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Enumeration of a Structure

Let A = (N; R1, . . . ,Rk ,=, 6=) be a countable abstract
structure.

I An enumeration f of A is a total mapping from N onto
N.

I for any A ⊆ Na let
f−1(A) = {〈x1, . . . , xa〉 : (f (x1), . . . , f (xa)) ∈ A}.

I f−1(A) = f−1(R1)⊕ · · · ⊕ f−1(Rk )⊕ f−1(=)⊕ f−1(6=).
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Degree Spectra

Definition (Richter)
The Turing degree spectrum of A

DST(A) = {dT(f−1(A)) | f is an injective enumeration of A}

I J. Knight, Ash, Jockush, Downey, Slaman.
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Enumeration reducibility

Definition
We say that Γ : 2N → 2N is an enumeration operator iff for
some c.e. set Wi for each B ⊆ N

Γ(B) = {x |(∃D)[〈x ,D〉 ∈Wi &D ⊆ B]}.

The index i of the c.e. set Wi is an index of Γ and write
Γ = Γi .

Definition
The set A is enumeration reducible to the set B (A ≤e B),
if A = Γi(B) for some e-operator Γi .
The enumeration degree of A is de(A) = {B ⊆ N|A ≡e B}.
The set of all enumeration degrees is denoted by De.
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The enumeration jump
Definition
Given a set A, denote by A+ = A⊕ (N \ A).

Theorem
For any sets A and B:

1. A is c.e. in B iff A ≤e B+.
2. A ≤T B iff A+ ≤e B+.
3. A is Σ0

n+1 relatively to B iff A ≤e (B+)(n).

Definition
For any set A let KA = {〈i , x〉|x ∈ Γi(A)}. Set A′ = K+

A .

Definition
A set A is called total iff A ≡e A+.
Let de(A)′ = de(A′). The enumeration jump is always a
total degree and agrees with the Turing jump under the
standard embedding ι : DT → De by ι(dT (A)) = de(A+).
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Enumeration Degree Spectra and Co-spectra

Definition (Soskov)

I The enumeration degree spectrum of A

DS(A) = {de(f−1(A)) | f is an enumeration of A}.

If a is the least element of DS(A), then a is called the
degree of A.

I The co-spectrum of A

CS(A) = {b : (∀a ∈ DS(A))(b ≤ a)}.

If a is the greatest element of CS(A) then we call a the
co-degree of A.
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Jump spectra

Definition
The nth jump spectrum of A is the set

DSn(A) = {de(f−1(A)(n)) : f is an enumeration of A}.

If a is the least element of DSn(A), then a is called the nth
jump degree of A.

Definition
The set CSn(A) of all lower bounds of the nth jump
spectrum of A is called nth jump co-spectrum of A.
If CSn(A) has a greatest element then it is called the nth
jump co-degree of A.
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Some examples

Example (Richter)
Let A = (A;<) be a linear ordering. DS(A) contains a
minimal pair of degrees and hence CS(A) = {0e}. 0e is
the co-degree of A. So, if A has a degree a, then a = 0e.

Example (Knight)
For a linear ordering A, CS1(A) consists of all e-degrees
of Σ0

2 sets. The first jump co-degree of A is 0′e.

Example (Slaman,Whener)
There exists a structure A s.t.

DS(A) = {a : a is total and 0e < a}.

Clearly the structure A has co-degree 0e but has not a
degree.
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Some examples

Example (Downey, Jockusch)
Let G be a torsion free abelian group of rank 1, i.e. G is a
subgroup of Q. There exists a set called the standard
type of the group S(G) with the following property:
The Turing degree spectrum of G is precisely
{dT (X ) | S(G) ∈ Σ0

1(X )}.

Example (Coles, Downey, Slaman)
Let A ⊆ N. Consider C(A) = {X | A ∈ Σ0

1(X )}. By Richter
there is a set A such that C(A) has not a member of least
Turing degree.
For every sets A the set: C(A)′ = {X ′ | A ∈ Σ0

1(X )} has a
member of least degree.
Every torsion free abelian group of rank 1 has a first jump
degree.
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Representing the principle countable ideals
as co-spectra

Example (Soskov)
Let G be a torsion free abelian group of rank 1.
Let sG be an enumeration degree of S(G).

