Differentiability and porosity

André Nies

April 3, 2013
Buenos Aires Semester
Computability, Complexity and Randomness

THE UNIVERSITY OF AUCKLAND NEW ZEALAND

"Almost everywhere" theorems

Several important theorems in analysis assert a property for almost every real z. Two examples:

Theorem (Lebesgue, 1904)

Let $E \subseteq[0,1]$ be measurable. Then for almost every $z \in[0,1]$:

$$
\text { if } z \in E \text {, then } E \text { has density } 1 \text { at } z \text {. }
$$

Theorem (Lebesgue, 1904)
Let $f:[0,1] \rightarrow \mathbb{R}$ be of bounded variation. Then the derivative $f^{\prime}(z)$ exists for almost every real z.

Variation of a function

Recall that for a function $g:[0,1] \rightarrow \mathbb{R}$ we let

$$
V(g,[0, x])=\sup \sum_{i=1}^{n-1}\left|g\left(t_{i+1}\right)-g\left(t_{i}\right)\right|
$$

where the sup is taken over all $t_{1} \leq t_{2} \leq \ldots \leq t_{n}$ in $[0, x]$.

We say that g is of bounded variation if $V(g,[0,1])$ is finite.

Complexity of the exception set

Theorem (Demuth 1975/Brattka, Miller, Nies 2011)

Let $r \in[0,1]$. Then
r is ML-random \Longleftrightarrow
$f^{\prime}(r)$ exists, for each function f of bounded variation such that $f(q)$ is a computable real, uniformly in each rational q.

- The implication " \Rightarrow " is an effective version of the classical theorem.
- The implication " \Leftarrow " has no classical counterpart. To prove it, one builds a computable function f of bounded variation that is only differentiable at ML-random reals.

Computable randomness

Can you bet on this and make unbounded profit?

> 10100111000101111010101000010101101111011000010111101010 10010101100011111010110001100111111101100000111001111000 00110011011110100011110100011100101011011001011100010110 01100110001111000010011001011101100100101000001110001111 11100100011000101111110100010111110011011100100110011010 00111111011010101101001101010110000011000001001101011100 01001001001011010001010000110100010100011100001100000100 11000111110111001000011001011010100111101111010101111111 $00000001010011110010000000011011001010011010101101000010 \ldots$.

We call a sequence of bits computably random if no computable betting strategy (martingale) has unbounded capital along the sequence.
ML-random \Rightarrow computably random, but not conversely.

Computable randomness and differentiability

Theorem (Brattka, Miller, Nies, 2011)

Let $r \in[0,1]$. Then
r (in binary) is computably random \Longleftrightarrow
$f^{\prime}(r)$ exists, for each nondecreasing function f that is uniformly computable on the rationals.

- Full computability of a function $f:[0,1] \rightarrow \mathbb{R}$ means that with a Cauchy name for x as an oracle, one can compute a Cauchy name for $f(x)$.
- For continuous nondecreasing functions, full computability is equivalent to being computable on the rationals.

Other notions of effectiveness

Variants of the Demuth/ BMN theorems have been proved:
Theorem (Freer, Kjos, Nies, Stephan, 2012)
x is computably random \Leftrightarrow
each computable Lipschitz functions is differentiable at x.

Theorem (BMN, 2011)
z is weakly 2 -random \Leftrightarrow each a.e. differentiable computable function f is differentiable at z.

Theorem (Pathak, Rojas, Simpson 2011/ Freer, Kjos, Nies, Stephan, 2012)
z is Schnorr random \Leftrightarrow
z is a weak Lebesgue point of each L_{1}-computable function.

We will look at nondecreasing functions, but vary the notion of effectiveness.

Hyperarithmetical functions

Effectiveness much higher up...
We say that z is Δ_{1}^{1} random if no hyperarithmetical martingale succeeds on z.

Theorem

z is Δ_{1}^{1} random
\Leftrightarrow each nondecreasing hyperarithmetical f is differentiable at z
\Leftrightarrow each hyperarithmetical f of bounded variation is differentiable at z.

