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Theorem. If X is not normal then it is compressible.

Proof. Fix X non-normal.

1. Fix the blocks and positions with non-maximum entropy

Fix u1 and positions i
(1)
1 , i

(1)
2 , ... such that

lim
n→∞

blocc(X[1..i(1)n ], u)/i(1)n = fu 6= b−|u|.

Let u2, . . . , ub|u1| be such that {ui} = D|u1|.

For each j = 1..b|u| − 1, let i(j+1) be a subsequence of i(j) such that

lim
n→∞

blocc(X[1..i(j)n ], u)/i(j)n = fuj .

Let ij = i
(b|u1|)
j .

2. Codify the compression scheme for those blocks

Let θ : (b|u1|)∗ → b∗ be such that:

• |θ(v1 . . . vk)| < − log(
∏k

j=1 fvj ) + 1.

• For each k, {θ(v1 . . . vk) : vj ∈ {0, . . . , b− 1}|u1|} is prefix free.

For each k build a transducer Tk that looks like a trie tree of height k − 1 that transduces
each block of k|u1| digits into its output assigned by θ.

lim
n→∞

|Tk[1..in]|
in

≤
∑d in

k|u1| e
j=1 |θ(Tk[1 + (j − 1)k|u1|..jk|u1|])|

in

≤
in

k|u1| (1 +
∑

v1,...,vk
− log(

∏k
j=1 fvj )

∏k
j=1 fvj )

in

≤
1 + k

∑
u(− log fu)fu
k|u1|

≤ 1 + k|u1|(1− ε)
k|u1|

3. Group blocks to minimize rounding problems

Take k large enough such that the rounding does not matter (note that ε is independent
from k).
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4. Profit

Theorem (too many people). If X is normal then it is not compressible.

Proof. Fix X normal, T = 〈Q, δ, o, q0〉 with only reachable states and ε > 0 and show that for
each sufficiently large n, |T (X[1..n])| > (1− ε)3n.

1. Build a set of blocks with large contribution to the output

au = min{|o∗(q, u)| : q ∈ Q}

S` = {u : |u| = ` ∧ au ≥ (1− ε)`}

2. Show those are most of the blocks

Let t be the bound on the aebt1. For each pair of states q1, q2 and block v:

|{u : δ∗(q1, u) = q2 ∧ o∗(q1, u) = v}| ≤ t

|{u : ∃q1 o∗(q1, u) = v}| ≤ |Q|2t
|{u : au ≤ (1− ε)`} ≤ |Q|2tb(1−ε)`+2

|S`| ≥ b` − |Q|2tb(1−ε)`+2

Fix ` such that

|S`| > b`(1− ε)

3. Consider only the output of those blocks

Let n0 be large enough such that the frequency of each block of length ` is greater than
b−`(1− ε). For each n > n0.

|T (X[1..n])| ≥
bn/`c∑
i=1

aX[1+(i−1)`..i`]

≥ b−`(1− ε)n
`

∑
u∈S`

au

≥ b−`(1− ε)n
`

∑
u∈S`

`(1− ε)

≥ b−`(1− ε)n
`

(1− ε)b``(1− ε)

≥ (1− ε)3n

4. Profit

Theorem (Becher, Carton, H.). If X is normal then it is not compressible by k-var transducer.
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Proof. 1. Build a set of blocks with large contribution to the output

au = min{|o∗(q, . . . , u)| : q ∈ Q}

S` = {u : |u| = ` ∧ au ≥ (1− ε)`}

2. Show those are most of the blocks

For each u of length `, let vu be a minimum length block such that o∗(q, . . . , u) = vu
(|vu| = au). For each vu there is a configuration of the machine q, . . . that justifies it.

The . . . are the values of the k variables. Notice that changing the value of a variable’s
value from x > k` to y > k` does not change the behavior of the machine on the next
` steps (because the variable will always have non-zero value on each decision because it
cannot decrease more than k at each of the ` steps). So, for each vu consider a configuration
to justify it with each variable having value less than 2k`. After processing u from such
configuration the configuration left has all variables less than 3k` for the same reasoning
(each variable cannot grow more than k at each of the ` steps). As before, there are at
most t blocks u that start from a given configuration, finish at the same configuration and
give the same output vu. Therefore, the size of {u : vu = v} for a single v is bounded by
(2k`)k|Q|(3k`)k|Q|t and therefore,

|S`| ≥ b` − (2k`)k|Q|(3k`)k|Q|tb(1−ε)`+2.

