ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

ω -Degree Spectra

Alexandra A. Soskova¹

Sofia University

CCR 2013 Buenos Aires 06.02.13

¹Supported by Sofia University Science Fund and Master Program Logic and Algorithms

Outline

- Degree spectra and jump spectra
- ω -enumeration degrees
- ω-degree spectra
- ω-co-spectra
- A minimal pair theorem
- Quasi-minimal degrees

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西ト・山田・山田・山下

Enumeration of a Structure

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be a countable abstract structure.

An enumeration f of \mathfrak{A} is a total mapping from \mathbb{N} onto \mathbb{N} .

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Degree Spectra

Definition (Richter)

The Turing degree spectrum of ${\mathfrak A}$

 $DS_{T}(\mathfrak{A}) = \{ d_{T}(f^{-1}(\mathfrak{A})) \mid f \text{ is an injective enumeration of } \mathfrak{A} \}$

J. Knight, Ash, Jockush, Downey, Slaman.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job - Enumeration Degrees

 ω -Degree Spectra

Enumeration reducibility

Definition

We say that $\Gamma : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is an *enumeration operator* iff for some c.e. set W_i for each $B \subseteq \mathbb{N}$

$$\Gamma(B) = \{ x | (\exists D) [\langle x, D \rangle \in W_i \& D \subseteq B] \}.$$

The index *i* of the c.e. set W_i is an index of Γ and write $\Gamma = \Gamma_i$.

Definition

The set *A* is *enumeration reducible to* the set *B* ($A \leq_e B$), if $A = \Gamma_i(B)$ for some e-operator Γ_i . The enumeration degree of *A* is $d_e(A) = \{B \subseteq \mathbb{N} | A \equiv_e B\}$.

The set of all enumeration degrees is denoted by \mathcal{D}_e .

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

 ω -Degree Spectra

The enumeration jump

Definition

Given a set *A*, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem

For any sets A and B:

- 1. A is c.e. in B iff $A \leq_e B^+$.
- 2. $A \leq_T B$ iff $A^+ \leq_e B^+$.
- 3. A is Σ_{n+1}^0 relatively to B iff $A \leq_e (B^+)^{(n)}$.

Definition

For any set A let $K_A = \{ \langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition

A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Jo-Enumeration Degrees

 ω -Degree Spectra

The enumeration jump

Definition

Given a set *A*, denote by $A^+ = A \oplus (\mathbb{N} \setminus A)$.

Theorem

For any sets A and B:

- 1. A is c.e. in B iff $A \leq_e B^+$.
- 2. $A \leq_T B$ iff $A^+ \leq_e B^+$.
- 3. A is Σ_{n+1}^0 relatively to B iff $A \leq_e (B^+)^{(n)}$.

Definition

For any set A let $K_A = \{ \langle i, x \rangle | x \in \Gamma_i(A) \}$. Set $A' = K_A^+$.

Definition

A set A is called *total* iff $A \equiv_e A^+$.

Let $d_e(A)' = d_e(A')$. The enumeration jump is always a total degree and agrees with the Turing jump under the standard embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A_{\mathbb{P}}^+)$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job - Enumeration Degrees

 ω -Degree Spectra

Enumeration Degree Spectra and Co-spectra

Definition (Soskov)

• The enumeration degree spectrum of \mathfrak{A}

 $DS(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS(\mathfrak{A})$, then **a** is called the *degree of* \mathfrak{A} .

The co-spectrum of A

 $CS(\mathfrak{A}) = \{ \mathbf{b} : (\forall \mathbf{a} \in DS(\mathfrak{A})) (\mathbf{b} \leq \mathbf{a}) \}.$

If **a** is the greatest element of $CS(\mathfrak{A})$ then we call **a** the *co-degree* of \mathfrak{A} .

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Jump spectra

Definition

The *n*th jump spectrum of \mathfrak{A} is the set

 $DS_n(\mathfrak{A}) = \{ d_e(f^{-1}(\mathfrak{A})^{(n)}) : f \text{ is an enumeration of } \mathfrak{A} \}.$

If **a** is the least element of $DS_n(\mathfrak{A})$, then **a** is called the *n*th jump degree of \mathfrak{A} .

Definition

The set $CS_n(\mathfrak{A})$ of all lower bounds of the *n*th jump spectrum of \mathfrak{A} is called *n*th jump co-spectrum of \mathfrak{A} .

If $CS_n(\mathfrak{A})$ has a greatest element then it is called the *nth jump co-degree of* \mathfrak{A} .

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Example (Richter)

Let $\mathfrak{A} = (A; <)$ be a linear ordering. DS(\mathfrak{A}) contains a minimal pair of degrees and hence CS(\mathfrak{A}) = { $\mathbf{0}_e$ }. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree **a**, then **a** = $\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener)

There exists a structure \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西ト・山田・山田・山下

Example (Richter)

Let $\mathfrak{A} = (A; <)$ be a linear ordering. DS(\mathfrak{A}) contains a minimal pair of degrees and hence CS(\mathfrak{A}) = { $\mathbf{0}_e$ }. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree **a**, then **a** = $\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener)

There exists a structure \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西・・田・・田・・日・

Example (Richter)

Let $\mathfrak{A} = (A; <)$ be a linear ordering. DS(\mathfrak{A}) contains a minimal pair of degrees and hence CS(\mathfrak{A}) = { $\mathbf{0}_e$ }. $\mathbf{0}_e$ is the co-degree of \mathfrak{A} . So, if \mathfrak{A} has a degree **a**, then **a** = $\mathbf{0}_e$.

