Extensions of Levy-Shoenfield Absoluteness

GERALD E SACKS

El Polo Científico Tecnológico Buenos Aires

March 14, 2013

March 14, 2013

1 / 22

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness

Let $\mathcal{P}(x)$ be a lightface Σ_1 predicate.

Theorem (Levy, Shoenfield) $\exists x \mathcal{P}(x) \rightarrow [L \vDash \exists x \mathcal{P}(x)].$

The proof works when $\mathcal{P}(x)$ has a parameter in $L(\omega_1^L)$, but can fail dramatically when $\mathcal{P}(x)$ has a parameter $\gamma \in L - L(\omega_1^L)$.

March 14, 2<u>013</u>

Let κ be a *L*-cardinal, and v a bounded subset of κ . A set of the form

$$\{w \mid \exists \delta < \kappa \land v \in L(\delta, w))\}.$$

is called a κ -cone with vertex v.

Note: Cones belong to V

Let λ be a limit ordinal and v an unbounded subset of λ .

v is amenable iff $\forall \gamma < \lambda \ (v \cap \gamma) \in L(\lambda)$.

Theorem A Let Q(x) be a Δ_0^{ZF} predicate whose sole parameter is an ordinal *c*.

Suppose v is an amenable solution of $\mathcal{Q}(x)$, $\lambda = \sup v$, and κ is the least *L*-cardinal greater than c and λ .

Let λ be a limit ordinal and v an unbounded subset of λ .

v is amenable iff $\forall \gamma < \lambda \ (v \cap \gamma) \in L(\lambda)$.

Theorem A Let Q(x) be a Δ_0^{ZF} predicate whose sole parameter is an ordinal *c*.

Suppose v is an amenable solution of $\mathcal{Q}(x)$, $\lambda = \sup v$, and κ is the least *L*-cardinal greater than c and λ .

Assume the κ -cone with vertex v is a set of solutions of $\mathcal{Q}(x)$. Then $\mathcal{Q}(x)$ has a solution in L.

March 14, 2013

$\{e\}(x)$ is defined for all $x \in V$.

e is a finite instruction based on schemes.

 $\{e\}(x)$ is defined for all $x \in V$. e is a finite instruction based on schemes. $\{e\}(x)$ gives rise to a a computation tree $T_{\langle e,x \rangle}$. $\{e\}(x)$ converges iff $T_{\langle e,x \rangle}$ is wellfounded. If $\{e\}(x)$ diverges, then any infinite path through $T_{\langle e,x \rangle}$ is a divergence witness.

March 14, 2013

 $\{e\}(x) \text{ is defined for all } x \in V. \\ e \text{ is a finite instruction based on schemes.} \\ \{e\}(x) \text{ gives rise to a a computation tree } T_{< e, x >}. \\ \{e\}(x) \text{ converges iff } T_{< e, x >} \text{ is wellfounded.} \\ \text{If } \{e\}(x) \text{ diverges, then any infinite path } \\ \text{through } T_{< e, x >} \text{ is a divergence witness.}$

Moschovakis (1967): " $\{e\}(x)$ diverges" is a Σ_1^{ZF} predicate.

March 14, 2013

Theorem B Let $c \in L$. Suppose \exists amenable v such that $\{e\}(v, c)$ diverges, $\lambda = \sup v$, and κ is the least *L*-cardinal greater than c and λ .

Theorem B Let $c \in L$. Suppose \exists amenable v such that $\{e\}(v, c)$ diverges, $\lambda = \sup v$, and κ is the least *L*-cardinal greater than c and λ .

Assume the κ -cone with vertex v is a set of solutions of " $\{e\}(x, c)$ diverges."

Then $\{e\}(x, c)$ diverges for some $x \in L$.

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness

March 14, 2013

The argument "takes place" in L.

Let $m = \max\{c, \lambda\}$ and $\rho = \text{cofinality of } \lambda$. $H_1(x)$ denotes the standard Σ_1 hull of x. Thus $x \subseteq H_1(x) \preceq_1 L$.