Then, we can proceed as in the previous proof.

Configurations with a counter larger than `k have their behavior repeated with configurations
with a smaller counter, so only consider this last one.

3. Consider only the output of those blocks

4. Profit

Lemma (adapted from Schnorr and Stimm). The set of sequences that go through every state of
a reachable strongly connected component of an automata has positive measure.

Proof. 1. Fix a connected component and the path u that leads to it

Let {q1, . . . , qm} be a reachable strongly connected component and δ∗(q0, u) = q1.

2. Build accumulated paths ui from each state to a given one

Let u1,j = λ and ui+1,j be a path from δ∗(qi+1, u1,j . . . ui,j) to qj .

3. Consider the subset of [u] that contains each u1u2 . . . un an infinite number of
times

Each time u1,ju2,j . . . un,j occurs in the sequence, qj will be revisited.

4. Profit

Theorem (Becher, Carton, H.). If X is normal then it is not compressible by non-deterministic
transducer.

Proof. 1. Build a set of blocks with large contribution to the output

au = min{min{|v| : v ∈ o∗(q, u)} : q ∈ Q′}

where Q′ are the states visited infinitely often in a computation of T (X).
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2. Show those are most of the blocks

Follow as before, note that there cannot be more than t ways to go from state q1 to state
q2 with the same output and not violate aebt1 because there is a set of positive measure
extensions that is accepted starting from q2.

3. Consider only the output of those blocks

4. Profit

Theorem (Becher, Carton, H. on an idea of Boasson). There is a non-deterministic k-ary stack
transducer that compresses a normal sequence.

Proof. Proof steps:

1. Build a palindromic version of Champernowne

Let X = 01 10 00011011 11011000 . . . be as Champernowne but adding the blocks of a
given length twice, the second time being a mirror of the first.

2. Show it is normal

Same reasoning as Champernowne.

3. Build a compressor of palindromes

Two states, in one we push the current input onto the stack and output it. We may move
non-deterministically to the other. In the second state we only remove everything from the
stack as long as it matches the input and otherwise reject the input. When the stack is
empty, go back to the initial state, outputting a separator.

Notice that u1#u2#u3 . . . is the output only of u1(ur1)u2(ur2) . . . the transducer is one-to-
one, and it compresses X up to almost 1/2, using a third digit as output (which requires
log3 2 < 1/2 inflation to go back to 2 digits in a simple way).

4. Profit

Theorem (Agafonov; Becher and H.). Finite-state selectors preserve normality.

Proof. By the way of contradiction. Notice selectors will always select at least linearly many
digits (Staiger) and then compose the selector with a transducer that compresses its output while
maintaining the rest.

Theorem (Merkle and Reimann). Finite-state 1-var selectors do not preserve normality.

Proof. Let X = 01 00011011 000001010 . . . be as Champernowne but concatenating in each part
all blocks of a given length in lexicographic order. Note that the number of zeros is always greater
than the number of ones inside any part, and its the same after each part. Then, build a 1-var
selector that counts that difference (if 0, add 1, otherwise, subtract 1) and select only when the
the variable is 0. This will select the first digit of each part, which is always 0, so the output of
the selector is 00000 . . . .

Theorem (Becher, Carton and H.). Non-deterministic selectors do not preserve normality.

Proof. Guess the next digit, select it if it is zero.
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Theorem (Merkle and Reimann). Selection to the left belonging to a linear language does not
preserve normality.

Proof. Use palindromic Champernowne and the language of palindromes, for which all zeros are
selected.

Theorem (Becher, Carton and H.). Selection to the right suffix belonging to a set of infinite
sequences recognizable by non-deterministic automata preserves normality.

Proof. Basically the same idea than from the left, although much more technical. Show that the
selector takes at least linearly many and then compose.

Theorem (Becher, Carton and H.). Selection of digits in between two zeros does not preserve
normality.

Proof. Fix a normal in base 2 X. For binary digits c and d, let xcd be the “probability” that 0
appears next on the output given that cd are the last two digits seen on the input.

Simple analysis gives the following recurrences:

x00 = 1/2 + x01

x01 = x11/2

x10 = x00/2 + x01/2

x11 = x10/2 + x11/2

By solving them we obtain that x00 = 6/10, which makes the frequency of 00 in the output
different than 1/2, so the frequency of 00 is not 1/2 of the frequency of 0.
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