Example (Knight)

For a linear ordering \mathfrak{A} , $CS_1(\mathfrak{A})$ consists of all e-degrees of Σ_2^0 sets. The first jump co-degree of \mathfrak{A} is $\mathbf{0}'_e$.

Example (Slaman, Whener)

There exists a structure \mathfrak{A} s.t.

 $DS(\mathfrak{A}) = \{ \mathbf{a} : \mathbf{a} \text{ is total and } \mathbf{0}_e < \mathbf{a} \}.$

Clearly the structure \mathfrak{A} has co-degree $\mathbf{0}_e$ but has not a degree.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・日本・日本・日本・日本・日本

Example (Downey, Jockusch)

Let *G* be a torsion free abelian group of rank 1, i.e. *G* is a subgroup of *Q*. There exists a set called the standard type of the group *S*(*G*) with the following property: The Turing degree spectrum of *G* is precisely $\{d_T(X) \mid S(G) \in \Sigma_1^0(X)\}.$

Example (Coles, Downey, Slaman)

Let $A \subseteq \mathbb{N}$. Consider $\mathcal{C}(A) = \{X \mid A \in \Sigma_1^0(X)\}$. By Richter there is a set *A* such that $\mathcal{C}(A)$ has not a member of least Turing degree.

For every sets A the set: $C(A)' = \{X' \mid A \in \Sigma_1^0(X)\}$ has a member of least degree.

Every torsion free abelian group of rank 1 has a first jump degree.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Jegrees

ω-Degree Spectra

Representing the principle countable ideals as co-spectra

Example (Soskov)

Let *G* be a torsion free abelian group of rank 1. Let \mathbf{s}_G be an enumeration degree of S(G).

- ▶ $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is s_G.
- *G* has a degree iff \mathbf{s}_G is a total e-degree.
- If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the *n*-th jump degree of *G*.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a G, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corrolary

Every principle ideal of enumeration degrees is CS(G) for some G.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Representing the principle countable ideals as co-spectra

Example (Soskov)

Let *G* be a torsion free abelian group of rank 1. Let \mathbf{s}_G be an enumeration degree of S(G).

- $DS(G) = \{ \mathbf{b} : \mathbf{b} \text{ is total and } \mathbf{s}_G \leq_e \mathbf{b} \}.$
- The co-degree of G is s_G.
- *G* has a degree iff \mathbf{s}_G is a total e-degree.
- ▶ If $1 \le n$, then $\mathbf{s}_G^{(n)}$ is the *n*-th jump degree of *G*.

For every $\mathbf{d} \in \mathcal{D}_e$ there exists a *G*, s.t. $\mathbf{s}_G = \mathbf{d}$.

Corrolary

Every principle ideal of enumeration degrees is CS(G) for some G.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Representing non-principle countable ideals as co-spectra

Example (Soskov)

Let B_0, \ldots, B_n, \ldots be a sequence of sets of natural numbers. Set $\mathfrak{A} = (\mathbb{N}; f; \sigma)$,

$$f(\langle i, n \rangle) = \langle i + 1, n \rangle;$$

$$\sigma = \{ \langle i, n \rangle : n = 2k + 1 \lor n = 2k \& i \in B_k \}.$$

Then $CS(\mathfrak{A}) = I(d_e(B_0), \ldots, d_e(B_n), \ldots)$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Enumeration

Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Spectra with a countable base

Definition

Let $\mathcal{B} \subseteq \mathcal{A}$ be sets of degrees. Then \mathcal{B} is a base of \mathcal{A} if

 $(\forall \mathbf{a} \in \mathcal{A})(\exists \mathbf{b} \in \mathcal{B})(\mathbf{b} \leq \mathbf{a}).$

Theorem (Soskov)

A structure \mathfrak{A} has a degree if and only if $DS(\mathfrak{A})$ has a countable base.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of the ω-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西ト・山田・山田・山下

An upwards closed set of degrees which is not a degree spectra of a structure

 ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Upwards closed sets

Definition

Let $\mathcal{A} \subseteq \mathcal{D}_e$. \mathcal{A} is upwards closed with respect to total enumeration degrees, if

 $\mathbf{a} \in \mathcal{A}, \mathbf{b}$ is total and $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{b} \in \mathcal{A}.$

The degree spectra are upwards closed with respect to total enumeration degrees.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of upwards closed sets (Soskov)

Let $\mathcal{A} \subseteq \mathcal{D}_e$ be upwards closed with respect to total enumeration degrees. Denote by

$$co(\mathcal{A}) = \{b : b \in \mathcal{D}_e \& (\forall a \in \mathcal{A})(b \leq_e a)\}.$$

► (Selman)
$$A_t = \{ \mathbf{a} : \mathbf{a} \in A \& \mathbf{a} \text{ is total} \}$$

 $\implies co(A) = co(A_t).$

• Let $\mathbf{b} \in \mathcal{D}_e$ and n > 0.

$$\mathcal{A}_{\mathbf{b},n} = \{\mathbf{a}: \mathbf{a} \in \mathcal{A} \ \& \ \mathbf{b} \leq \mathbf{a}^{(n)}\} \Longrightarrow \mathit{co}(\mathcal{A}) = \mathit{co}(\mathcal{A}_{\mathbf{b},n})$$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Properties of degree spectra and co-spectra (Soskov)