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness March 14, 2013

The argument "takes place" in L.

Let
$$m = \max\{c, \lambda\}$$
 and $\rho = \text{cofinality of } \lambda$.
 $H_1(x)$ denotes the standard Σ_1 hull of x .
Thus $x \subseteq H_1(x) \preceq_1 L$.

Define
$$H^{\delta}$$
 for $\delta \leq \rho$.
 $H^{0} = H_{1}(m \cup \{m, \kappa\}), \quad H^{\delta+1} = H_{1}(H^{\delta} \cup \{H^{\delta}\}),$
and $H^{\gamma} = \cup \{H^{\delta} \mid \delta < \gamma\}$ when γ is a limit.

→ < ∃→

March 14, 2013

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness

Collapsing H^{ρ}

Define $\overline{H^{\rho}} = t(H^{\rho})$. t is the collapsing map. $t(\kappa)$ is the greatest cardinal in the sense of $\overline{H^{\rho}}$. $\overline{H^{\rho}}$ thinks $t(\kappa)$ is regular.

Let $gc(\kappa)$ denote $t(\kappa)$. $cofinality(gc(\kappa)) = \rho$ (in L).

March 14, 2013

Collapsing H^{ρ}

Define $\overline{H^{\rho}} = t(H^{\rho})$. t is the collapsing map. $t(\kappa)$ is the greatest cardinal in the sense of $\overline{H^{\rho}}$. $\overline{H^{\rho}}$ thinks $t(\kappa)$ is regular.

Let $gc(\kappa)$ denote $t(\kappa)$. $cofinality(gc(\kappa)) = \rho$ (in L). $\Sigma_2^{\overline{H^{\rho}}}$ cofinality of $gc(\kappa)$ equals $\Sigma_2^{\overline{H^{\rho}}}$ cofinality of $ord(\overline{H^{\rho}}) = \rho$. $t(c) = c. \ t(\lambda) = \lambda. \ t(m) = m.$

March 14, 2013

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J = least \Sigma_1$ substructure of $\overline{H^{\rho}}$ containing $\{gc(\kappa) \cup \{gc(\kappa)\}\}$.

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness March 14, 2013

3

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J = least \Sigma_1$ substructure of $\overline{H^{\rho}}$ containing $\{gc(\kappa) \cup \{gc(\kappa)\}\}$.

There is a Σ_2^J map of $gc(\kappa)$ onto J. The Σ_2^J cofinality of $gc(\kappa)$ is $gc(\kappa)$.

G denotes a subset of $gc(\kappa)$ generic over J. A forcing condition determines G on a bounded initial segment of $gc(\kappa)$.

March 14, 2013

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J = least \Sigma_1$ substructure of $\overline{H^{\rho}}$ containing $\{gc(\kappa) \cup \{gc(\kappa)\}\}$.

There is a Σ_2^J map of $gc(\kappa)$ onto J. The Σ_2^J cofinality of $gc(\kappa)$ is $gc(\kappa)$.

G denotes a subset of $gc(\kappa)$ generic over J. A forcing condition determines G on a bounded initial segment of $gc(\kappa)$.

Generic G's can be built in L in $gc(\kappa)$ -many steps.

March 14, 2013

Let $G_0 \in L$ be generic over J If $\{e\}(G_0, c)$ diverges., then all is well. Let $G_0 \in L$ be generic over JIf $\{e\}(G_0, c)$ diverges., then all is well.

Suppose $\{e\}(G_0, c)$ converges.

Then the computation is in J.

 $\exists p \ p \Vdash [\{e\}(\mathcal{G}, c) \text{ converges}] \ \mathcal{G}_0 \in p.$

There exists a G_1 generic over Jsuch that $v \in L(\kappa, G_1)$ and $p \in G_1$. (v is coded into G_1 using the amenability of v.)