I DS(G) = {b : b is total and sG ≤e b}.
I The co-degree of G is sG.
I G has a degree iff sG is a total e-degree.

I If 1 ≤ n, then s(n)
G is the n-th jump degree of G.

For every d ∈ De there exists a G, s.t. sG = d.

Corrolary
Every principle ideal of enumeration degrees is CS(G) for
some G.
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Representing non-principle countable ideals
as co-spectra

Example (Soskov)
Let B0, . . . ,Bn, . . . be a sequence of sets of natural
numbers. Set A = (N; f ;σ),

f (〈i ,n〉) = 〈i + 1,n〉;
σ = {〈i ,n〉 : n = 2k + 1 ∨ n = 2k & i ∈ Bk}.

Then CS(A) = I(de(B0), . . . ,de(Bn), . . . )
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Spectra with a countable base

Definition
Let B ⊆ A be sets of degrees. Then B is a base of A if

(∀a ∈ A)(∃b ∈ B)(b ≤ a).

Theorem (Soskov)
A structure A has a degree if and only if DS(A) has a
countable base.
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An upwards closed set of degrees which is
not a degree spectra of a structure

a b
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Upwards closed sets

Definition
Let A ⊆ De. A is upwards closed with respect to total
enumeration degrees, if

a ∈ A,b is total and a ≤ b⇒ b ∈ A.

The degree spectra are upwards closed with respect to
total enumeration degrees.
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Properties of upwards closed sets (Soskov)

Let A ⊆ De be upwards closed with respect to total
enumeration degrees. Denote by

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

I (Selman) At = {a : a ∈ A & a is total}
=⇒ co(A) = co(At ).

I Let b ∈ De and n > 0.

Ab,n = {a : a ∈ A & b ≤ a(n)} =⇒ co(A) = co(Ab,n).
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Properties of degree spectra and co-spectra
(Soskov)

I Let c ∈ DSn(A) and n > 0. Then

CS(A) = co({a | a ∈ DS(A) & a(n) = c}).

I A minimal pair theorem:
There exist f and g in DS(A):

(∀a ∈ De)(∀k)(a ≤e f(k) & a ≤e g(k) ⇒ a ∈ CSk (A)).

I Quasi-minimal degree:
There exists q0 quasi-minimal for DS(A)

I q0 6∈ CS(A);
I for every total e-degree a: a ≥e q0 ⇒ a ∈ DS(A) and

a ≤e q0 ⇒ a ∈ CS(A).
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An upwards closed set with no minimal pair

a ∧ c b ∧ ca ∧ b

b ca

f0 f1

>

⊥
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Relative Spectra

Let A1, . . . ,An be given structures.

Definition
The relative spectrum RS(A,A1 . . . ,An) of the structure A
with respect to A1, . . . , An is the set

{de(f−1(A)) | f is an enumeration of A &

(∀k ≤ n)(f−1(Ak ) ≤e f−1(A)(k))}

It turns out that all properties of the degree spectra
remain true for the relative spectra.
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Relatively intrinsically Σ0
α sets

Let α < ωCK .

Definition
A set A is intrinsically relatively Σ0

α on A if for every
enumeration f of A the set f−1(A) is Σ0

α relative to f−1(A).

Theorem (Ash, Knight, Manasse, Slaman, Chisholm)
A set A is intrinsically relatively Σ0

α on A iff the set A is
definable on A by a Σc

α formula with parameters.
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Relatively α-intrinsic sets

Let B = {Bγ}γ<ξ be a sequence of sets, ξ < ωCK
1 .

Definition
A set A is relatively α-intrinsic on A with respect to B if for
every enumeration f of A such that
(∀γ < ξ)(f−1(Bγ) ≤e f−1(A)(γ)) uniformly in γ < ξ
f−1(A) ≤e f−1(A)(α).

