Extensions of Levy-Shoenfield Absoluteness

GERALD E SACKS

El Polo Científico Tecnológico Buenos Aires

March 14, 2013

Levy-Shoenfield Absoluteness

Let $\mathcal{P}(x)$ be a lightface Σ_{1} predicate.
Theorem (Levy, Shoenfield) $\exists x \mathcal{P}(x) \rightarrow[L \vDash \exists x \mathcal{P}(x)]$.
The proof works when $\mathcal{P}(x)$ has a parameter in $L\left(\omega_{1}^{L}\right)$, but can fail dramatically when $\mathcal{P}(x)$ has a parameter $\gamma \in L-L\left(\omega_{1}^{L}\right)$.

Cones

Let κ be a L-cardinal, and v a bounded subset of κ.
A set of the form

$$
\{w \mid \exists \delta<\kappa \wedge v \in L(\delta, w))\}
$$

is called a κ-cone with vertex v.
Note: Cones belong to V

Amenability

Let λ be a limit ordinal and v an unbounded subset of λ.
v is amenable iff $\forall \gamma<\lambda \quad(v \cap \gamma) \in L(\lambda)$.
Theorem A Let $\mathcal{Q}(x)$ be a $\Delta_{0}^{Z F}$ predicate whose sole parameter is an ordinal c.
Suppose v is an amenable solution of $\mathcal{Q}(x), \lambda=\sup v$, and κ is the least L-cardinal greater than c and λ.

Amenability

Let λ be a limit ordinal and v an unbounded subset of λ.
v is amenable iff $\forall \gamma<\lambda \quad(v \cap \gamma) \in L(\lambda)$.
Theorem A Let $\mathcal{Q}(x)$ be a $\Delta_{0}^{Z F}$ predicate whose sole parameter is an ordinal c.
Suppose v is an amenable solution of $\mathcal{Q}(x), \lambda=\sup v$, and κ is the least L-cardinal greater than c and λ.
Assume the κ-cone with vertex v is a set of solutions of $\mathcal{Q}(x)$. Then $\mathcal{Q}(x)$ has a solution in L.

E-Recursion

$\{e\}(x)$ is defined for all $x \in V$.
e is a finite instruction based on schemes.

E-Recursion

$\{e\}(x)$ is defined for all $x \in V$.
e is a finite instruction based on schemes.
$\{e\}(x)$ gives rise to a a computation tree $T_{\langle e, x\rangle}$.
$\{e\}(x)$ converges iff $T_{\langle e, x\rangle}$ is wellfounded.
If $\{e\}(x)$ diverges, then any infinite path through $T_{\langle e, x\rangle}$ is a divergence witness.

E-Recursion

$\{e\}(x)$ is defined for all $x \in V$.
e is a finite instruction based on schemes.
$\{e\}(x)$ gives rise to a a computation tree $T_{\langle e, x\rangle}$.
$\{e\}(x)$ converges iff $T_{<e, x\rangle}$ is wellfounded.
If $\{e\}(x)$ diverges, then any infinite path through $T_{<e, x>}$ is a divergence witness.

Moschovakis (1967): " $\{e\}(x)$ diverges" is a $\Sigma_{1}^{Z F}$ predicate.

Divergence witnesses in L

Theorem B Let $c \in L$. Suppose \exists amenable v such that $\{e\}(v, c)$ diverges, $\lambda=\sup v$, and κ is the least L-cardinal greater than c and λ.

Divergence witnesses in L

Theorem B Let $c \in L$. Suppose \exists amenable v such that $\{e\}(v, c)$ diverges, $\lambda=\sup v$, and κ is the least L-cardinal greater than c and λ.

Assume the κ-cone with vertex v is a set of solutions of " $\{e\}(x, c)$ diverges."
Then $\{e\}(x, c)$ diverges for some $x \in L$.

Proof of Theorem B

The argument "takes place" in L .
Let $m=\max \{c, \lambda\}$ and $\rho=$ cofinality of λ.
$H_{1}(x)$ denotes the standard Σ_{1} hull of x.
Thus $x \subseteq H_{1}(x) \preceq_{1} L$.