• Let
$$\mathbf{c} \in DS_n(\mathfrak{A})$$
 and $n > 0$. Then

$$\mathrm{CS}(\mathfrak{A}) = co(\{\mathbf{a} \mid \mathbf{a} \in \mathrm{DS}(\mathfrak{A}) \& \mathbf{a}^{(n)} = \mathbf{c}\}).$$

► A minimal pair theorem: There exist **f** and **g** in DS(𝔅):

$$(orall \mathbf{a} \in \mathcal{D}_{\boldsymbol{e}})(orall k) (\mathbf{a} \leq_{\boldsymbol{e}} \mathbf{f}^{(k)} \ \& \ \mathbf{a} \leq_{\boldsymbol{e}} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A})).$$

- Quasi-minimal degree: There exists q₀ quasi-minimal for DS(A)
 - $\mathbf{q}_0 \notin \mathrm{CS}(\mathfrak{A});$
 - ▶ for every total *e*-degree **a**: $\mathbf{a} \ge_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{DS}(\mathfrak{A})$ and $\mathbf{a} \le_e \mathbf{q_0} \Rightarrow \mathbf{a} \in \mathrm{CS}(\mathfrak{A})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Relative Spectra

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ be given structures.

Definition

The relative spectrum $RS(\mathfrak{A}, \mathfrak{A}_1, \dots, \mathfrak{A}_n)$ of the structure \mathfrak{A} with respect to $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is the set

 $\{ d_{e}(f^{-1}(\mathfrak{A})) \mid f \text{ is an enumeration of } \mathfrak{A} \& \\ (\forall k \leq n)(f^{-1}(\mathfrak{A}_{k}) \leq_{e} f^{-1}(\mathfrak{A})^{(k)}) \}$

It turns out that all properties of the degree spectra remain true for the relative spectra.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Relatively intrinsically Σ^0_{α} sets

Let $\alpha < \omega^{CK}$.

Definition

A set *A* is *intrinsically relatively* Σ_{α}^{0} *on* \mathfrak{A} if for every enumeration *f* of \mathfrak{A} the set $f^{-1}(A)$ is Σ_{α}^{0} relative to $f^{-1}(\mathfrak{A})$.

Theorem (Ash, Knight, Manasse, Slaman, Chisholm) A set A is intrinsically relatively Σ_{α}^{0} on \mathfrak{A} iff the set A is definable on \mathfrak{A} by a Σ_{α}^{c} formula with parameters.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Relatively α -intrinsic sets

Let $\mathcal{B} = \{B_{\gamma}\}_{\gamma < \xi}$ be a sequence of sets, $\xi < \omega_1^{CK}$.

Definition

A set *A* is *relatively* α *-intrinsic on* \mathfrak{A} *with respect to* \mathcal{B} if for every enumeration *f* of \mathfrak{A} such that $(\forall \gamma < \xi)(f^{-1}(B_{\gamma}) \leq_{e} f^{-1}(\mathfrak{A})^{(\gamma)})$ uniformly in $\gamma < \xi$ $f^{-1}(\mathcal{A}) \leq_{e} f^{-1}(\mathfrak{A})^{(\alpha)}$.

Theorem (Soskov, Baleva)

A set A is relatively α -intrinsic on \mathfrak{A} with respect to \mathcal{B} iff A is definable on $\mathfrak{A}, \mathcal{B}$ by specific kind of positive Σ_{α}^{c} formula with parameters, analogue of Ash's recursive infinitary propositional sentences applied for abstract structures.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

ω -Enumeration Degrees - background

Theorem (Selman)

 $A \leq_e B$ iff $(\forall X)(B \text{ is c.e. in } X \Rightarrow A \text{ is c.e. in } X)$.

Theorem (Case) $A \leq_e B \oplus \emptyset^{(n)} \text{ iff } (\forall X) (B \in \Sigma_{n+1}^X \Rightarrow A \in \Sigma_{n+1}^X).$

Theorem (Ash)

Formally describes the relation: $\mathcal{R}_{k}^{n}(A, B_{0}, ..., B_{k})$ iff $(\forall X)[B_{0} \in \Sigma_{1}^{X} \& ... \& B_{k} \in \Sigma_{k+1}^{X} \Rightarrow A \in \Sigma_{n+1}^{X}].$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job Contraction Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・日本・日本・日本・日本・日本

ω -Enumeration Reducibility

- Uniform reducibility on sequences of sets
- S the set of all sequences of sets of natural numbers
- ▶ For $\mathcal{B} = \{B_n\}_{n < \omega} \in S$ call the jump class of \mathcal{B} the set

$$J_{\mathcal{B}} = \{ d_{\mathrm{T}}(X) \mid (\forall n) (B_n \text{ is c.e. in } X^{(n)} \text{ uniformly in } n) \}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのぐ

Definition (Soskov)

 $\mathcal{A} \leq_{\omega} \mathcal{B}$ (\mathcal{A} is ω -enumeration reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$

•
$$\mathcal{A} \equiv_{\omega} \mathcal{B}$$
 if $J_{\mathcal{A}} = J_{\mathcal{B}}$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

ω -Enumeration Degrees

• \equiv_{ω} is an equivalence relation on S.

$$\blacktriangleright \ \mathbf{d}_{\!\omega}(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \equiv_{\!\omega} \mathcal{B}\}$$

$$\blacktriangleright \mathcal{D}_{\omega} = \{ \mathbf{d}_{\omega}(\mathcal{B}) \mid \mathcal{B} \in \mathcal{S} \}.$$

