.e., but not for Π0
1

sets of pairs. Nevertheless,

Theorem (Ianovski, Miller, Nies, N)

There is a universal Π0
1 ER.

Keng Meng Ng (NTU) Equivalence relations May 2013 21 / 26



Universal arithmetical ERs

Surprisingly, we found that:

Theorem (Ianovski, Miller, Nies, N)

For any n ≥ 2 there is no universal Π0
n ER.

Theorem (Fokina, Friedman and Nies)

{(W ,V ) : W ≡1 V} and {(W ,V ) : W ≡m V} are universal at the Σ0
3

level.

Theorem (Ianovski, Miller, Nies, N)

{(W ,V ) : W ≡T V} is universal at the Σ0
4 level.
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Another reducibility

The usual reducibility for comparing ERs,

R ≤ S ⇔ ∃f∀x , y(x R y ⇔ f (x) S f (y))

is sometimes too uniform.

For instance, lack of universal ERs at Πn+2 levels.

Often, when one wants to show R ≤ S, one often first tries a
“non-uniform" map.

Definition (Miller, N)
We say that R is n-arily reducible to S, and write R ≤n S, if there are
total computable functions f1, · · · , fn : ωn 7→ ω, such that for all j , k ≤ n
and all n-tuple of numbers i1, · · · , in, we have

ij R ik ⇔ fj(i1, · · · , in) S fk (i1, · · · , in)
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Finitary reducibility

For example, R ≤2 S iff there are computable functions f ,g such
that for all pairs x , y ,

x R y ⇔ f (x , y) S g(x , y)

This seems a good alternative way to measure reducibility for ERs:

Theorem (Miller,N)

Equality of c.e. sets is universal at the Π0
2 level for ≤n for all n ≥ 2.

Relativizing, we get universal ERs at the Π0
k for every k, with respect to

finitary reducibilities.

Ece
max is universal at the Π0

2 level for ≤3 (but not universal for ≤4).
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Questions

Are there natural examples of ERs separating ≤n from ≤n+1?

Understand the structure of the partial order for Σ0
k ERs under

both reducibilities.

Find ERs arising in algebra and fit it in the general theory.
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Thank you.
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