Proof of Theorem B

The argument "takes place" in L .
Let $m=\max \{c, \lambda\}$ and $\rho=$ cofinality of λ.
$H_{1}(x)$ denotes the standard Σ_{1} hull of x.
Thus $x \subseteq H_{1}(x) \preceq_{1} L$.
Define H^{δ} for $\delta \leq \rho$.

$$
\begin{aligned}
& H^{0}=H_{1}(m \cup\{m, \kappa\}), \quad H^{\delta+1}=H_{1}\left(H^{\delta} \cup\left\{H^{\delta}\right\}\right) \\
& \text { and } H^{\gamma}=\cup\left\{H^{\delta} \mid \delta<\gamma\right\} \text { when } \gamma \text { is a limit. }
\end{aligned}
$$

Proof II

Collapsing \mathbf{H}^{ρ}

Define $\overline{H^{\rho}}=t\left(H^{\rho}\right) . \quad t$ is the collapsing map. $t(\kappa)$ is the greatest cardinal in the sense of $\overline{H^{\rho}}$.
$\overline{H^{\rho}}$ thinks $t(\kappa)$ is regular.
Let $g c(\kappa)$ denote $t(\kappa)$.
cofinality $(\operatorname{gc}(\kappa))=\rho($ in $L)$.

Proof II

Collapsing \mathbf{H}^{ρ}

Define $\overline{H^{\rho}}=t\left(H^{\rho}\right) . \quad t$ is the collapsing map. $t(\kappa)$ is the greatest cardinal in the sense of $\overline{H^{\rho}}$.
$\overline{H^{\rho}}$ thinks $t(\kappa)$ is regular.
Let $g c(\kappa)$ denote $t(\kappa)$.
cofinality $(\operatorname{gc}(\kappa))=\rho($ in $L)$.
$\Sigma_{2}^{\overline{H^{\rho}}}$ cofinality of $g c(\kappa)$ equals $\Sigma_{2}^{\overline{H^{\rho}}}$ cofinality of $\operatorname{ord}\left(\overline{H^{\rho}}\right)=\rho$.
$t(c)=c . t(\lambda)=\lambda . t(m)=m$.

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J=$ least Σ_{1} substructure of $\overline{H^{\rho}}$ containing $\{g c(\kappa) \cup\{g c(\kappa)\}\}$.

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J=$ least Σ_{1} substructure of $\overline{H^{\rho}}$ containing $\{g c(\kappa) \cup\{g c(\kappa)\}\}$.

There is a Σ_{2}^{J} map of $g c(\kappa)$ onto J. The Σ_{2}^{J} cofinality of $g c(\kappa)$ is $g c(\kappa)$.
G denotes a subset of $g c(\kappa)$ generic over J.
A forcing condition determines G on a bounded initial segment of $g c(\kappa)$.

Proof III

Forcing within $\overline{\mathbf{H}^{\rho}}$

Define $J=$ least Σ_{1} substructure of $\overline{H^{\rho}}$ containing $\{g c(\kappa) \cup\{g c(\kappa)\}\}$.

There is a Σ_{2}^{J} map of $g c(\kappa)$ onto J.
The Σ_{2}^{J} cofinality of $g c(\kappa)$ is $g c(\kappa)$.
G denotes a subset of $g c(\kappa)$ generic over J.
A forcing condition determines G on a bounded initial segment of $g c(\kappa)$.

Generic G 's can be built in L in $g c(\kappa)$-many steps.

A Generic G in L

Let $G_{0} \in L$ be generic over J
If $\{e\}\left(G_{0}, c\right)$ diverges., then all is well.

A Generic G in L

Let $G_{0} \in L$ be generic over J
If $\{e\}\left(G_{0}, c\right)$ diverges., then all is well.
Suppose $\{e\}\left(G_{0}, c\right)$ converges.
Then the computation is in J.
$\exists p \quad p \Vdash[\{e\}(\mathcal{G}, c)$ converges $] \quad G_{0} \in p$.

A Generic G Outside L

There exists a G_{1} generic over J
such that $v \in L\left(\kappa, G_{1}\right)$ and $p \in G_{1}$.
(v is coded into G_{1} using the amenability of v.)