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness Narch 14, 2013

There exists a G_1 generic over Jsuch that $v \in L(\kappa, G_1)$ and $p \in G_1$. (v is coded into G_1 using the amenability of v.) Thus $G_1 \in \kappa$ -cone with vertex v. So $\{e\}(G_1, c)$ diverges. But $p \Vdash [\{e\}(\mathcal{G}, c) \text{ converges}]$. So $\{e\}(G_1, c)$ converges. So $\{e\}(G_0, c)$ diverges.

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness VIArCh 14, 2013

Let *H* be a Σ_n substructure of *L*.

The condensing map $m: H \longrightarrow m[H]$ is defined by

$$m(x) = \{m(y) \mid y \in x\}.$$

Theorem (Gödel) m[H] is an initial segment of L.

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness VIArCh 14, 2013

 $\ensuremath{\mathcal{L}}$ is a set of relation symbols, function symbols and individual constants.

 $\mathcal{L}_{\infty,\omega}$ is the set of well formed formulas. conjunctions and disjunctions are of arbitrary length. quantifier prefixes are of finite length.

 $\mathcal{L}_{\lambda,\omega}$ is the set of wff of rank less than λ .

 $\ensuremath{\mathcal{L}}$ is a set of relation symbols, function symbols and individual constants.

 $\mathcal{L}_{\infty,\omega}$ is the set of well formed formulas. conjunctions and disjunctions are of arbitrary length. quantifier prefixes are of finite length.

 $\mathcal{L}_{\lambda,\omega}$ is the set of wff of rank less than λ .

A **fragment** Z is a set of wffs such that Z is closed under finitary formation rules and every subformula of a formula of Z is a formula of Z. The axioms and rules of infinitary logic are the same as those of first order logic except for one infinitary rule: a deduction of \mathcal{F}_i for each $i \in I$ constitutes a deduction of $\wedge \{\mathcal{F}_i \mid i \in I\}$.

Let Z be a fragment. Suppose $T \subseteq Z$.

T is complete iff

$$\mathcal{F} \in T \text{ or } (\neg \mathcal{F}) \in T \text{ for each } \mathcal{F} \in Z.$$

and $\lor \{\mathcal{F}_i \mid i \in I\} \in T$
implies $(\exists i \in I)[\mathcal{F}_i \in T]$

<u>March 14, 2013</u>

Suppose Z is a fragment and $T \subseteq Z$.

Fact 1 If T is countable and consistent, then T has a model.

Definition T is **finitarily consistent** iff no finite deduction from T yields a contradiction.

Fact 2 If T is finitarily consistent and complete, then T is consistent.

Fact 3 If T is countable, finitarily consistent, and complete, then T has a model.

Let \mathcal{L} be countable and \mathcal{T} a consistent, complete theory in some fragment Z of $\mathcal{L}_{\infty,\omega}$.

H is a Σ_1 substructure of *V*. Assume $T \in H$.

 $m: H \longrightarrow m[H]$ is the condensing map.

Assume $m(Z) \subseteq Z$.

Theorem A m(T) is an initial segment of T.

16 / 22

Proof of Theory Condensation

Construct \mathcal{A} , a countable partial model of $T \cap H$.

 $T \cap H$ is finitely consistent and complete in the "fragment" $Z \cap H$.

$$\begin{array}{l} \mathsf{lf} \ \mathcal{A} \models \lor \{\mathcal{F}_i \mid i \in I\}, \\ \\ \mathsf{then} \ \exists i \ [\mathcal{A} \models \mathcal{F}_i \ \mathsf{and} \ \mathcal{F}_i \in H]. \end{array}$$

Let $\mathcal{F} \in \textit{ElemDiag}(\mathcal{A})$.

Proposition $\mathcal{A} \models \mathcal{F} \longrightarrow \mathcal{A} \models m(\mathcal{F})$. (by induction on \mathcal{F})

March 14, 2013

Let
$$\mathcal{F} \in (T \cap H)$$
. Then $\mathcal{A} \models m(\mathcal{F})$;
 $m(\mathcal{F}) \in Lang(T)$, so $m(\mathcal{F}) \in T$.