Theorem (Soskov, Baleva)
A set A is relatively α-intrinsic on A with respect to B iff A
is definable on A,B by specific kind of positive Σc

α formula
with parameters, analogue of Ash’s recursive infinitary
propositional sentences applied for abstract structures.
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ω-Enumeration Degrees - background

Theorem (Selman)
A ≤e B iff (∀X )(B is c.e. in X ⇒ A is c.e. in X ).

Theorem (Case)
A ≤e B ⊕ ∅(n) iff (∀X )(B ∈ ΣX

n+1 ⇒ A ∈ ΣX
n+1).

Theorem (Ash)
Formally describes the relation:
Rn

k (A,B0, . . . ,Bk ) iff
(∀X )[B0 ∈ ΣX

1 & . . . & Bk ∈ ΣX
k+1 ⇒ A ∈ ΣX

n+1].
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ω-Enumeration Reducibility

I Uniform reducibility on sequences of sets
I S the set of all sequences of sets of natural numbers
I For B = {Bn}n<ω ∈ S call the jump class of B the set

JB = {dT(X ) | (∀n)(Bn is c.e. in X (n) uniformly in n)} .

Definition (Soskov)
A ≤ω B (A is ω-enumeration reducible to B) if JB ⊆ JA

I A ≡ω B if JA = JB.
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ω-Enumeration Degrees

I ≡ω is an equivalence relation on S.
I dω(B) = {A | A ≡ω B}
I Dω = {dω(B) | B ∈ S}.
I If A ⊆ N denote by A ↑ ω = {A, ∅, ∅, . . . }.
I For every A,B ⊆ N:

A ≤e B ⇐⇒ JB↑ω ⊆ JA↑ω ⇐⇒ A ↑ ω ≤ω B ↑ ω.

I The mapping κ(de(A)) = dω(A ↑ ω) gives an
isomorphic embedding of De to Dω.
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ω-Enumeration Degrees
Let B = {Bn}n<ω ∈ S.
A jump sequence P(B) = {Pn(B)}n<ω:

1 P0(B) = B0

2 Pn+1(B) = (Pn(B))′ ⊕ Bn+1

Definition
Let A = {An}n<ω, B = {Bn}n<ω ∈ S.
A ≤e B ( A is enumeration reducible B ) iff
An ≤e Bn uniformly in n, i.e. there is a computable
function h such that (∀n)(An = Γh(n)(Bn)).

Theorem (Soskov, Kovachev)
A ≤ω B ⇐⇒ A ≤e P(B).

Proposition
(n < k) Rn

k (A,B0, . . . ,Bk ) ⇐⇒ A ≤e Pn(B0, . . . ,Bn).
(n ≥ k) Rn

k (A,B0, . . . ,Bk ) ⇐⇒ A ≤e Pk (B0, . . . ,Bk )(n−k).
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ω-Enumeration Degrees
Let B = {Bn}n<ω ∈ S.
A jump sequence P(B) = {Pn(B)}n<ω:

1 P0(B) = B0

2 Pn+1(B) = (Pn(B))′ ⊕ Bn+1

Proposition

I B ≤e P(B).
I P(P(B)) ≤e P(B).
I B ≡ω P(B).
I A ≤e B ⇒ A ≤ω B.

Lemma
Let A0, . . . ,Ar , . . . be sequences of sets such that for
every r , Ar 6≤ω B. There is a total set X such that
B ≤ω {X (n)}n<ω and Ar 6≤ω {X (n)}n<ω for each r .
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ω-Enumeration Jump

Definition (Soskov)
For every A ∈ S the ω-enumeration jump of A is
A′ = {Pn+1(A)}n<ω
We have that J ′A = {a′ | a ∈ JA}.

Proposition

1. A <ω A′.
2. A ≤ω B ⇒ A′ ≤ω B′.

I dω(A)′ = dω(A′)
I dω(A)(n) = dω(A(n)).
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ω- Degree Spectra

Let A = (N; R1, . . . ,Rk ,=, 6=) be an abstract structure and
B = {Bn}n<ω be a fixed sequence of subsets of N.
The enumeration f of the structure A is acceptable with
respect to B, if for every n,

f−1(Bn) ≤e f−1(A)(n) uniformly in n.