- If $A \subseteq \mathbb{N}$ denote by $A \uparrow \omega = \{A, \emptyset, \emptyset, \dots\}$.
- For every $A, B \subseteq \mathbb{N}$:

$$\mathbf{A} \leq_{\mathrm{e}} \mathbf{B} \iff \mathbf{J}_{\mathbf{B}\uparrow\omega} \subseteq \mathbf{J}_{\mathbf{A}\uparrow\omega} \iff \mathbf{A}\uparrow\omega \leq_{\omega} \mathbf{B}\uparrow\omega.$$

The mapping κ(d_e(A)) = d_ω(A ↑ ω) gives an isomorphic embedding of D_e to D_ω.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

ω -Enumeration Degrees

Let $\mathcal{B} = \{B_n\}_{n < \omega} \in S$. A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$: 1 $\mathcal{P}_n(\mathcal{B}) = B_n$

2
$$\mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$$

Definition

Let $\mathcal{A} = \{A_n\}_{n < \omega}, \ \mathcal{B} = \{B_n\}_{n < \omega} \in S.$ $\mathcal{A} \leq_e \mathcal{B}$ (\mathcal{A} is enumeration reducible \mathcal{B}) iff $A_n \leq_e B_n$ uniformly in *n*, i.e. there is a computable function *h* such that $(\forall n)(A_n = \Gamma_{h(n)}(B_n)).$

Theorem (Soskov, Kovachev)

 $\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{A} \leq_{\mathrm{e}} \mathcal{P}(\mathcal{B}).$

Proposition

$$(n < k) \mathcal{R}_k^n(A, B_0, \dots, B_k) \iff A \leq_e \mathcal{P}_n(B_0, \dots, B_n).$$

 $(n \ge k) \mathcal{R}_k^n(A, B_0, \dots, B_k) \iff A \leq_e \mathcal{P}_k(B_0, \dots, B_k)^{(n-k)}.$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西ト・山田・山田・山下

ω -Enumeration Degrees

Let
$$\mathcal{B} = \{B_n\}_{n < \omega} \in S$$
.
A jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_n(\mathcal{B})\}_{n < \omega}$:
1 $\mathcal{P}_0(\mathcal{B}) = B_0$
2 $\mathcal{P}_{n+1}(\mathcal{B}) = (\mathcal{P}_n(\mathcal{B}))' \oplus B_{n+1}$

Proposition

- $\mathcal{B} \leq_{e} \mathcal{P}(\mathcal{B}).$
- ▶ $\mathcal{P}(\mathcal{P}(\mathcal{B})) \leq_{e} \mathcal{P}(\mathcal{B}).$
- $\blacktriangleright \ \mathcal{B} \equiv_{\omega} \mathcal{P}(\mathcal{B}).$
- $\blacktriangleright \mathcal{A} \leq_{e} \mathcal{B} \Rightarrow \mathcal{A} \leq_{\omega} \mathcal{B}.$

Lemma

Let A_0, \ldots, A_r, \ldots be sequences of sets such that for every $r, A_r \not\leq_{\omega} \mathcal{B}$. There is a total set X such that $\mathcal{B} \leq_{\omega} \{X^{(n)}\}_{n < \omega}$ and $A_r \not\leq_{\omega} \{X^{(n)}\}_{n < \omega}$ for each r.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

ω -Enumeration Jump

Definition (Soskov)

For every $\mathcal{A} \in \mathcal{S}$ the ω -enumeration jump of \mathcal{A} is $\mathcal{A}' = \{\mathcal{P}_{n+1}(\mathcal{A})\}_{n < \omega}$ We have that $J'_{\mathcal{A}} = \{\mathbf{a}' \mid \mathbf{a} \in J_{\mathcal{A}}\}.$

Proposition

1. $\mathcal{A} <_{\omega} \mathcal{A}'$. 2. $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$.

$$d_{\omega}(\mathcal{A})' = d_{\omega}(\mathcal{A}') d_{\omega}(\mathcal{A})^{(n)} = d_{\omega}(\mathcal{A}^{(n)}).$$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・日本・日本・日本・日本・日本

ω - Degree Spectra

Let $\mathfrak{A} = (\mathbb{N}; R_1, \dots, R_k, =, \neq)$ be an abstract structure and $\mathcal{B} = \{B_n\}_{n < \omega}$ be a fixed sequence of subsets of \mathbb{N} . The enumeration *f* of the structure \mathfrak{A} is *acceptable with respect to* \mathcal{B} , if for every *n*,

 $f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}$ uniformly in *n*.

Denote by $\mathcal{E}(\mathfrak{A},\mathcal{B})$ - the class of all acceptable enumerations.

