Several things about equivalence relations

Keng Meng Ng

Nanyang Technological University, Singapore
May 2013

Motivating questions

- Study the complexity of equivalence relations (on natural numbers) and how they interact with Turing degrees.
- As in the study of algebraic structures, investigate how to code information into structures.
- How do we compare the complexity of two ERs?
- How else can we compare? Isomorphisms and categoricity.

Precursor

- ERs are well studied in Borel theory.
- (Friedman-Stanley) Introduced the notion of Borel reducibility to compare arbitrary ERs on Borel spaces (classification problems in math, finding invariants).
(Can code many things).
- Define the comnlexity of an equivalence relation R to be the complexity of R as a set of pairs.

Precursor

- ERs are well studied in Borel theory.
- (Friedman-Stanley) Introduced the notion of Borel reducibility to compare arbitrary ERs on Borel spaces (classification problems in math, finding invariants).
- To study this in classical recursion theory, we consider ERs on ω. (Can code many things).
- Define the complexity of an equivalence relation R to be the complexity of R as a set of pairs.

Other related work

- Fokina, Friedman study this for Σ_{1}^{1} ERs, and hyperarithmetical reductions.
- Various authors (Fokina, Friedman, Harizanov, Knight, McCoy, Montalbán) used similar ideas to study computable structures.
- We'll look at low level (arithmetical) ERs and restrict ourselves to computable reducibilities. - Motivation drawn from Roral theory (while not directly related). In the low level setting, things turn out to be very different.

Other related work

- Fokina, Friedman study this for Σ_{1}^{1} ERs, and hyperarithmetical reductions.
- Various authors (Fokina, Friedman, Harizanov, Knight, McCoy, Montalbán) used similar ideas to study computable structures.
- We'll look at low level (arithmetical) ERs and restrict ourselves to computable reducibilities.
- Motivation drawn from Borel theory (while not directly related). In the low level setting, things turn out to be very different.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Niller) comparing standard ERs
- (Andrews, Lemmp, M:ller, NI San Maaturo, Soubi) more on c.e. ERS
- (lanovski, Miller, Nies, N, Stephan) completeness for ERs
(Anille) Nu sinitaly Ieducibinities
- (Caivert, Cenzer, Harizanov, Miorozov; Cenzer, Harizanov, Remmall sategnricity of $c a$ and Π_{0} ERc
- (Melnikov, N) O'-categorical ERs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs
- (lanovski Miller Nies N Stenhan) comnleteness for FRs
- (Miller, N) finitary reducibilities
- (Calvert, Cenzer, Harizanov, Morozov; Cenzer, Harizanov, Remmel) cateaoricitv of c.e. and Π_{1}^{0} ERs
- (Melnikov, N) O'-categorical ERs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (lanovski, Miller, Nies, N, Stephan) completeness for ERs
- (Millar N) finitary reducihilitios
- (Calvert, Cenzer, Harizanov, Morozov; Cenzer, Harizanov, Remmel) categoricity of c.e. and Π_{1}^{0} ERs
- (Molnikov, M) N'-categorical FRs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs
(Miller, N) finitary reducibilities
- ICalvart Conzer Harizanov, Marozov; Cenzer, Harizanov, Remmel) categoricity of c.e. and Π_{1}^{0} ERs
- (Melnikov, N) 0^{\prime}-categorical ERs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs
- (lanovski, Miller, Nies, N, Stephan) completeness for ERs
- (Miller, N) finitary reducibilities
- (Calvert, Cenzer, Harizanov, Morozov; Cenzer, Harizanov, Remmel) cateaoricitv of c.e. and Π_{1}^{0} ERs - (Melnikov, N) O'-categorical ERs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs
- (lanovski, Miller, Nies, N, Stephan) completeness for ERs
- (Miller, N) finitary reducibilities

Remmel) categoricity of c.e. and Π_{1}^{0} ERs

- (Melniknv N) N'-catenorical FRs and Turing degrees.

Arithmetical ERs and computable reducibilities

- (Bernadi, Sorbi) positive ERs
- (Fokina, Friedman) computable reducibilities for Σ_{1}^{1} ERs
- (Gao, Gerdes) systematic study of c.e. ERs
- (Coskey, Hamkins, Miller) comparing standard ERs
- (Andrews, Lempp, Miller, N, San Mauro, Sorbi) more on c.e. ERs
- (lanovski, Miller, Nies, N, Stephan) completeness for ERs
- (Miller, N) finitary reducibilities
- (Calvert, Cenzer, Harizanov, Morozov; Cenzer, Harizanov, Remmel) categoricity of c.e. and Π_{1}^{0} ERs
- (Melnikov, N) 0^{\prime}-categorical ERs and Turing degrees.