A Generic G Outside L

There exists a G_{1} generic over J such that $v \in L\left(\kappa, G_{1}\right)$ and $p \in G_{1}$. (v is coded into G_{1} using the amenability of v.)

Thus $G_{1} \in \mathcal{K}$-cone with vertex v. So $\{e\}\left(G_{1}, c\right)$ diverges.
But $p \Vdash[\{e\}(\mathcal{G}, c)$ converges $]$. So $\{e\}\left(G_{1}, c\right)$ converges.
So $\{e\}\left(G_{0}, c\right)$ diverges.

Gödel Condensation

Let H be a Σ_{n} substructure of L.
The condensing map $m: H \longrightarrow m[H]$ is defined by

$$
m(x)=\{m(y) \mid y \in x\}
$$

Theorem (Gödel) $m[H]$ is an initial segment of L.

Infinitary Logic Review I

\mathcal{L} is a set of relation symbols, function symbols and individual constants.
$\mathcal{L}_{\infty, \omega}$ is the set of well formed formulas.
conjunctions and disjunctions are of arbitrary length. quantifier prefixes are of finite length.
$\mathcal{L}_{\lambda, \omega}$ is the set of wff of rank less than λ.

Infinitary Logic Review I

\mathcal{L} is a set of relation symbols, function symbols and individual constants.
$\mathcal{L}_{\infty, \omega}$ is the set of well formed formulas.
conjunctions and disjunctions are of arbitrary length. quantifier prefixes are of finite length.
$\mathcal{L}_{\lambda, \omega}$ is the set of wff of rank less than λ.
A fragment Z is a set of wffs such that
Z is closed under finitary formation rules and every subformula of a formula of Z is a formula of Z.

Infinitary Logic Review II

The axioms and rules of infinitary logic are the same as those of first order logic except for one infinitary rule: a deduction of \mathcal{F}_{i} for each $i \in I$ constitutes a deduction of $\wedge\left\{\mathcal{F}_{i} \mid i \in I\right\}$.

Let Z be a fragment. Suppose $T \subseteq Z$.
T is complete iff

$$
\begin{aligned}
& \mathcal{F} \in T \text { or }(\neg \mathcal{F}) \in T \text { for each } \mathcal{F} \in Z . \\
& \text { and } \vee\left\{\mathcal{F}_{i} \mid i \in I\right\} \in T \\
& \text { implies }(\exists i \in I)\left[\mathcal{F}_{i} \in T\right]
\end{aligned}
$$

Infinitary Logic Review III

Suppose Z is a fragment and $T \subseteq Z$.
Fact 1 If T is countable and consistent, then T has a model.
Definition T is finitarily consistent iff no finite deduction from T yields a contradiction.

Fact 2 If T is finitarily consistent and complete, then T is consistent.

Fact 3 If T is countable, finitarily consistent, and complete, then T has a model.

Condensing A Theory

Let \mathcal{L} be countable and T a consistent, complete theory in some fragment Z of $\mathcal{L}_{\infty, \omega}$.
H is a Σ_{1} substructure of V. Assume $T \in H$.
$m: H \longrightarrow m[H]$ is the condensing map.
Assume $m(Z) \subseteq Z$.
Theorem A $m(T)$ is an initial segment of T.

Proof of Theory Condensation

Construct \mathcal{A}, a countable partial model of $T \cap H$.
$T \cap H$ is finitely consistent and complete in the "fragment" $Z \cap H$.

If $\mathcal{A} \models \vee\left\{\mathcal{F}_{i} \mid i \in I\right\}$, then $\exists i\left[\mathcal{A} \models \mathcal{F}_{i}\right.$ and $\left.\mathcal{F}_{i} \in H\right]$.

Let $\mathcal{F} \in \operatorname{ElemDiag}(\mathcal{A})$.
Proposition $\mathcal{A} \models \mathcal{F} \longrightarrow \mathcal{A} \models m(\mathcal{F})$. (by induction on \mathcal{F})
Let $\mathcal{F} \in(T \cap H)$. Then $\mathcal{A} \models m(\mathcal{F})$;
$m(\mathcal{F}) \in \operatorname{Lang}(T)$, so $m(\mathcal{F}) \in T$.

Mild Stability

Let T be an uncountable, consistent, complete theory in some fragment of $\mathcal{L}_{\infty, \omega}$.

