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Levy-Shoenfield Absoluteness

Let P(x) be a lightface Σ1predicate.

Theorem (Levy, Shoenfield) ∃xP(x)→ [L � ∃xP(x)].

The proof works when P(x) has a parameter in L(ωL
1),

but can fail dramatically
when P(x) has a parameter γ ∈ L− L(ωL

1).
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Cones

Let κ be a L-cardinal, and v a bounded subset of κ.

A set of the form

{w | ∃δ < κ ∧ v ∈ L(δ,w))}.
is called a κ-cone with vertex v .

Note: Cones belong to V
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Amenability

Let λ be a limit ordinal and v an unbounded subset of λ.

v is amenable iff ∀γ < λ (v ∩ γ) ∈ L(λ).

Theorem A Let Q(x) be a ∆ZF0 predicate whose
sole parameter is an ordinal c.

Suppose v is an amenable solution of Q(x), λ = sup v ,
and κ is the least L-cardinal greater than c and λ.

Assume the κ-cone with vertex v is a set of solutions of Q(x).
Then Q(x) has a solution in L.
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E-Recursion

{e}(x) is defined for all x ∈ V .
e is a finite instruction based on schemes.

{e}(x) gives rise to a a computation tree T<e,x>.
{e}(x) converges iff T<e,x> is wellfounded.
If {e}(x) diverges, then any infinite path
through T<e,x> is a divergence witness.

Moschovakis (1967): "{e}(x) diverges" is a ΣZF1 predicate.
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Divergence witnesses in L

Theorem B Let c ∈ L. Suppose ∃ amenable v
such that {e}(v , c) diverges, λ = sup v , and

κ is the least L-cardinal greater than c and λ.

Assume the κ-cone with vertex v is a set

of solutions of "{e}(x, c) diverges."
Then {e}(x, c) diverges for some x ∈ L.
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Proof of Theorem B

The argument "takes place" in L.

Let m = max{c,λ} and ρ = cofinality of λ.

H1(x) denotes the standard Σ1 hull of x.
Thus x ⊆ H1(x) �1 L.

Define Hδ for δ ≤ ρ.

H0 = H1(m∪ {m, κ}), Hδ+1 = H1(Hδ ∪ {Hδ}),
and Hγ = ∪{Hδ | δ < γ} when γ is a limit.

GERALD E SACKS (El Polo Científico Tecnológico Buenos Aires)Extensions of Levy-Shoenfield Absoluteness March 14, 2013 7 / 22



Proof of Theorem B

The argument "takes place" in L.

Let m = max{c,λ} and ρ = cofinality of λ.

H1(x) denotes the standard Σ1 hull of x.
Thus x ⊆ H1(x) �1 L.

Define Hδ for δ ≤ ρ.

H0 = H1(m∪ {m, κ}), Hδ+1 = H1(Hδ ∪ {Hδ}),
and Hγ = ∪{Hδ | δ < γ} when γ is a limit.

GERALD E SACKS (El Polo Científico Tecnológico Buenos Aires)Extensions of Levy-Shoenfield Absoluteness March 14, 2013 7 / 22



Proof II

Collapsing Hρ

Define Hρ = t(Hρ). t is the collapsing map.

t(κ) is the greatest cardinal in the sense of Hρ.

Hρ thinks t(κ) is regular.

Let gc(κ) denote t(κ).

cofinality(gc(κ)) = ρ (in L).

ΣHρ

2 cofinality of gc(κ) equals ΣHρ

2 cofinality of ord(Hρ) = ρ.

t(c) = c. t(λ) = λ. t(m) = m.
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Proof III

Forcing within Hρ

Define J = least Σ1 substructure of Hρ

containing {gc(κ) ∪{gc(κ)}}.

There is a ΣJ2 map of gc(κ) onto J.
The ΣJ2 cofinality of gc(κ) is gc(κ).

G denotes a subset of gc(κ) generic over J.

A forcing condition determines G

on a bounded initial segment of gc(κ).

Generic G’s can be built in L in gc(κ)-many steps.
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A Generic G in L

Let G0 ∈ L be generic over J
If {e}(G0, c) diverges., then all is well.

Suppose {e}(G0, c) converges.
Then the computation is in J.

∃p p  [{e}(G, c) converges] G0 ∈ p.
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A Generic G Outside L

There exists a G1 generic over J

such that v ∈ L(κ,G1) and p ∈ G1.
(v is coded into G1 using the amenability of v .)