Brief history

- The study of positive (or c.e.) ERs traces back to the theory of positive numberings.
- Recall that a numbering is a pair (ν, S) where $\nu: \omega \mapsto S$ is onto.
- Given a numbering (ν, S), we can get $x R y$ iff $\nu(x)=\nu(y)$.
- Conversely we can get a numbering by letting all elements of each equiv class $[x]$ number the same object.
(e.g. A numbering of a collection of pairwise disjoint r.e. sets.)

Brief history

- The study of positive (or c.e.) ERs traces back to the theory of positive numberings.
- Recall that a numbering is a pair (ν, S) where $\nu: \omega \mapsto S$ is onto.
- Numberings are ERs in disguise:
- Given a numbering (ν, S), we can get $x R y$ iff $\nu(x)=\nu(y)$.
- Conversely we can get a numbering by letting all elements of each equiv class $[x]$ number the same object.
(e.g. A numbering of a collection of pairwise disjoint r.e. sets.)

Brief history

- The study of positive (or c.e.) ERs traces back to the theory of positive numberings.
- Recall that a numbering is a pair (ν, S) where $\nu: \omega \mapsto S$ is onto.
- Numberings are ERs in disguise:
- Given a numbering (ν, S), we can get $x R y$ iff $\nu(x)=\nu(y)$.
- Conversely we can get a numbering by letting all elements of each equiv class $[x]$ number the same object.
- A positive numbering is simply a numbering where the induced $E R$ is c.e.
(e.g. A numbering of a collection of pairwise disjoint r.e. sets.)

Brief history

- Malcev first and later, Ershov studied systematically positive ERs (c.e. ERs).

Definition (Malcev)

A c.e. ER R is precomplete if for every partial recursive φ there is a total computable function f such that for every n,

$$
\varphi(n) \downarrow \Rightarrow \varphi(n) R f(n)
$$

f is called a totalizer.

Brief history

- The most common (natural?) way of comparing ERs is to say that $R \leq S$ iff there is a computable function f such that

$$
x R y \Leftrightarrow f(x) R f(y)
$$

- Ershov introduced this when considering monomorphisms in the category of all numberings.

Brief history

- The most common (natural?) way of comparing ERs is to say that $R \leq S$ iff there is a computable function f such that

$$
x R y \Leftrightarrow f(x) R f(y)
$$

- Ershov introduced this when considering monomorphisms in the category of all numberings.
- Analogue to the study of Borel equivalence classes, where f is a Borel function.
- Many authors study this reducibility, all under different names!
- Bernardi, Sorbi; Gao, Gerdes: m-reducibility,
- Fokina, Friedman: FF-reducibility,
- Coskey, Hamkins, Miller: computable reducibility.

C.e. ERs

Definition (Bernadi, Sorbi)

A c.e. ER U is universal if for every c.e. ER S, we have $S \leq U$.

- Clearly, there are universal c.e. ERs.
- (Bernadi, Sorbi) Every precomplete c.e. ER is universal (but not conversely). For example, the relation

$$
\sigma \sim \tau \text { iff } T \vdash \sigma \leftrightarrow \tau
$$

C.e. ERs

Some easy facts about the poset of c.e. ERs:
(1) There is a greatest element (any universal c.e. ER) and a least element (\equiv_{1}).
(2) There is an initial segment of type $\omega+1$
(3) This completely describes the degrees of computable ERs. The non-computable c.e. ERs are not below this chain.

C.e. ERs

Some easy facts about the poset of c.e. ERs:
(1) There is a greatest element (any universal c.e. ER) and a least element (\equiv_{1}).
(2) There is an initial segment of type $\omega+1$:

$$
\equiv_{1}<\equiv_{2}<\equiv_{3}<\cdots<l d
$$

(3) This completely describes the degrees of computable ERs. The non-computable c.e. ERs are not below this chain.