Denote by E(A,B) - the class of all acceptable
enumerations.

Definition
The ω- degree spectrum of A with respect to
B = {Bn}n<ω is the set

DS(A,B) = {de(f−1(A)) | f ∈ E(A,B)}
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ω- Degree Spectra and Relative Spectra

The notion of the ω-degree spectrum is a generalization
of the relative spectrum:

I RS(A,A1, . . . ,An) = DS(A,B), where B = {Bk}k<ω,
I B0 = ∅,
I Bk is the positive diagram of the structure Ak , k ≤ n
I Bk = ∅ for all k > n.
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ω- Degree Spectra and Degree Spectra

It is easy to find a structure A and a sequence B such
that DS(A,B) 6= DS(A).

I A = {N,S,=, 6=}, where
I S = {(n,n + 1) | n ∈ N}.
I 0e ∈ DS(A) and then all total enumeration degrees

are elements of DS(A).
I B0 = ∅′, Bn = ∅ for each n ≥ 1.
I Let f ∈ E(A,B) and f (x0) = 0.
I k ∈ Bn ⇐⇒ (∃x1) . . . (∃xk )(f−1(S)(x0, x1) & . . .&

f−1(S)(xk−1, xk ) & xk ∈ f−1(Bn)).
I Bn ≤e f−1(A)⊕ f−1(Bn) ≤e f−1(A)(n).
I Then ∅′ ≤e B0 ≤e f−1(A). Thus 0e 6∈ DS(A,B).
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ω- Degree Spectra

Proposition
DS(A,B) is upwards closed with respect to total
e-degrees.

Lemma
Let f be an enumeration of A and F be a total set such
that f−1(A) ≤e F and f−1(Bn) ≤e F (n) uniformly in n.
Then there exists an acceptable enumeration g of A with
respect to B such that g−1(A) ≡e F.
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ω- Jump Spectra

Definition
The kth ω-jump spectrum of A with respect to B is the set

DSk (A,B) = {a(k) | a ∈ DS(A,B)}.

Proposition
DSk (A,B) is upwards closed with respect to total
e-degrees.

Lemma (Soskov)
Let Q ⊆ N be a total set, B0, . . . ,Bk ⊆ N, such that
Pk ({B0, . . . ,Bk}) ≤e Q. There is a total set F such that:

I F (k) ≡ Q.
I (∀i ≤ k)(Bi ≤e F (i)).
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ω-Co-Spectra

For every A ⊆ Dω let
co(A) = {b | b ∈ Dω & (∀a ∈ A)(b ≤ω a)}.

Definition
The ω-co-spectrum of A with respect to B is the set

CS(A,B) = co(DS(A,B)).

For every enumeration f of E(A,B) consider the
sequence

I f−1(B) = {f−1(A)⊕ f−1(B0), f−1(B1), . . . ,
f−1(Bn), . . . }

I P(f−1(B)) ≡ω {f−1(A)(n)}n<ω ≡ω f−1(A) ↑ ω.
I So f ∈ E(A,B) iff P(f−1(B)) ≤ω f−1(A) ↑ ω.
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k th ω-Co-Spectrum

Proposition
For each A ∈ S it holds that dω(A) ∈ CS(A,B) if and only
if A ≤ω P(f−1(B)) for every f ∈ E(A,B).
Actually the elements of the ω-co-spectrum of A with
respect to B form a countable ideal in Dω.

Definition
The kth ω-co-spectrum of A with respect to B is the set

CSk (A,B) = co(DSk (A,B)).

We will see that the kth ω-co-spectrum of A with respect
to B is the least ideal containing all kth ω-enumeration
jumps of the elements of CS(A,B).
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Normal Form Theorem

Let L be the language of the structure A. For each n let
Pn be a new unary predicate representing the set Bn.