This is because $V(f,[0, x])$ can be evaluated by quantifying over rationals, and hence is also hyperarithmetical. So the Jordan decomposition of a hyp f is hyp.
It is hard to get past Δ_{1}^{1} randomness. Even the a.e. differentiable hyp functions only need that.

The two theorems

Firstly, we will look at feasibly computable nondecreasing functions. We obtain an analog of the Brattka, Miller, N 2011 result.

Theorem

$r \in[0,1]$ is polynomial time random \Longleftrightarrow $g^{\prime}(r)$ exists, for each nondecreasing function g that is polynomial time computable.

Secondly, we look at a class of nondecreasing functions larger than computable. We say a nondecreasing function f is interval c.e. if $f(0)=0$, and for any rational $q>p, f(q)-f(p)$ is a uniformly left-c.e. real.

Theorem

Let $z \in[0,1]$. Then z is a ML-random density-one point \Longleftrightarrow $f^{\prime}(r)$ exists, for each interval-c.e. function f

Density, porosity, and derivatives

Density ...

The (lower Lebesgue) density of a set $\mathcal{C} \subseteq \mathbb{R}$ at a point z is the quantity

$$
\varrho(\mathcal{C} \mid z):=\liminf _{z \in I \wedge|I| \rightarrow 0} \frac{\lambda(I \cap \mathcal{C})}{|I|},
$$

where I ranges over intervals containing z.

Definition (Bienvenu, Hölzl, Miller, N, 2011)

We say that $z \in[0,1]$ is a density-one point if $\varrho(\mathcal{C} \mid z)=1$ for every effectively closed class \mathcal{C} containing z.

... and porosity

We say that a set $\mathcal{C} \subseteq \mathbb{R}$ is porous at z via the porosity factor $\varepsilon>0$ if there exists arbitrarily small $\beta>0$ such that $(z-\beta, z+\beta)$ contains an open interval of length $\varepsilon \beta$ that is disjoint from \mathcal{C}.

Definition

We call z a porosity point if some effectively closed class to which it belongs is porous at z. Otherwise, z is a non-porosity point.

Theorem (Bienvenu, Hölzl, Miller, N, 2011)

Any ML-random porosity point is Turing complete.

Dyadic versus full

A (closed) basic dyadic interval has the form $\left[r 2^{-n},(r+1) 2^{-n}\right]$ where $r \in \mathbb{Z}, n \in \mathbb{N}$. For the lower dyadic density of a $\operatorname{set} \mathcal{C} \subseteq \mathbb{R}$ at a point z only consider basic dyadic intervals containing z :

$$
\varrho_{2}(\mathcal{C} \mid z):=\liminf _{z \in I \wedge|I| \rightarrow 0} \frac{\lambda(I \cap \mathcal{C})}{|I|}
$$

where I ranges over basic dyadic intervals containing z.

Theorem (Khan and Miller, 2012)

Let z be a ML-random dyadic density-one point. Then z is a full density-one point.

We know from Franklin.Ng 2010 and BHMN 2011 that z is a non-porosity point. The actual statement Joe and Mushfeq proved:

Suppose z is a non-porosity point. Let \mathcal{P} be a Π_{1}^{0} class, $z \in \mathcal{P}$, and $\varrho_{2}(\mathcal{P} \mid z)=1$. Then already $\varrho(\mathcal{P} \mid z)=1$. (Same \mathcal{P}.)

Suppose z is a non-porosity point. Let \mathcal{P} be a Π_{1}^{0} class, $z \in \mathcal{P}$, and $\varrho_{2}(\mathcal{P} \mid z)=1$. Then already $\varrho(\mathcal{P} \mid z)=1$.

Proof.

Consider an arbitrary interval I with $z \in I$ and $\lambda_{I}(\mathcal{P})<1-\epsilon$. Let $\delta=\epsilon / 4$.