C.e. ERs

(4) We can embed the c.e. 1-degrees into the poset of c.e. ERs, by taking

$$
A \mapsto R_{A}
$$

where $x R_{A} y$ iff $x, y \in A$.
For instance, if A is simple then $l d \not \leq R_{A}$.
(5) The c.e. 1 -degrees $\cong\left[I d, R_{K}\right]$. Hence the c.e. $E R$ is neither an upper- nor a lower-semilattice.
(6) The Π_{3}^{0} theory is undecidable.
(7) The greatest element is join irreducible. (You get a problem if you
consider the "natural" join operation).
(8) The c.e. ER degrees is upwards dense. (As we will soon see).

C.e. ERs

(4) We can embed the c.e. 1-degrees into the poset of c.e. ERs, by taking

$$
A \mapsto R_{A}
$$

where $x R_{A} y$ iff $x, y \in A$.
For instance, if A is simple then $l d \notin R_{A}$.
(5) The c.e. 1 -degrees $\cong\left[l d, R_{K}\right]$. Hence the c.e. ER is neither an upper- nor a lower-semilattice.
(6) The Π_{3}^{0} theory is undecidable.
(7) The greatest element is join irreducible. (You get a problem if you consider the "natural" join operation).
(8) The c.e. ER degrees is upwards dense. (As we will soon see).

C.e. ERs

- To study the structure of c.e. ERs, Gao and Gerdes introduced a jump operator

Definition (Gao, Gerdes)

Let E be a c.e. ER. The jump of E, written as E^{\prime} is defined

$$
x E^{\prime} y \Leftrightarrow \varphi_{x}(x) \downarrow \text { and } \varphi_{y}(y) \downarrow \text { and } \varphi_{x}(x) E \varphi_{y}(y) .
$$

C.e. ERs

- To study the structure of c.e. ERs, Gao and Gerdes introduced a jump operator

Definition (Gao, Gerdes)

Let E be a c.e. ER. The jump of E, written as E^{\prime} is defined

$$
x E^{\prime} y \Leftrightarrow \varphi_{x}(x) \downarrow \text { and } \varphi_{y}(y) \downarrow \text { and } \varphi_{x}(x) E \varphi_{y}(y)
$$

- For example, the jump of the smallest element, $\left(\equiv_{1}\right)^{\prime}=R_{K}$.
- $(l d)^{\prime}$ is the c.e. ER yielding the partition $\left\{K_{i}: i \in \omega\right\} \cup\{\{x\}: x \notin K\}$, where $K_{i}=\left\{e: \varphi_{e}(e) \downarrow=i\right\}$.

C.e. ERs

Theorem (Gao, Gerdes)

(1) $R \leq R^{\prime}$
(2) $S \leq R$ iff $S^{\prime} \leq R^{\prime}$
(3) If R is not universal then R^{\prime} is not universal.

- Clearly if R is universal then $R^{\prime} \equiv R$. Is there a non-universal ER with this property?

C.e. ERs

Theorem (Andrews, Lempp, Miller, N, Sorbi) Let E be a c.e. $E R$. If $E^{\prime} \leq E$ then E is universal.

Corollary

The c.e. ERs is upwards dense.

C.e. ERs

- The universal c.e. ERs are exactly the ones closed under the jump. Look at notable subclasses.
- Recall each precomplete c.e. ER is universal.
- Effectively inseparable sets play a crucial role in the study of c.e. sets. Visser, Bernadi study this for ERs.
- \triangle ce FR is offectivaly inconarahle if it viel ds a partition into effectively inseparable sets. A c.e. ER is uniformly effectively inseparable if one can uniformly aet a production function.

C.e. ERs

- The universal c.e. ERs are exactly the ones closed under the jump. Look at notable subclasses.
- Recall each precomplete c.e. ER is universal.
- Effectively inseparable sets play a crucial role in the study of c.e. sets. Visser, Bernadi study this for ERs.
- A c.e. ER is effectively inseparable if it yields a partition into effectively inseparable sets.
- A c.e. ER is uniformly effectively inseparable if one can uniformly get a production function.

C.e. ERs

Theorem (Andrews, Lempp, Miller, N, San Mauro, Sorbi)

(1) Each precomplete ER is uniformly effectively inseparable.
(2) Each uniformly effectively inseparable ER is universal (and of course, effectively inseparable).
(3) Universality and effective inseparability do not imply each other.

- It was also shown that u.e.i. coincides with a number of previously studied notions in Bernadi, Sorbi.