Thus G1 ∈ κ-cone with vertex v . So {e}(G1, c) diverges.
But p  [{e}(G, c) converges]. So {e}(G1, c) converges.
So {e}(G0, c) diverges.
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Gödel Condensation

Let H be a Σn substructure of L.

The condensing map m : H −→ m[H] is defined by

m(x) = {m(y) | y ∈ x}.

Theorem (Gödel) m[H] is an initial segment of L.
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Infinitary Logic Review I

L is a set of relation symbols, function symbols and individual
constants.

L∞,ω is the set of well formed formulas.

conjunctions and disjunctions are of arbitrary length.

quantifier prefixes are of finite length.

Lλ,ω is the set of wff of rank less than λ.

A fragment Z is a set of wffs such that
Z is closed under finitary formation rules and

every subformula of a formula of Z is a formula of Z .
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Infinitary Logic Review II

The axioms and rules of infinitary logic

are the same as those of first order logic

except for one infinitary rule:

a deduction of Fi for each i ∈ I
constitutes a deduction of ∧{Fi | i ∈ I}.

Let Z be a fragment. Suppose T ⊆ Z .
T is complete iff

F ∈T or (¬F ) ∈T for each F ∈ Z .
and ∨{Fi | i ∈ I} ∈ T

implies (∃i ∈ I )[Fi ∈ T ]
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Infinitary Logic Review III

Suppose Z is a fragment and T ⊆ Z .

Fact 1 If T is countable and consistent, then T has a model.

Definition T is finitarily consistent iff no finite deduction
from T yields a contradiction.

Fact 2 If T is finitarily consistent and complete,

then T is consistent.

Fact 3 If T is countable, finitarily consistent, and complete,

then T has a model.
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Condensing A Theory

Let L be countable and T a consistent, complete theory

in some fragment Z of L∞,ω.

H is a Σ1 substructure of V . Assume T ∈ H.

m : H −→ m[H] is the condensing map.

Assume m(Z) ⊆ Z .

Theorem A m(T ) is an initial segment of T .
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Proof of Theory Condensation

Construct A, a countable partial model of T ∩H.

T ∩H is finitely consistent and complete
in the "fragment" Z ∩H.

If A |= ∨{Fi | i ∈ I},
then ∃i [A |= Fi and Fi ∈ H].

Let F ∈ ElemDiag(A).

Proposition A |= F −→ A |= m(F ). (by induction on F)

Let F ∈(T ∩H). Then A |= m(F );
m(F ) ∈ Lang(T ), so m(F ) ∈T .
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Mild Stability

Let T be an uncountable, consistent, complete theory
in some fragment of L∞,ω.

Definition T ′ is a countable condensate of T iff
∃H, a countable Σ1 substructure of V ,

such that T ∈ H and m(T ) = T ′.

Let S(T ′) be the set of all n-types of T ′ (n ≥ 1)
defined syntactically.

Definition T is mildly stable iff
for every countable condensate T ′ of T ,

S(T ′) is countable.
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Absoluteness Of Mild Stability

Let A1(x) be the least Σ1 admissible set with
x as a member.

Theorem B T is mildly stable iff

ST ∈ A1(T ).

ST ∈ A1(T) means:
∃W ∈ A1(T )

W is a non-empty set of n-types of T

T ` (∀−→x ) ∨{p(−→x ) | p(−→x ) ∈ W}.
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Existence Of Types

Let T be an uncountable, consistent, complete theory

in some fragment of L∞,ω.

Let ST be the set of all n-types of T .

Theorem C
Assume T is mildly stable

and (∃x)F (x) ∈ T .
Then ∃ p ∈ ST such that F (x) ∈ p.
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Proof Of Existence Of Types

Let H be a Σ1 substructure of V such that T ∈ H.

Let m : H −→ m[H] be the condensing map.

m(T ) has a countable model A. A |=m(∃xF (x)).

For some a ∈ A, A |=m(F (a)).

Define q = {m(G(x)) | A |=m(G(a))}.

S(m(T )) ∈ m(H) by moderate stability of T .

So q ∈ m(H) and p = m−1(q) ∈ ST .
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Moderate Stability

.
Let L be a countable first order language. Assume V = L(L).
Let Tω2 ⊆ Lω2,ω be consistent and complete.
T
′
denotes a countable condensate of Tω2 . Suppose T

′

has a countable model A whose n-tuples realize atoms of Tω2 .

Definition Tω2 is moderately stable iff Tω2 is mildly stable
and for every T ′ as above, Tω2 ∪Dia(A)
has a consistent complete extension to LA,ω2,ω.

Theorem If Tω2 is moderately stable,
then Tω2 has a model of size ω2.
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