Let n be such that $2^{-n+1}>|I| \geq 2^{-n}$. Cover I with three consecutive basic dyadic intervals A, B, C of length 2^{-n}.
Say $z \in B$. Since \mathcal{P} is relatively sparse in I, but thick in B, this means it must be sparse in A or C.
Let the Π_{1}^{0} class \mathcal{Q} consist of the basic dyadic intervals where \mathcal{P} is thick:

$$
\mathcal{Q}=[0,1]-\bigcup\left\{L: \lambda_{L}(\mathcal{P})<1-\delta\right\}
$$

where L ranges over open basic dyadic intervals. Then \mathcal{Q} is porous at z with porosity factor $1 / 3$: if $z \in B$, say, then one of A, C must be missing.

Upper and lower derivatives

Let $f:[0,1] \rightarrow \mathbb{R}$. We define

$$
\begin{aligned}
& \bar{D} f(z)=\limsup _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h} \\
& \underline{D} f(z)=\liminf _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
\end{aligned}
$$

Then
$f^{\prime}(z)$ exists $\Longleftrightarrow \bar{D} f(z)$ equals $\underline{D} f(z)$ and is finite.

Notation for slopes, and for basic dyadic intervals

For a function $f: \subseteq \mathbb{R} \rightarrow \mathbb{R}$, the slope at a pair a, b of distinct reals in its domain is

$$
S_{f}(a, b)=\frac{f(a)-f(b)}{a-b} .
$$

For an interval A with endpoints a, b, we also write $S_{f}(A)$ instead of $S_{f}(a, b)$.

- Let $[\sigma]$ denote the closed basic dyadic interval $\left[0 . \sigma, 0 . \sigma+2^{-|\sigma|}\right]$, for a string σ.
- The open basic dyadic interval is denoted (σ).
- We write $S_{f}([\sigma])$ with the expected meaning.

Pseudo-derivatives

- If f is only defined on the rationals in $[0,1]$, we can still consider the upper and lower pseudo-derivatives defined by:

$$
\begin{aligned}
& \underset{\sim}{D} f(x)=\liminf _{h \rightarrow 0^{+}}\left\{S_{f}(a, b) \mid a \leq x \leq b \wedge 0<b-a \leq h\right\}, \\
& \widetilde{D} f(x)=\underset{h \rightarrow 0^{+}}{\limsup }\left\{S_{f}(a, b) \mid a \leq x \leq b \wedge 0<b-a \leq h\right\} .
\end{aligned}
$$

where a, b range over rationals in $[0,1]$.

- If f is total and continuous, or nondecreasing, this is the same as the usual derivatives.
- We will use the subscript 2 to indicate that all the limit operations are restricted to the case of basic dyadic intervals containing z. For instance,

$$
\widetilde{D}_{2} f(x)=\limsup _{|\sigma| \rightarrow \infty}\left\{S_{f}([\sigma]) \mid x \in[\sigma]\right\} .
$$

Slopes and martingales

The basic connections:

- if f is nondecreasing then $M(\sigma)=S_{f}([\sigma])$ is a martingale.
- M succeeds on $z \Leftrightarrow \widetilde{D}_{2} f(z)=\infty$
- M converges on $z \Leftrightarrow{\underset{\sim}{D}}_{2} f(z)=\widetilde{D}_{2} f(z)<\infty$

High dyadic slopes lemma

Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a nondecreasing function. Suppose for a real $z \in[0,1]$ we have

$$
\widetilde{D}_{2} f(z)<p<\widetilde{D} f(z) .
$$

Let $\sigma^{*} \prec Z$ be any string such that $\forall \sigma\left[Z \succ \sigma \succeq \sigma^{*} \Rightarrow S_{f}([\sigma]) \leq p\right]$. Then the closed set

$$
\mathcal{C}=\left[\sigma^{*}\right]-\bigcup\left\{(\sigma): \sigma \succeq \sigma^{*} \wedge S_{f}([\sigma])>p\right\},
$$

which contains z, is porous at z.