Natural arithmetical ERs

- Arithmetical ERs.
- Coskey, Hamkins and Miller studied ERs based on c.e. analogues of the standard Borel relations.
- The well-studied ERs in Borel study are:
- $E_{1}=\left\{(A, B): \forall^{\infty} n\left(A_{n}=B_{n}\right)\right\}$
- $E_{3}=\left\{(A, B): \forall n\left(A_{n}={ }^{*} B_{n}\right)\right\}$
- $E_{\text {set }}=\left\{(A, B):\left\{A_{n}\right\}=\left\{B_{n}\right\}\right\}$
- $Z_{0}=\left\{(A, B) \left\lvert\, \lim _{n} \frac{|(A \Delta B)| n \mid}{n}=0\right.\right\}$

Natural arithmetical ERs

- They considered the c.e. analogues of these relations, and showed that the situation there is different.
Theorem (Coskey, Hamkins, Miller)

$$
E_{=*}^{c e} \equiv E_{1}^{c e}, \text { where } E_{1}^{c e}=\left\{(A, B): \forall^{\infty} n\left(A_{n}=B_{n}\right)\right\} .
$$

Natural arithmetical ERs

- They considered the c.e. analogues of these relations, and showed that the situation there is different.
Theorem (Coskey, Hamkins, Miller)
$E_{=*}^{c e} \equiv E_{1}^{c e}$, where $E_{1}^{c e}=\left\{(A, B): \forall^{\infty} n\left(A_{n}=B_{n}\right)\right\}$.
Theorem (Miller, N)
- $E_{3}^{c e} \equiv Z_{0}^{c e}$.
- $E_{3}^{c e}<E_{s e t}^{c e}$.

Natural arithmetical ERs

- To study naturally arising (low-level) arithmetical ERs, Coskey, Hamkins and Miller considered:

$$
\begin{aligned}
E_{\min }^{c e} & =\{(W, V): \min W=\min V\} \\
E_{\max }^{c e} & =\{(W, V): \max W=\max V\}
\end{aligned}
$$

- These are Π_{2}^{0} relations, and in fact:

Natural arithmetical ERs

- To study naturally arising (low-level) arithmetical ERs, Coskey, Hamkins and Miller considered:

$$
\begin{gathered}
E_{\min }^{c e}=\{(W, V): \min W=\min V\} \\
E_{\max }^{c e}=\{(W, V): \max W=\max V\}
\end{gathered}
$$

- These are Π_{2}^{0} relations, and in fact:

```
Theorem (Coskey, Hamkins, Miller)
Emmax
```


Proof.

If $E_{\max }^{c e} \leq E_{\min }^{c e}$ via f, we build (by the Recursion Theorem) W_{i} and W_{j} and watch $W_{f(i)}$ and $W_{f(j)}$.

Universal arithmetical ERs

- We've seen several examples of naturally occurring arithmetical ERs and tried to classify them.
- One can also look at algebraic structures known to have simple isomorphism problems.
- Let's instead look at the general theory - universality.
- For c.e. ERs, we've seen that this yields a rich theory (jump operator, u.e.i.)
- What about for arithmetical ERs (at different levels)?

Universal arithmetical ERs

- We've seen several examples of naturally occurring arithmetical ERs and tried to classify them.
- One can also look at algebraic structures known to have simple isomorphism problems.
- Let's instead look at the general theory - universality.
- For c.e. ERs, we've seen that this yields a rich theory (jump operator, u.e.i.).
- What about for arithmetical ERs (at different levels)?

Universal arithmetical ERs

- By putting together all c.e. ERs, we can obtain a universal c.e. ER. Relativize this to get a universal Σ_{n}^{0} ER for each n.
- Doing this does not work to produce a universal Π_{1}^{0} ER.
- The transitive closure of a c.e. set of pairs is c.e., but not for Π_{1}^{0} sets of pairs. Nevertheless,

Universal arithmetical ERs

- By putting together all c.e. ERs, we can obtain a universal c.e. ER. Relativize this to get a universal $\Sigma_{n}^{0} E R$ for each n.
- Doing this does not work to produce a universal Π_{1}^{0} ER.
- The transitive closure of a c.e. set of pairs is c.e., but not for Π_{1}^{0} sets of pairs. Nevertheless,

Theorem (lanovski, Miller, Nies, N)

There is a universal $\Pi_{1}^{0} E R$.

Universal arithmetical ERs

Surprisingly, we found that:
Theorem (lanovski, Miller, Nies, N)
For any $n \geq 2$ there is no universal $\Pi_{n}^{0} E R$.