I An elementary Σ+
0 formula is an existential formula of

the form
∃Y1 . . . ∃YmΦ(W1, . . . ,Wr ,Y1, . . . ,Ym), where Φ is a
finite conjunction of atomic formulae in L ∪ {P0};

I A Σ+
n formula is a c.e. disjunction of elementary Σ+

n
formulae;

I An elementary Σ+
n+1 formula is a formula of the form

∃Y1 . . . ∃YmΦ(W1, . . . ,Wr ,Y1, . . . ,Ym), where Φ is a
finite conjunction of atoms of the form Pn+1(Yj) or
Pn+1(Wi) and Σ+

n formulae or negations of Σ+
n

formulae in L ∪ {P0} ∪ · · · ∪ {Pn}.
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Normal Form Theorem

Definition
The sequence A = {An}n<ω of sets of natural is formally
k-definable on A with respect to B if there exists a
computable function γ(x ,n) such that for each n, x ∈ ω
Φγ(n,x)(W1, . . . ,Wr ) is a Σ+

n+k formula, and elements
t1, . . . , tr of |A| such that for every n, x ∈ ω, the following
equivalence holds:

x ∈ An ⇐⇒ (A,B) |= Φγ(n,x)(W1/t1, . . . ,Wr/tr ).

Theorem
The sequence A of sets of natural numbers is formally
k -definable on A with respect to B iff dω(A) ∈ CSk (A,B).
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Properties of upwards closed sets

Let A ⊆ De be an upwards closed set with respect to total
e-degrees.
We remind that
co(A) = {b | b ∈ Dω & (∀a ∈ A)(b ≤ω a)}.

Proposition
co(A) = co({a : a ∈ A & a is total}).

Corrolary
CS(A,B) = co({a | a ∈ DS(A,B) & a is a total e-degree}).
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Negative results (Vatev)

Let A ⊆ De be an upwards closed set with respect to total
e-degrees and k > 0.

Proposition
There exists b ∈ De such that

co(A) 6= co({a : a ∈ A & b ≤ a(k)}).

I Let de(A) ∈ A and a set B 6≤e A(k).
I Consider B = {∅, . . . , ∅(k−1),B,B′, . . . , }.
I B 6≤ω A ↑ ω ⇒ dω(B) 6∈ co(A).
I B ≤ω C ↑ ω for each C s.t. B ≤e C(k).
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Negative results (Vatev)

Proposition
Let n > 0. There is a structure A, a sequence B and
c ∈ DSn(A,B) such that if A = {a ∈ DS(A,B) | a(n) = c}
then

CS(A,B) 6= co(A).

I Consider a linear order A which has no n-jump
degree, B = ∅ ↑ ω and de(C) ∈ DSn(A).

I Consider C = {∅, . . . , ∅(n−1),C,C′, . . . , }.
I dω(C) 6∈ CS(A), otherwise de(C) will be an n-jump

degree of A.
I dω(C) ∈ co(A).
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Minimal pair theorem

Theorem
For every structure A and every sequence B ∈ S there
exist total enumeration degrees f and g in DS(A,B) such
that for every ω-enumeration degree a and k ∈ N:

a ≤ω f(k) & a ≤ω g(k) ⇒ a ∈ CSk (A,B) .
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Minimal pair theorem
Proof.
Case k = 0.

I Let f ∈ E(A,B) and F = f−1(A) is a total set.
I Denote by X0,X1, . . .Xr . . . all sequences
ω-enumeration reducible to P(f−1(B)).

I Consider C0, C1, . . . , Cr . . . among them which are not
formally definable on A with respect to B.

I There is an enumeration h such that
Cr 6≤ω P(h−1(B)), r ∈ ω.

I There is a total set G such that P(h−1(B)) ≤ω G ↑ ω
and Cr 6≤ω G ↑ ω, r ∈ ω.

I There is a g ∈ E(A,B) such that g−1(A) ≡e G. Thus
de(G) ∈ DS(A,B).

I If A ≤ω F ↑ ω and A ≤ω G ↑ ω then A = Xr and
A 6= Cl for all l ∈ ω. So dω(A) ∈ CS(A,B).
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Minimal pair theorem
Proof.
I(a) = {b | b ∈ Dω & b ≤ω a} = co({a}).

I CS(A,B) = I(f) ∩ I(g) where f = de(F ) and
g = de(G).