Low dyadic slopes lemma

Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a nondecreasing function and $z \in[0,1]$ such that $\underset{\sim}{D} f(z)<q<{\underset{\sim}{D}}_{2} f(z)$. Let $\sigma^{*} \prec Z$ be any string such that $\forall \sigma\left[Z \succ \sigma \succeq \sigma^{*} \Rightarrow S_{f}([\sigma]) \geq q\right]$. Then the closed set

$$
\mathcal{C}=\left[\sigma^{*}\right]-\bigcup\left\{(\sigma): \sigma \succeq \sigma^{*} \wedge S_{f}([\sigma])<q\right\}
$$

which contains z, is porous at z.

Proof of high dyadic slopes lemma

- Suppose $k \in \mathbb{N}$ is such that $p\left(1+2^{-k+1}\right)<\widetilde{D} f(z)$.
- We show that there exists arbitrarily large n such that some basic dyadic interval of length 2^{-n-k} has slope $>p$, and is contained in $\left[z-2^{-n+2}, z+2^{-n+2}\right]$.
- In particular, we can choose 2^{-k-2} as a porosity constant.

Proof.

- There is an interval $I \ni z$ of arbitrarily short positive length such that $p\left(1+2^{-k+1}\right)<S_{f}(I)$. Let n be such that $2^{-n+1}>|I| \geq 2^{-n}$.
- Let a_{0} be greatest of the form $v 2^{-n-k}, v \in \mathbb{Z}$, such that $a_{0}<\min I$.
- Let $a_{v}=a_{0}+v 2^{-n-k}$. Let r be least such that $a_{r} \geq \max I$.

By the averaging property of slopes and since f is nondecreasing, there must be an $\left[a_{i}, a_{i+1}\right]$ with a slope $>p$. This interval does not contain z.

Polynomial time randomness and differentiability

Special Cauchy names

A Cauchy name is a sequence of rationals $\left(p_{i}\right)_{i \in \mathbb{N}}$ such that $\forall k>i\left|p_{i}-p_{k}\right| \leq 2^{-i}$. We represent a real x by a Cauchy name converging to x.

For feasible analysis, we use a compact set of Cauchy names: the signed digit representation of a real. Such Cauchy names, called special, have the form

$$
p_{i}=\sum_{k=0}^{i} b_{k} 2^{-k},
$$

where $b_{k} \in\{-1,0,1\}$. (Also, $b_{0}=0, b_{1}=1$.)
So they are given by paths through $\{-1,0,1\}^{\omega}$, something a resource bounded TM can process. We call the b_{k} the symbols of the special Cauchy name.

Polynomial time computable functions

The following has been formulated in equivalent forms by Ker-i-Ko (1989), Weihrauch (2000), Braverman (2008), and others.

Definition

A function $g:[0,1] \rightarrow \mathbb{R}$ is polynomial time computable if there is a polynomial time TM turning every special Cauchy name for $x \in[0,1]$ into a special Cauchy name for $g(x)$.

This means that the first n symbols of $g(x)$ can be computed in time poly(n), thereby using polynomially many symbols of the oracle tape holding x.

Functions such as $e^{x}, \sin x$ are polynomial time computable.
Analysis gives us rapidly converging approximation sequences, such as $e^{x}=\sum_{n} x^{n} / n!$. As Braverman points out, e^{x} is computable in time $O\left(n^{3}\right)$. Namely, from $O\left(n^{3}\right)$ symbols of x we can in time $O\left(n^{3}\right)$ compute an approximation of e^{x} with error $\leq 2^{-n}$.

Polynomial time randomness

A martingale $M: 2^{<\omega} \rightarrow \mathbb{R}$ is called polynomial time computable if from string σ and $i \in \mathbb{N}$ we can in time polynomial in $|\sigma|+i$ compute the i-th component of a special Cauchy name for $M(\sigma)$.

In this case we can compute a polynomial time martingale in base 2 dominating M (Schnorr / Figueira-N).

We say Z is polynomial time random if no polynomial time martingale succeeds on Z.

Fact

f is a nondecreasing polynomial time computable function

$$
\Rightarrow
$$

the slope $S_{f}([\sigma])$ determines a polynomial time computable martingale.

This is so because we can compute f with sufficiently high precision.

The first theorem

Theorem

The following are equivalent.
(I) $z \in[0,1]$ is polynomial time random
(II) $f^{\prime}(z)$ exists, for each nondecreasing function f that is polynomial time computable.