Definition T^{\prime} is a countable condensate of T iff $\exists H$, a countable Σ_{1} substructure of V, such that $T \in H$ and $m(T)=T^{\prime}$.

Let $S\left(T^{\prime}\right)$ be the set of all n-types of $T^{\prime} \quad(n \geq 1)$ defined syntactically.

Definition T is mildly stable iff
for every countable condensate T^{\prime} of T, $S\left(T^{\prime}\right)$ is countable.

Absoluteness Of Mild Stability

Let $A_{1}(x)$ be the least Σ_{1} admissible set with

$$
x \text { as a member. }
$$

Theorem B T is mildly stable iff

$$
S T \in A_{1}(T)
$$

$\mathbf{S T} \in \mathbf{A}_{1}(\mathbf{T})$ means:

$$
\exists W \in A_{1}(T)
$$

W is a non-empty set of n-types of T

$$
T \vdash(\forall \vec{x}) \vee\{p(\vec{x}) \mid p(\vec{x}) \in W\}
$$

Existence Of Types

Let T be an uncountable, consistent, complete theory in some fragment of $\mathcal{L}_{\infty, \omega}$.

Let $S T$ be the set of all n-types of T.

Theorem C

Assume T is mildly stable and $(\exists x) \mathcal{F}(x) \in T$.
Then $\exists p \in S T$ such that $\mathcal{F}(x) \in p$.

Proof Of Existence Of Types

Let H be a Σ_{1} substructure of V such that $T \in H$.
Let $m: H \longrightarrow m[H]$ be the condensing map.
$m(T)$ has a countable model $\mathcal{A} . \quad \mathcal{A} \models m(\exists x \mathcal{F}(x))$.
For some $a \in A, \mathcal{A} \models m(\mathcal{F}(a))$.
Define $q=\{m(\mathcal{G}(x)) \mid \mathcal{A} \models m(\mathcal{G}(a))\}$.
$S(m(T)) \in m(H)$ by moderate stability of T.

$$
\text { So } q \in m(H) \text { and } p=m^{-1}(q) \in S T \text {. }
$$

Moderate Stability

Let \mathcal{L} be a countable first order language. Assume $V=L(\mathcal{L})$.
Let $T_{\omega_{2}} \subseteq \mathcal{L}_{\omega_{2}, \omega}$ be consistent and complete.
T^{\prime} denotes a countable condensate of $T_{\omega_{2}}$. Suppose T^{\prime} has a countable model A whose n-tuples realize atoms of $T_{\omega_{2}}$.

Moderate Stability

Let \mathcal{L} be a countable first order language. Assume $V=L(\mathcal{L})$. Let $T_{\omega_{2}} \subseteq \mathcal{L}_{\omega_{2}, \omega}$ be consistent and complete.
T^{\prime} denotes a countable condensate of $T_{\omega_{2}}$. Suppose T^{\prime} has a countable model A whose n-tuples realize atoms of $T_{\omega_{2}}$. Definition $T_{\omega_{2}}$ is moderately stable iff $T_{\omega_{2}}$ is mildly stable and for every T^{\prime} as above, $T_{\omega_{2}} \cup \operatorname{Dia}(A)$ has a consistent complete extension to $\mathcal{L}_{A, \omega_{2}, \omega}$.

Moderate Stability

Let \mathcal{L} be a countable first order language. Assume $V=L(\mathcal{L})$. Let $T_{\omega_{2}} \subseteq \mathcal{L}_{\omega_{2}, \omega}$ be consistent and complete.
T^{\prime} denotes a countable condensate of $T_{\omega_{2}}$. Suppose T^{\prime} has a countable model A whose n-tuples realize atoms of $T_{\omega_{2}}$. Definition $T_{\omega_{2}}$ is moderately stable iff $T_{\omega_{2}}$ is mildly stable and for every T^{\prime} as above, $T_{\omega_{2}} \cup \operatorname{Dia}(A)$ has a consistent complete extension to $\mathcal{L}_{A, \omega_{2}, \omega}$.

Theorem If $T_{\omega_{2}}$ is moderately stable, then $T_{\omega_{2}}$ has a model of size ω_{2}.