Definition

The ω - degree spectrum of \mathfrak{A} with respect to $\mathcal{B} = \{B_n\}_{n < \omega}$ is the set

 $\mathrm{DS}(\mathfrak{A},\mathcal{B}) = \{ d_{\mathrm{e}}(f^{-1}(\mathfrak{A})) \mid f \in \mathcal{E}(\mathfrak{A},\mathcal{B}) \}$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

ω -Degree Spectra

ω - Degree Spectra and Relative Spectra

The notion of the ω -degree spectrum is a generalization of the relative spectrum:

▶
$$RS(\mathfrak{A},\mathfrak{A}_1,\ldots,\mathfrak{A}_n) = DS(\mathfrak{A},\mathcal{B})$$
, where $\mathcal{B} = \{B_k\}_{k < \omega}$,

►
$$B_0 = \emptyset$$
,

▶ B_k is the positive diagram of the structure \mathfrak{A}_k , $k \leq n$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

•
$$B_k = \emptyset$$
 for all $k > n$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Enumeration Degrees

ω -Degree Spectra

$\omega\textsc{-}$ Degree Spectra and Degree Spectra

It is easy to find a structure \mathfrak{A} and a sequence \mathcal{B} such that $DS(\mathfrak{A}, \mathcal{B}) \neq DS(\mathfrak{A})$.

•
$$\mathfrak{A} = \{\mathbb{N}, \mathcal{S}, =, \neq\}$$
, where

►
$$S = \{(n, n+1) \mid n \in \mathbb{N}\}.$$

 D_e ∈ DS(𝔅) and then all total enumeration degrees are elements of DS(𝔅).

•
$$B_0 = \emptyset', B_n = \emptyset$$
 for each $n \ge 1$.

• Let
$$f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$$
 and $f(x_0) = 0$.

- ► $k \in B_n \iff (\exists x_1) \dots (\exists x_k)(f^{-1}(S)(x_0, x_1) \& \dots \& f^{-1}(S)(x_{k-1}, x_k) \& x_k \in f^{-1}(B_n)).$
- $\blacktriangleright B_n \leq_{\mathrm{e}} f^{-1}(\mathfrak{A}) \oplus f^{-1}(B_n) \leq_{\mathrm{e}} f^{-1}(\mathfrak{A})^{(n)}.$
- ▶ Then $\emptyset' \leq_e B_0 \leq_e f^{-1}(\mathfrak{A})$. Thus $\mathbf{0}_e \notin DS(\mathfrak{A}, \mathcal{B})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

ω -Degree Spectra

ω - Degree Spectra

Proposition

 $DS(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total *e-degrees*.

Lemma

Let *f* be an enumeration of \mathfrak{A} and *F* be a total set such that $f^{-1}(\mathfrak{A}) \leq_{e} F$ and $f^{-1}(B_n) \leq_{e} F^{(n)}$ uniformly in *n*. Then there exists an acceptable enumeration *g* of \mathfrak{A} with respect to \mathcal{B} such that $g^{-1}(\mathfrak{A}) \equiv_{e} F$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job Contraction Degrees

ω -Degree Spectra

ω - Jump Spectra

Definition

The kth ω -jump spectrum of \mathfrak{A} with respect to \mathcal{B} is the set

$$\mathrm{DS}_k(\mathfrak{A},\mathcal{B}) = \{\mathbf{a}^{(\mathbf{k})} \mid \mathbf{a} \in \mathrm{DS}(\mathfrak{A},\mathcal{B})\}.$$

Proposition

 $DS_k(\mathfrak{A}, \mathcal{B})$ is upwards closed with respect to total *e-degrees*.

Lemma (Soskov)

Let $Q \subseteq \mathbb{N}$ be a total set, $B_0, \ldots, B_k \subseteq \mathbb{N}$, such that $\mathcal{P}_k(\{B_0, \ldots, B_k\}) \leq_e Q$. There is a total set F such that: $\succ F^{(k)} \equiv Q$.

• $(\forall i \leq k)(B_i \leq_{\mathrm{e}} F^{(i)}).$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

ω -Degree Spectra

ω -Co-Spectra

For every
$$\mathcal{A} \subseteq \mathcal{D}_{\omega}$$
 let
 $co(\mathcal{A}) = \{ \mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \ \& \ (\forall \mathbf{a} \in \mathcal{A}) (\mathbf{b} \leq_{\omega} \mathbf{a}) \}.$

Definition

The ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} is the set

 $CS(\mathfrak{A}, \mathcal{B}) = co(DS(\mathfrak{A}, \mathcal{B})).$

For every enumeration f of $\mathcal{E}(\mathfrak{A}, \mathcal{B})$ consider the sequence

►
$$f^{-1}(\mathcal{B}) = \{f^{-1}(\mathfrak{A}) \oplus f^{-1}(B_0), f^{-1}(B_1), \dots, f^{-1}(B_n), \dots\}$$

$$\blacktriangleright \mathcal{P}(f^{-1}(\mathcal{B})) \equiv_{\omega} \{f^{-1}(\mathfrak{A})^{(n)}\}_{n < \omega} \equiv_{\omega} f^{-1}(\mathfrak{A}) \uparrow \omega.$$

► So $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ iff $\mathcal{P}(f^{-1}(\mathcal{B})) \leq_{\omega} f^{-1}(\mathfrak{A}) \uparrow \omega$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

ω -Degree Spectra

*k*th ω-Co-Spectrum

Proposition

For each $A \in S$ it holds that $d_{\omega}(A) \in CS(\mathfrak{A}, B)$ if and only if $A \leq_{\omega} \mathcal{P}(f^{-1}(B))$ for every $f \in \mathcal{E}(\mathfrak{A}, B)$.

Actually the elements of the ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} form a countable ideal in \mathcal{D}_{ω} .