One actually shows: z not polytime random \Rightarrow

$$
\underline{D} f(z)=\infty \text { for some polynomial time computable function } f \text {. }
$$

This is uses machinery from the Figueira/N (2013) paper 'Randomness, feasible analysis, and base invariance'.

Proof.

- If z is not polytime random, some polytime martingale with the savings property succeeds on z.
- Then $\operatorname{cdf}_{M}:[0,1] \rightarrow \mathbb{R}$ is polytime computable (using the almost Lipschitz property).
- And the lower derivative $\underline{\operatorname{D}} \operatorname{cdf}_{M}(z)=\infty$.

We need to show:
$z \in[0,1]$ is polynomial time random $\Rightarrow f^{\prime}(z)$ exists,
for each nondecreasing function f that is polynomial time computable.

- Consider the polynomial time computable martingale

$$
M(\sigma)=S_{f}\left(0 . \sigma, 0 . \sigma+2^{-|\sigma|}\right)=S_{f}([\sigma]) .
$$

- $\lim _{n} M\left(Z \upharpoonright_{n}\right)$ exists and is finite for each polynomially random Z. This is a version of Doob martingale convergence.
- Returning to the language of slopes, the convergence of M on Z means that ${\underset{\sim}{D}}_{2} f(z)=\widetilde{D}_{2} f(z)<\infty$.

Assume for a contradiction that $f^{\prime}(z)$ fails to exist. First suppose that

$$
\widetilde{D}_{2} f(z)<p<\widetilde{D} f(z) .
$$

We may suppose $S_{f}(A)<p$ for all dyadic intervals containing z.
Choose k with $p\left(1+2^{-k+1}\right)<\widetilde{D} f(z)$.
By the "high dyadic slopes" lemma and its proof, there exists arbitrarily large n such that some basic dyadic interval $\left[\tau_{n}\right]$ of length 2^{-n-k} has slope $>p$ and is contained in $\left[z-2^{-n+2}, z+2^{-n+2}\right]$. Let $0 . Z=z$ where $Z \in 2^{\mathbb{N}}$.

Lucky case: there are infinitely many n with $\eta=Z \upharpoonright_{n-4} \prec \tau_{n}$. Then the martingale that from η on bets everything on the strings of length $n+k$ other than τ_{n} gains a fixed factor $2^{k+4} /\left(2^{k+4}-1\right)$.

Unlucky case: for almost all n we have $Z \upharpoonright_{n-4} \nprec \tau_{n}$. That means $0 . \tau_{n}$ is on the left side of z, and the martingale can't use it as it may be far from Z in Cantor space!

Morayne-Solecki trick

The following was used in a paper by Morayne and Solecki (1989). They gave a martingale proof of Lebesgue differentiation theorem. For $m \in \mathbb{N}$ let \mathcal{D}_{m} be the collection of intervals of the form

$$
\left[k 2^{-m},(k+1) 2^{-m}\right]
$$

where $k \in \mathbb{Z}$. Let \mathcal{D}_{m}^{\prime} be the set of intervals $(1 / 3)+I$ where $I \in \mathcal{D}_{m}$.

Fact

Let $m \geq 1$. If $I \in \mathcal{D}_{m}$ and $J \in \mathcal{D}_{m}^{\prime}$, then the distance between an endpoint of I and an endpoint of J is at least $1 /\left(3 \cdot 2^{m}\right)$.

To see this: assume that $k 2^{-m}-\left(p 2^{-m}+1 / 3\right)<1 /\left(3 \cdot 2^{m}\right)$. This yields $\left(3 k-3 p-2^{m}\right) /\left(3 \cdot 2^{m}\right)<1 /\left(3 \cdot 2^{m}\right)$, and hence $3 \mid 2^{m}$, a contradiction.

Using this trick

So, in the unlucky case, we instead bet on the dyadic expansion Y of $z-1 / 3$. (We may assume that $z>1 / 2$).