Theorem (Fokina, Friedman and Nies)

Universal arithmetical ERs

Surprisingly, we found that:
Theorem (lanovski, Miller, Nies, N)
For any $n \geq 2$ there is no universal $\Pi_{n}^{0} E R$.
Theorem (Fokina, Friedman and Nies)
$\left\{(W, V): W \equiv_{1} V\right\}$ and $\left\{(W, V): W \equiv_{m} V\right\}$ are universal at the Σ_{3}^{0} level.

Universal arithmetical ERs

Surprisingly, we found that:
Theorem (lanovski, Miller, Nies, N)
For any $n \geq 2$ there is no universal $\Pi_{n}^{0} E R$.
Theorem (Fokina, Friedman and Nies)
$\left\{(W, V): W \equiv_{1} V\right\}$ and $\left\{(W, V): W \equiv_{m} V\right\}$ are universal at the Σ_{3}^{0} level.

Theorem (lanovski, Miller, Nies, N) $\left\{(W, V): W \equiv_{T} V\right\}$ is universal at the Σ_{4}^{0} level.

Another reducibility

- The usual reducibility for comparing ERs,

$$
R \leq S \Leftrightarrow \exists f \forall x, y(x R y \Leftrightarrow f(x) S f(y))
$$

is sometimes too uniform.

- For instance, lack of universal ERs at Π_{n+2} levels.
- Often, when one wants to show $R \leq S$, one often first tries a "non-uniform" map.

Another reducibility

- The usual reducibility for comparing ERs,

$$
R \leq S \Leftrightarrow \exists f \forall x, y(x R y \Leftrightarrow f(x) S f(y))
$$

is sometimes too uniform.

- For instance, lack of universal ERs at Π_{n+2} levels.
- Often, when one wants to show $R \leq S$, one often first tries a "non-uniform" map.

Definition (Miller, N)

We say that R is n-arily reducible to S, and write $R \leq^{n} S$, if there are total computable functions $f_{1}, \cdots, f_{n}: \omega^{n} \mapsto \omega$, such that for all $j, k \leq n$ and all n-tuple of numbers i_{1}, \cdots, i_{n}, we have

$$
i_{j} R i_{k} \Leftrightarrow f_{j}\left(i_{1}, \cdots, i_{n}\right) S f_{k}\left(i_{1}, \cdots, i_{n}\right)
$$

Finitary reducibility

- For example, $R \leq^{2} S$ iff there are computable functions f, g such that for all pairs x, y,

$$
x R y \Leftrightarrow f(x, y) S g(x, y)
$$

- This seems a good alternative way to measure reducibility for ERs:
- Equality of c.e. sets is universal at the Π_{2}^{0} level for \leq^{n} for all $n \geq 2$.
- Relativizing we get universal FRs at the Π^{0} for every k with resnect io finitary reducibilities.
- $E_{\text {max }}^{c e}$ is universal at the Π_{2}^{0} level for ≤ 3 (but not universal for \leq^{4}).

Finitary reducibility

- For example, $R \leq^{2} S$ iff there are computable functions f, g such that for all pairs x, y,

$$
x R y \Leftrightarrow f(x, y) S g(x, y)
$$

- This seems a good alternative way to measure reducibility for ERs:

Theorem (Miller,N)

- Equality of c.e. sets is universal at the Π_{2}^{0} level for \leq^{n} for all $n \geq 2$.
- Relativizing, we get universal ERs at the Π_{k}^{0} for every k, with respect to finitary reducibilities.

[^0]
Finitary reducibility

- For example, $R \leq^{2} S$ iff there are computable functions f, g such that for all pairs x, y,

$$
x R y \Leftrightarrow f(x, y) S g(x, y)
$$

- This seems a good alternative way to measure reducibility for ERs:

Theorem (Miller,N)

- Equality of c.e. sets is universal at the Π_{2}^{0} level for \leq^{n} for all $n \geq 2$.
- Relativizing, we get universal ERs at the Π_{k}^{0} for every k, with respect to finitary reducibilities.
- $E_{\text {max }}^{c e}$ is universal at the Π_{2}^{0} level for \leq^{3} (but not universal for \leq^{4}).

Questions

- Are there natural examples of ERs separating \leq^{n} from \leq^{n+1} ?
- Understand the structure of the partial order for Σ_{k}^{0} ERs under both reducibilities.
- Find ERs arising in algebra and fit it in the general theory.
- Thank you.

[^0]: - $E_{\text {max }}^{c e}$ is universal at the Π_{2}^{0} level for $\leq \leq^{3}$ (but not universal for \leq^{4}).