Mild Stability

Let T be an uncountable, consistent, complete theory in some fragment of $\mathcal{L}_{\infty,\omega}$.

Definition T' is a **countable condensate** of T iff $\exists H$, a countable Σ_1 substructure of V, such that $T \in H$ and m(T) = T'.

Let S(T') be the set of all *n*-types of T' $(n \ge 1)$ defined syntactically.

Definition T is mildly stable iff

for every countable condensate T' of T, S(T') is countable.

Let $A_1(x)$ be the least Σ_1 admissible set with x as a member.

Theorem B T is mildly stable iff $ST \in A_1(T)$.

$\begin{aligned} \mathbf{ST} \in \mathbf{A}_1(\mathbf{T}) \text{ means:} \\ \exists W \in A_1(T) \\ W \text{ is a non-empty set of } n \text{-types of } T \\ T \vdash (\forall \overrightarrow{x}) \lor \{p(\overrightarrow{x}) \mid p(\overrightarrow{x}) \in W\}. \end{aligned}$

Let T be an uncountable, consistent, complete theory in some fragment of $\mathcal{L}_{\infty,\omega}$.

Let ST be the set of all *n*-types of T.

Theorem C

Assume T is mildly stable and $(\exists x)\mathcal{F}(x) \in T$. Then $\exists p \in ST$ such that $\mathcal{F}(x) \in p$.

20 / 22

GERALD E SACKS (El Polo Científico Tecno Extensions of Levy-Shoenfield Absoluteness VIArCh 14, 2013

Proof Of Existence Of Types

Let *H* be a Σ_1 substructure of *V* such that $T \in H$.

Let $m: H \longrightarrow m[H]$ be the condensing map.

m(T) has a countable model \mathcal{A} . $\mathcal{A} \models m(\exists x \mathcal{F}(x))$.

For some
$$a \in A$$
, $\mathcal{A} \models m(\mathcal{F}(a))$.

Define
$$q = \{m(\mathcal{G}(x)) \mid \mathcal{A} \models m(\mathcal{G}(a))\}.$$

 $S(m(T)) \in m(H)$ by moderate stability of T.

So
$$q \in m(H)$$
 and $p = m^{-1}(q) \in ST$.

Let \mathcal{L} be a countable first order language. Assume $V = L(\mathcal{L})$. Let $T_{\omega_2} \subseteq \mathcal{L}_{\omega_2,\omega}$ be consistent and complete. T' denotes a countable condensate of T_{ω_2} . Suppose T'has a countable model A whose *n*-tuples realize atoms of T_{ω_2} .

Let \mathcal{L} be a countable first order language. Assume $V = L(\mathcal{L})$. Let $T_{\omega_2} \subseteq \mathcal{L}_{\omega_2,\omega}$ be consistent and complete. T' denotes a countable condensate of T_{ω_2} . Suppose T'has a countable model A whose *n*-tuples realize atoms of T_{ω_2} .

Definition T_{ω_2} is **moderately stable** iff T_{ω_2} is mildly stable and for every T' as above, $T_{\omega_2} \cup Dia(A)$ has a consistent complete extension to $\mathcal{L}_{A,\omega_2,\omega}$.

Let \mathcal{L} be a countable first order language. Assume $V = L(\mathcal{L})$. Let $T_{\omega_2} \subseteq \mathcal{L}_{\omega_2,\omega}$ be consistent and complete. T' denotes a countable condensate of T_{ω_2} . Suppose T'has a countable model A whose *n*-tuples realize atoms of T_{ω_2} .

Definition T_{ω_2} is **moderately stable** iff T_{ω_2} is mildly stable and for every T' as above, $T_{\omega_2} \cup Dia(A)$ has a consistent complete extension to $\mathcal{L}_{A,\omega_2,\omega}$.

22 / 22

Theorem If T_{ω_2} is moderately stable, then T_{ω_2} has a model of size ω_2 .