Given $\eta^{\prime}=\left.Y\right|_{n-4}$, where n is as above, we look for an extension $\tau^{\prime} \succ \eta^{\prime}$ of length $n+k+1$, such that $1 / 3+\left[\tau^{\prime}\right] \subseteq[\tau]$ for a string $[\tau]$ with $S_{f}([\tau])>p$. If it is found, we bet everything on the other extensions of η^{\prime} of that length. We gain a fixed factor $2^{k+5} /\left(2^{k+5}-1\right)$.

So we get a polytime martingale that wins on $z-1 / 3$. Since polytime randomness is base invariant, this gives a contradiction.

The case $\underset{\sim}{D} f(z)<\underset{\sim}{D}{ }_{2} f(z)$ is analogous, using the low dyadic slopes lemma instead.

Ambos-Spies et al., 1996 called a martingale "weakly simple" if it has only have finitely many, rational, betting factors. The martingales showing that dyadic derivative $=$ full derivative are such. So being polynomially stochastic is sufficient for this.

Martin-Löf random density-one points

and differentiability

The second theorem

Theorem

Let $f:[0,1] \rightarrow \mathbb{R}$ be an interval-c.e. function. Let z a be ML-random density-one point. Then $f^{\prime}(z)$ exists.

Interval-c.e. functions

Definition

A non-decreasing function f on $[0,1]$ with $f(0)=0$ is called interval-c.e. if $f(q)-f(p)$ is a left-c.e. real uniformly in rationals $p<q$.

If f is continuous, this implies lower semicomputable. Recall that for $g:[0,1] \rightarrow \mathbb{R}$ we let

$$
V(g,[0, x])=\sup \sum_{i=1}^{n-1}\left|g\left(t_{i+1}\right)-g\left(t_{i}\right)\right|,
$$

where the sup is taken over all $t_{1} \leq t_{2} \leq \ldots \leq t_{n}$ in $[0, x]$.
Theorem (Freer, Kjos-Hanssen, N, Stephan, Rute 2012)
A continuous function f is interval-c.e. \Leftrightarrow
there is a computable function g such that $f(x)=\operatorname{Var}(g,[0, x])$.

Left-c.e. martingales

Definition

A martingale $M: 2^{<\omega} \rightarrow \mathbb{R}$ is called left-c.e. if $M(\sigma)$ is a left-c.e. real uniformly in string σ.
Z is ML-random iff no left-c.e. martingale succeeds on Z.

Definition

A martingale M converges on $Z \in 2^{\mathbb{N}}$ if $\lim _{n} M\left(Z \upharpoonright_{n}\right)$ exists and is finite.
$Z \in 2^{\mathbb{N}}$ is a convergence point for left-c.e. martingales if each left-c.e. martingale converges on Z.

- The computably randoms are the convergence points for all computable martingales.
- The Martin-Löf randoms that are density-one points are the convergence points for all left-c.e. martingales (Andrews, Cai, Diamondstone, Lempp, Miller; 2012).

The actual theorem

Theorem

Let $f:[0,1] \rightarrow \mathbb{R}$ be an interval-c.e. function. Let z be a convergence point for left-c.e. martingales. Then $f^{\prime}(z)$ exists.

The basic connection:

- if f is interval-c.e., then $M(\sigma)=S_{f}([\sigma])$ is a left-c.e. martingale.
- Convergence of M on Z means that ${\underset{\sim}{D}}_{2} f(z)=\widetilde{D}_{2} f(z)$, i.e., f is dyadic differentiable at z.
The theorem says that we can get full differentiability for convergence points for left-c.e. martingales (but also looking at other left-c.e. martingales).

Recall: High dyadic slopes lemma

Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a nondecreasing function. Suppose for a real $z \in[0,1]$ we have

$$
\widetilde{D}_{2} f(z)<p<\widetilde{D} f(z) .
$$

Let $\sigma^{*} \prec Z$ be any string such that $\forall \sigma\left[Z \succ \sigma \succeq \sigma^{*} \Rightarrow S_{f}([\sigma]) \leq p\right]$. Then the closed set

$$
\mathcal{C}=\left[\sigma^{*}\right]-\bigcup\left\{(\sigma): \sigma \succeq \sigma^{*} \wedge S_{f}([\sigma])>p\right\},
$$

which contains z, is porous at z.