I We shall prove now that I(f(k)) ∩ I(g(k)) = CSk (A,B)
for every k .

I f(k),g(k) ∈ DSk (A,B)⇒ CSk (A,B) ⊆ I(f(k)) ∩ I(g(k)).
I Suppose that A = {An}n<ω, A ≤ω F (k) ↑ ω and
A ≤ω G(k) ↑ ω.

I Denote by C = {Cn}n<ω the sequence such that
Cn = ∅ for n < k , and Cn+k = An for each n.

I A ≤ω C(k), C ≤ω F ↑ ω and C ≤ω G ↑ ω ⇒
dω(C) ∈ CS(A,B).

I Let h ∈ E(A,B). Then C ≤ω h−1(A) ↑ ω and thus
C(k) ≤ω (h−1(A) ↑ ω)(k).

I Hence dω(A) ∈ CSk (A,B).
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Countable ideals of ω-enumeration degrees

Corrolary
CSk (A,B) is the least ideal containing all kth ω-jumps of
the elements of CS(A,B).

I I = CS(A,B) is a countable ideal;
I CS(A,B) = I(f) ∩ I(g);
I I(k) - the least ideal, containing all k th ω-jumps of the

elements of I;
I (Ganchev)

I = I(f) ∩ I(g) =⇒ I(k) = I(f(k)) ∩ I(g(k)) for every k ;
I I(f(k)) ∩ I(g(k)) = CSk (A,B) for each k
I Thus I(k) = CSk (A,B).
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Countable ideals of ω-enumeration degrees

There is a countable ideal I of ω-enumeration degrees for
which there is no structure A and sequence B such that
I = CS(A,B).

I A = {0,0′,0′′, . . . ,0(n), . . . };
I I = I(A) = {a | a ∈ Dω & (∃n)(a ≤ω 0(n))} - a

countable ideal generated by A.
I Assume that there is a structure A and a sequence B

such that I = CS(A,B)

I Then there is a minimal pair f and g for DS(A,B), so
I(n) = I(f(n)) ∩ I(g(n)) for each n.

I f ≥ 0(n) and g ≥ 0(n) for each n.
I Then by Enderton and Putnam [1970], Sacks [1971]:

f′′ ≥ 0(ω) and g′′ ≥ 0(ω).
I Hence I′′ 6= I(f′′) ∩ I(g′′). A contradiction.
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Quasi-Minimal Degree

Theorem
For every structure A and every sequence B, there exists
F ⊆ N, such that q = dω(F ↑ ω) and:

1. q 6∈ CS(A,B);
2. If a is a total e-degree and a ≥ω q then a ∈ DS(A,B)

3. If a is a total e-degree and a ≤ω q then a ∈ CS(A,B).
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Quasi-Minimal Degree
Proof.

I (Soskov) There is a partial generic enumeration f of
A such that de(f−1(A)) is quasi-minimal with respect
to DS(A) and f−1(A) 6≤e D(A).

I (Ganchev) There is a set F such that f−1(A) <e F ,
f−1(B) ≤ω F ↑ ω and for total X :
X ≤e F ⇒ X ≤e f−1(A).

I Set q = dω(F ↑ ω) and let X be a total set.
I If q ∈ CS(A,B) then dω(f−1(A) ↑ ω) ∈ CS(A,B).

Then f−1(A) ≤e D(A). A contradiction.
I If X ≤e F then X ≤e f−1(A). Thus de(X ) ∈ CS(A).

But DS(A,B) ⊆ DS(A). So dω(X ↑ ω) ∈ CS(A,B).
I If X ≥e F then X ≥e f−1(A). Hence dom(f ) is c.e. in

X . Let ρ be a computable in X enumeration of
dom(f ). Set h = λn.f (ρ(n)). So h−1(B) ≤e X ↑ ω.
Then de(X ) ∈ DS(A,B).
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ω-degree spectra

I Questions:
I Is it true that for every structure A and every

sequence B there exists a structure B such that
DS(B) = DS(A,B)?

I If for a countable ideal I ⊆ Dω there is an exact pair
then are there a structure A and a sequence B so
that CS(A,B) = I?
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