Definition

The kth ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} is the set

 $\mathrm{CS}_k(\mathfrak{A},\mathcal{B})=co(\mathrm{DS}_k(\mathfrak{A},\mathcal{B})).$

We will see that the kth ω -co-spectrum of \mathfrak{A} with respect to \mathcal{B} is the least ideal containing all kth ω -enumeration jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

ω -Degree Spectra

Normal Form Theorem

Let \mathcal{L} be the language of the structure \mathfrak{A} . For each *n* let P_n be a new unary predicate representing the set B_n .

 An elementary Σ₀⁺ formula is an existential formula of the form

 $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atomic formulae in $\mathcal{L} \cup \{P_0\}$;

- A Σ_n⁺ formula is a c.e. disjunction of elementary Σ_n⁺ formulae;
- An elementary Σ_{n+1}^+ formula is a formula of the form $\exists Y_1 \dots \exists Y_m \Phi(W_1, \dots, W_r, Y_1, \dots, Y_m)$, where Φ is a finite conjunction of atoms of the form $P_{n+1}(Y_j)$ or $P_{n+1}(W_i)$ and Σ_n^+ formulae or negations of Σ_n^+ formulae in $\mathcal{L} \cup \{P_0\} \cup \dots \cup \{P_n\}$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

ω -Degree Spectra

Normal Form Theorem

Definition

The sequence $\mathcal{A} = \{A_n\}_{n < \omega}$ of sets of natural is *formally k*-*definable* on \mathfrak{A} with respect to \mathcal{B} if there exists a computable function $\gamma(x, n)$ such that for each $n, x \in \omega$ $\Phi^{\gamma(n,x)}(W_1, \ldots, W_r)$ is a Σ_{n+k}^+ formula, and elements t_1, \ldots, t_r of $|\mathfrak{A}|$ such that for every $n, x \in \omega$, the following equivalence holds:

$$x \in A_n \iff (\mathfrak{A}, \mathcal{B}) \models \Phi^{\gamma(n,x)}(W_1/t_1, \ldots, W_r/t_r).$$

Theorem

The sequence \mathcal{A} of sets of natural numbers is formally *k*-definable on \mathfrak{A} with respect to \mathcal{B} iff $d_{\omega}(\mathcal{A}) \in CS_k(\mathfrak{A}, \mathcal{B})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job - Enumeration Degrees

ω -Degree Spectra

Properties of upwards closed sets

Let $\mathcal{A} \subseteq \mathcal{D}_{e}$ be an upwards closed set with respect to total e-degrees. We remind that $co(\mathcal{A}) = \{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \& (\forall \mathbf{a} \in \mathcal{A})(\mathbf{b} \leq_{\omega} \mathbf{a})\}.$ Proposition $co(\mathcal{A}) = co(\{\mathbf{a} : \mathbf{a} \in \mathcal{A} \& \mathbf{a} \text{ is total}\}).$ Corrolary

 $CS(\mathfrak{A}, \mathcal{B}) = co(\{\mathbf{a} \mid \mathbf{a} \in DS(\mathfrak{A}, \mathcal{B}) \& \mathbf{a} \text{ is a total e-degree}\}).$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

ω-Degree Spectra

Properties of the ω -Degree Spectra

Negative results (Vatev)

Let $\mathcal{A} \subseteq \mathcal{D}_e$ be an upwards closed set with respect to total e-degrees and k > 0.

Proposition

There exists $\mathbf{b} \in \mathcal{D}_e$ such that

$$\textit{co}(\mathcal{A})
eq \textit{co}(\{ \texttt{a} : \texttt{a} \in \mathcal{A} \ \& \ \texttt{b} \leq \texttt{a}^{(k)} \}).$$

- Let $d_e(A) \in \mathcal{A}$ and a set $B \not\leq_e A^{(k)}$.
- Consider $\mathcal{B} = \{\emptyset, \dots, \emptyset^{(k-1)}, B, B', \dots, \}.$

$$\blacktriangleright \ \mathcal{B} \not\leq_{\omega} \mathcal{A} \uparrow \omega \Rightarrow \mathbf{d}_{\omega}(\mathcal{B}) \notin \mathbf{co}(\mathcal{A}).$$

• $\mathcal{B} \leq_{\omega} C \uparrow \omega$ for each C s.t. $B \leq_{e} C^{(k)}$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra

Negative results (Vatev)

Proposition

Let n > 0. There is a structure \mathfrak{A} , a sequence \mathcal{B} and $\mathbf{c} \in DS_n(\mathfrak{A}, \mathcal{B})$ such that if $\mathcal{A} = \{\mathbf{a} \in DS(\mathfrak{A}, \mathcal{B}) \mid \mathbf{a}^{(n)} = \mathbf{c}\}$ then

 $\mathrm{CS}(\mathfrak{A},\mathcal{B})
eq {\it co}(\mathcal{A}).$

- Consider a linear order 𝔄 which has no *n*-jump degree, 𝔅 = ∅ ↑ ω and d_e(𝔅) ∈ DS_n(𝔅).
- Consider $C = \{\emptyset, \dots, \emptyset^{(n-1)}, C, C', \dots, \}.$
- d_ω(C) ∉ CS(𝔅), otherwise d_e(C) will be an *n*-jump degree of 𝔅.
- ► $\mathbf{d}_{\omega}(\mathcal{C}) \in \textit{co}(\mathcal{A}).$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Degree Spectra

Properties of the ω -Degree Spectra

Minimal pair theorem

Theorem

For every structure \mathfrak{A} and every sequence $\mathcal{B} \in \mathcal{S}$ there exist total enumeration degrees **f** and **g** in $DS(\mathfrak{A}, \mathcal{B})$ such that for every ω -enumeration degree **a** and $k \in \mathbb{N}$:

$$\mathbf{a} \leq_{\omega} \mathbf{f}^{(k)}$$
 & $\mathbf{a} \leq_{\omega} \mathbf{g}^{(k)} \Rightarrow \mathbf{a} \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B})$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

Job - Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra

Minimal pair theorem

Proof.