Proposition

Let $f:[0,1] \rightarrow \mathbb{R}$ be interval-c.e. Then $\widetilde{D}_{2} f(z)=\widetilde{D} f(z)$ for each non-porosity point z.

Proof.

Assume $\widetilde{D}_{2} f(z)<\widetilde{D} f(z)$. Since f is interval c.e., the class \mathcal{C} defined in the Lemma is effectively closed. This class is porous at z. Contradiction.

Proof that $f^{\prime}(z)$ exists for left-c.e. convergence points z

We may assume $z>1 / 2$, else we work with $f(x+1 / 2)$ instead of f.

- The real z is a a dyadic density one point, hence a (full) density-one point by the Khan-Miller Theorem.
- Then $z-1 / 3$ is also a ML-random density-one point, so using the work of the Madison group discussed earlier, $z-1 / 3$ is also a convergence point for left-c.e. martingales.
- In particular, both z and $z-1 / 3$ are non-porosity points.

To complete the proof ...:

Let M be the martingale associated with the dyadic slopes of f.

- Note that M converges on z by hypothesis. Thus ${\underset{\sim}{D}}_{2} f(z)=\widetilde{D}_{2} f(z)=M(z)$.
- By the Proposition above we have $\widetilde{D}_{2} f(z)=\widetilde{D} f(z)$.
- It remains to be shown that

$$
\underset{\sim}{D} f(z)=\underset{\sim}{D}{ }_{2} f(z) .
$$

Since f is nondecreasing, $\underset{\sim}{D}=\underset{\sim}{D}$ etc., so this will establish that $f^{\prime}(z)$ exists.

Shifting by $1 / 3$ yields the same dyadic derivative

Let $\widehat{f}(x)=f(x+1 / 3)$, and let M^{\prime} the martingale associated with the dyadic slopes of \widehat{f}.

Claim

$M(z)=M^{\prime}(z-1 / 3)$.

Proof.

Since $z-1 / 3$ is a convergence point for c.e. martingales, M^{\prime} converges on $z-1 / 3$.
If $M(z)<M^{\prime}(z-1 / 3)$ then $\widetilde{D}_{2} f(z)<\widetilde{D} f(z)$. However z is a non-porosity point, so this contradicts the Proposition.
If $M^{\prime}(z-1 / 3)<M(z)$ we argue similarly, using that $z-1 / 3$ is a non-porosity point.

Choosing some rational parameters

Assume for a contradiction that

$$
\underset{\sim}{D} f(z)<{\underset{\sim}{2}}_{2} f(z) .
$$

Then we can choose rationals p, q such that

$$
\underset{\sim}{\operatorname{Dr}} f(z)<p<q<M(z)=M^{\prime}(z-1 / 3) .
$$

Let $k \in \mathbb{N}$ be such that $p<q\left(1-2^{-k+1}\right)$.
Let u, v be rationals such that

$$
q<u<M(z)<v \text { and } v-u \leq 2^{-k-3}(u-q) .
$$

Two Π_{1}^{0} classes

Let $n^{*} \in \mathbb{N}$ be such that we have $S_{f}(A) \geq u$, for each $n \geq n^{*}$ and any interval A of length $\leq 2^{-n^{*}}$ that is basic dyadic or basic dyadic $+1 / 3$.

$$
\begin{aligned}
\mathcal{E} & =\left\{X \in 2^{\mathbb{N}}: \forall n \geq n^{*} M\left(X \upharpoonright_{n}\right) \leq v\right\} \\
\mathcal{E}^{\prime} & =\left\{W \in 2^{\mathbb{N}}: \forall n \geq n^{*} M^{\prime}\left(W \upharpoonright_{n}\right) \leq v\right\}
\end{aligned}
$$

- Let $0 . Z$ be as usual the binary expansion of z. Let $0 . Y$ be the binary expansion of $z-1 / 3$.
- We have $Z \in \mathcal{E}$ and $Y \in \mathcal{E}^{\prime}$.

We will show that \mathcal{E} is porous at Z, or \mathcal{E}^{\prime} is porous at Y.

Low dyadic slopes for both types of intervals

Consider an interval $I \ni z$ of positive length $\leq 2^{-n^{*}-3}$ such that $S_{f}(I) \leq p$.

- Let n be such that $2^{-n+1}>|I| \geq 2^{-n}$.
- Let $a_{0}\left[b_{0}\right]$ be least of the form $j 2^{-n-k}\left[j 2^{-n-k}+1 / 3\right]$, where $j \in \mathbb{Z}$, such that $a_{0}\left[b_{0}\right] \geq \min (I)$.
- Let $a_{v}=a_{0}+v 2^{-n-k}$ and $b_{v}=b_{0}+v 2^{-n-k}$. Let r, s be greatest such that $a_{r} \leq \max (I)$ and $b_{s} \leq \max (I)$.
Since f is nondecreasing and $a_{r}-a_{0} \geq|I|-2^{-n-k+1} \geq\left(1-2^{-k+1}\right)|I|$, we have $S_{f}(I) \geq S_{f}\left(a_{0}, a_{r}\right)\left(1-2^{-k+1}\right)$, and therefore $S_{f}\left(a_{0}, a_{r}\right)<q$. (Slope at I is low, slope at $\left[a_{0}, a_{r}\right]$ can only be slightly larger.) Then there is an $i<r$ such that $S_{f}\left(a_{i}, a_{i+1}\right)<q$.
Similarly, there is $j<s$ such that $S_{f}\left(b_{j}, b_{j+1}\right)<q$.

Claim (Morayne-Solecki trick)

One of the following is true.
(i) z, a_{i}, a_{i+1} are all contained in a single interval taken from \mathcal{D}_{n-3}.
(ii) z, b_{j}, b_{j+1} are all contained in a single interval taken from $\mathcal{D}_{n-3}^{\prime}$.

Proving porosity of one of the Π_{1}^{0} classes

Let $\eta=Z \upharpoonright_{n-3}$ and $\eta^{\prime}=Y \upharpoonright_{n-3}$.

If (i) holds for this I then there is α of length $k+3$ (where $\left.[\eta \alpha]=\left[a_{i}, a_{i+1}\right]\right)$ such that $M(\eta \alpha)<q$.

- So by the choice of $q<u<v$ and since $M(\eta) \geq u$ there is β of length $k+3$ such that $M(\eta \beta)>r$.
- This yields a hole in \mathcal{E}, large and near $z=0 . Z$ on the scale of I, which is required for porosity of \mathcal{E} at Z.

Similarly, if (ii) holds for this I, then there is α of length $k+3$ (where $\left.\left[\eta^{\prime} \alpha\right]=\left[b_{j}, b_{j+1}\right]\right)$ such that $M^{\prime}\left(\eta^{\prime} \alpha\right)<q$. This yields a hole large and near $z-1 / 3=0 . Y$ on the scale of I required for porosity of \mathcal{E}^{\prime} at Y.

Thus, if case (i) applies for arbitrarily short intervals I, then \mathcal{E} is porous at Z, whence z is a porosity point. Otherwise (ii) applies for intervals below a certain length. Then \mathcal{E}^{\prime} is porous at Y, whence $z-1 / 3$ is a porosity point. Either case is a contradiction.

Some open questions

Question

Study effective analogs of Rademacher's theorem that every Lipschitz function on \mathbb{R}^{n} is a.e. differentiable.

Question

How much randomness is needed to ensure differentiability of interval- Π_{1}^{1} functions?

Chong, N and Yu have shown that each Π_{1}^{1} random is a density-one point for Σ_{1}^{1} classes. Maybe this latter property does it, by analogy with the computable case.

Question

If Z is a ML-random density-one point, is it Oberwolfach random? Equivalently, does it fail to compute some K-trivial?

Full proofs of the two theorems are on the 2013 Logic blog, available on my web site.