Case k = 0.

- Let $f \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ and $F = f^{-1}(\mathfrak{A})$ is a total set.
- Denote by X₀, X₁,... X_r... all sequences
 ω-enumeration reducible to P(f⁻¹(B)).
- ► Consider C₀, C₁,..., C_r... among them which are not formally definable on A with respect to B.
- ► There is an enumeration *h* such that $C_r \leq_{\omega} \mathcal{P}(h^{-1}(\mathcal{B})), r \in \omega.$
- There is a total set G such that P(h⁻¹(B)) ≤_ω G ↑ ω and C_r ≤_ω G ↑ ω, r ∈ ω.
- ▶ There is a $g \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$ such that $g^{-1}(\mathfrak{A}) \equiv_{e} G$. Thus $d_{e}(G) \in \mathrm{DS}(\mathfrak{A}, \mathcal{B})$.

▶ If $A \leq_{\omega} F \uparrow \omega$ and $A \leq_{\omega} G \uparrow \omega$ then $A = X_r$ and $A \neq C_l$ for all $l \in \omega$. So $d_{\omega}(A) \in CS(\mathfrak{A}, B)$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra

Minimal pair theorem

Proof.

- $I(\mathbf{a}) = \{\mathbf{b} \mid \mathbf{b} \in \mathcal{D}_{\omega} \ \& \ \mathbf{b} \leq_{\omega} \mathbf{a}\} = co(\{\mathbf{a}\}).$
 - ► $CS(\mathfrak{A}, \mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g})$ where $\mathbf{f} = d_e(F)$ and $\mathbf{g} = d_e(G)$.
 - We shall prove now that *I*(**f**^(k)) ∩ *I*(**g**^(k)) = CS_k(𝔅, 𝔅) for every *k*.
 - ► $\mathbf{f}^{(k)}, \mathbf{g}^{(k)} \in \mathrm{DS}_k(\mathfrak{A}, \mathcal{B}) \Rightarrow \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}) \subseteq I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}).$
 - Suppose that $\mathcal{A} = \{A_n\}_{n < \omega}, \ \mathcal{A} \leq_{\omega} F^{(k)} \uparrow \omega$ and $\mathcal{A} \leq_{\omega} G^{(k)} \uparrow \omega$.
 - ► Denote by $C = \{C_n\}_{n < \omega}$ the sequence such that $C_n = \emptyset$ for n < k, and $C_{n+k} = A_n$ for each *n*.
 - ► $\mathcal{A} \leq_{\omega} \mathcal{C}^{(k)}, \mathcal{C} \leq_{\omega} F \uparrow \omega$ and $\mathcal{C} \leq_{\omega} G \uparrow \omega \Rightarrow$ $d_{\omega}(\mathcal{C}) \in \mathrm{CS}(\mathfrak{A}, \mathcal{B}).$
 - ▶ Let $h \in \mathcal{E}(\mathfrak{A}, \mathcal{B})$. Then $\mathcal{C} \leq_{\omega} h^{-1}(\mathfrak{A}) \uparrow \omega$ and thus $\mathcal{C}^{(k)} \leq_{\omega} (h^{-1}(\mathfrak{A}) \uparrow \omega)^{(k)}$.

<
 <

 <

• Hence $d_{\omega}(\mathcal{A}) \in \mathrm{CS}_k(\mathfrak{A}, \mathcal{B}).$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

 ω -Degree Spectra

Properties of the ω-Degree Spectra

Countable ideals of ω -enumeration degrees

Corrolary

 $CS_k(\mathfrak{A}, \mathcal{B})$ is the least ideal containing all kth ω -jumps of the elements of $CS(\mathfrak{A}, \mathcal{B})$.

- $I = CS(\mathfrak{A}, \mathcal{B})$ is a countable ideal;
- $\mathrm{CS}(\mathfrak{A},\mathcal{B}) = I(\mathbf{f}) \cap I(\mathbf{g});$
- I^(k) the least ideal, containing all kth ω-jumps of the elements of I;
- (Ganchev) $I = I(\mathbf{f}) \cap I(\mathbf{g}) \Longrightarrow I^{(k)} = I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)})$ for every k;
- ► $I(\mathbf{f}^{(k)}) \cap I(\mathbf{g}^{(k)}) = CS_k(\mathfrak{A}, \mathcal{B})$ for each k
- Thus $I^{(k)} = CS_k(\mathfrak{A}, \mathcal{B}).$

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration Degrees

ω-Degree Spectra

Properties of the ω-Degree Spectra

Countable ideals of ω -enumeration degrees

There is a countable ideal *I* of ω -enumeration degrees for which there is no structure \mathfrak{A} and sequence \mathcal{B} such that $I = CS(\mathfrak{A}, \mathcal{B})$.

- $\mathcal{A} = \{\mathbf{0}, \mathbf{0}', \mathbf{0}'', \dots, \mathbf{0}^{(n)}, \dots\};$
- ► $I = I(A) = \{ \mathbf{a} \mid \mathbf{a} \in \mathcal{D}_{\omega} \& (\exists n) (\mathbf{a} \leq_{\omega} \mathbf{0}^{(n)}) \}$ a countable ideal generated by A.
- ► Assume that there is a structure A and a sequence B such that I = CS(A, B)
- ► Then there is a minimal pair **f** and **g** for $DS(\mathfrak{A}, \mathcal{B})$, so $I^{(n)} = I(\mathbf{f}^{(n)}) \cap I(\mathbf{g}^{(n)})$ for each *n*.
- $\mathbf{f} \ge \mathbf{0}^{(n)}$ and $\mathbf{g} \ge \mathbf{0}^{(n)}$ for each *n*.
- ► Then by Enderton and Putnam [1970], Sacks [1971]: $\mathbf{f}'' \ge \mathbf{0}^{(\omega)}$ and $\mathbf{g}'' \ge \mathbf{0}^{(\omega)}$.
- Hence $I'' \neq I(\mathbf{f}'') \cap I(\mathbf{g}'')$. A contradiction.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

o-Enumeration Degrees

 ω -Degree Spectra

Properties of the ω -Degree Spectra

Quasi-Minimal Degree

Theorem

For every structure \mathfrak{A} and every sequence \mathcal{B} , there exists $F \subseteq \mathbb{N}$, such that $\mathbf{q} = d_{\omega}(F \uparrow \omega)$ and:

- 1. $\mathbf{q} \notin CS(\mathfrak{A}, \mathcal{B});$
- 2. If **a** is a total e-degree and $\mathbf{a} \ge_{\omega} \mathbf{q}$ then $\mathbf{a} \in DS(\mathfrak{A}, \mathcal{B})$
- 3. If **a** is a total e-degree and $\mathbf{a} \leq_{\omega} \mathbf{q}$ then $\mathbf{a} \in CS(\mathfrak{A}, \mathcal{B})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem

Quasi-Minimal Degree

Quasi-Minimal Degree

Proof.

- Soskov) There is a partial generic enumeration *f* of 𝔅 such that *d*_e(*f*⁻¹(𝔅)) is quasi-minimal with respect to DS(𝔅) and *f*⁻¹(𝔅) ≤_e D(𝔅).
- (Ganchev) There is a set *F* such that $f^{-1}(\mathfrak{A}) \leq_{e} F$, $f^{-1}(\mathcal{B}) \leq_{\omega} F \uparrow \omega$ and for total *X*: $X \leq_{e} F \Rightarrow X \leq_{e} f^{-1}(\mathfrak{A})$.
- Set $\mathbf{q} = d_{\omega}(F \uparrow \omega)$ and let X be a total set.
- ▶ If $\mathbf{q} \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$ then $d_{\omega}(f^{-1}(\mathfrak{A}) \uparrow \omega) \in \mathrm{CS}(\mathfrak{A}, \mathcal{B})$. Then $f^{-1}(\mathfrak{A}) \leq_{\mathrm{e}} D(\mathfrak{A})$. A contradiction.
- ▶ If $X \leq_{e} F$ then $X \leq_{e} f^{-1}(\mathfrak{A})$. Thus $d_{e}(X) \in CS(\mathfrak{A})$. But $DS(\mathfrak{A}, \mathcal{B}) \subseteq DS(\mathfrak{A})$. So $d_{\omega}(X \uparrow \omega) \in CS(\mathfrak{A}, \mathcal{B})$.
- ▶ If $X \ge_e F$ then $X \ge_e f^{-1}(\mathfrak{A})$. Hence dom(*f*) is c.e. in *X*. Let ρ be a computable in *X* enumeration of dom(*f*). Set $h = \lambda n.f(\rho(n))$. So $h^{-1}(\mathcal{B}) \le_e X \uparrow \omega$. Then $d_e(X) \in DS(\mathfrak{A}, \mathcal{B})$.

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

ω -degree spectra

Questions:

- Is it true that for every structure A and every sequence B there exists a structure B such that DS(B) = DS(A, B)?
- If for a countable ideal I ⊆ D_ω there is an exact pair then are there a structure 𝔄 and a sequence 𝔅 so that CS(𝔄, 𝔅) = I?

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

 ω -Degree Spectra

Properties of the ω -Degree Spectra Minimal Pair Theorem

Quasi-Minimal Degree

- Ganchev, H., Exact pair theorem for the ω-enumeration degrees, *LNCS*, (B. Löwe S. B. Cooper and A. Sorbi, eds.), 4497, 316–324 (2007)
- Soskov I. N., Degree spectra and co-spectra of structures. *Ann. Univ. Sofia*, **96** 45–68 (2003)
- Soskov, I. N., Kovachev, B. Uniform regular enumerations *Mathematical Structures in Comp. Sci.* 16 no. 5, 901–924 (2006)
- Soskov, I. N. The ω -enumeration degrees, *J. Logic* and Computation **17** no. 6, 1193-1214 (2007)
- Soskov, I. N., Ganchev H. The jump operator on the ω-enumeration degrees. Annals of Pure and Applied Logic, 160, 289–301 (2009)
- Soskova, A. A. Relativized degree spectra. J. Logic and Computation **17**, no. 6, 1215-1233 (2007)

ω -Degree Spectra

Alexandra A. Soskova

Degree Spectra

J-Enumeration

 ω -Degree Spectra

Properties of the ω-Degree Spectra Minimal Pair Theorem Quasi-Minimal Degree

・ロト・西ト・西ト・日・ うくの