
SJT as an analog of K -triviality

Daniel Turetsky

13 February, 2013

Figuiera, Nies and Stephan defined Strong Jump Traceability
(SJT) in the hopes of characterizing K -triviality.

Definition
An order is a function h : ω → ω which is positive, non-decreasing
and has infinite limit.

Definition
If f is a partial function and h is an order, an h-trace for f is a
uniformly given sequence of c.e. sets 〈Te〉e∈ω with |Te | ≤ h(e),
and f (e) ∈ Te for all e in the domain of f .

Definition
A set A is Strongly Jump Traceable if every A-computable partial
function has an h-trace for every computable order h.

K -trivial:

I The K -trivials form an ideal within ∆0
2.

I This ideal is generated by its c.e. elements.

I K -triviality is characterized by obeying all additive cost
functions.

SJT:

I The SJT form an ideal properly contained in the K -trivials.
[Cholak, Downey, Greenberg]

I This ideal is generated by its c.e. elements. [Diamondstone,
Greenberg, T]

I SJT is characterized by obeying all benign cost functions.
[Greenberg, Nies; Greenberg, Hirschfeldt, Nies;
Diamondstone, Greenberg, T]

K -trivial:

I Every K -trivial is computable from a difference random.

I Every c.e. set computable from a difference random is
K -trivial.

I Every set which is a base for difference randomness is
K -trivial (and conversely).

SJT:

I Every SJT is computable from a Demuth random.
[Greenberg, T]

I Every c.e. set computable from a Demuth random is SJT.
[Kučera, Nies]

I Every set which is a base for Demuth randomness is SJT, but
the converse fails. [Nies; Greenberg, T]

I Every set which is a base for DemuthBLR randomness is SJT
(and conversely). [Nies; Bienvenu, Downey, Greenberg, Nies,
T; Greenberg, T]

K -trivial:

I Every MLR which is not OWR computes every K -trivial.

I There is a ∆0
2 difference random which computes every

K -trivial.

SJT:

I Every MLR which is not weak-Demuth random computes
every SJT. [?]

I There is no ∆0
2 Demuth random which computes every SJT.

[Ng]

Definition
A Demuth test is a sequence 〈Vn〉n∈ω of open sets with
λ(Vn) ≤ 2−n, such that there is an ω-c.a. function giving
Σ0
1-indices for the Vn.

A real passes a Demuth test if it is contained in only finitely many
of the Vn. (Note that the Vn need not be nested.)

A real is Demuth random if it passes every Demuth test.

A Demuth test is like a non-nested Martin-Löf test except you can
empty a test element and begin again a computably-bounded
number of times.

Proposition

There is no ∆0
2 Demuth random which computes every SJT.

Proof.
If X were a Demuth random which computes every SJT,
{e : We ≤T X} = {e : We is SJT}.

Ng showed that {e : We is SJT} is Π0
4-complete.

{e : We ≤T X} is Σ0
3(X).

Every Demuth random is GL1. So a ∆0
2 Demuth random is low.

If X is low, Σ0
3(X) = Σ0

3.

Definition
A weak Demuth test is a Demuth test for which the Vn are nested.

A real is weak Demuth random if it passes every weak Demuth test.

Definition
A (monotonic, limit-condition) cost function is a function
c : ω × ω → Q satisfying:

I c(x + 1, s) ≤ c(x , s) ≤ c(x , s + 1);

I c(x) = lims c(x , s) <∞; and

I limx c(x) = 0.

For a cost function c , and a fixed n, consider the following
sequence:

I `n0 = 0;

I `ni+1 = (µs > `ni)[c(`ni , s) > 2−n].

Since limx c(x) = 0, this sequence is finite.

A cost function is g -benign if g(n) bounds the length of
〈`n0, `n1, . . .〉 for all n. A cost function is benign if it is g -benign for
some computable function g .

Definition
If c is a cost function and 〈As〉s∈ω is a sequence of sets, let
c(As) = c(ys , s), where ys is the least element of As4As+1.

〈As〉s∈ω obeys c if
∑

c(As) <∞.

If A is a ∆0
2 set, A obeys c if it has some computable

approximation 〈As〉s∈ω which obeys c .

Theorem (Greenberg, Nies; Greenberg, Hirschfeldt, Nies)

If A obeys all benign cost functions, then A is SJT.

Theorem (Diamondstone, Greenberg, T)

Every SJT obeys all benign cost functions.

All K -trivials obey all additive cost functions.

In fact, there is a single additive cost function cK such that
obeying cK implies K -triviality.

This implies that every K -trivial is computable from a c.e.
K -trivial, via the change set:

If A is K -trivial, let 〈As〉s∈ω witness that A obeys cK . Then let
B = {(x , n) : (∃s1 < s2 < · · · < sn)(∀i ≤ n)[x ∈ Asi4Asi+1]}.
Assume #(x , n) ≥ x . Then B is c.e., A ≤T B, and B has a
natural approximation 〈Bs〉s∈ω with cK (Bs) ≤ cK (As) for all s.

This same argument does not suffice for SJT.

There is no single benign cost function which characterizes SJT.

Different cost functions require different witnessing approximations
〈As〉s∈ω, which generate different change sets.

Theorem (Diamondstone, Greenberg, T)

There is a benign cost function ċ such that if A obeys ċ, there is a
c.e. B ≥T A which obeys every cost function which A does.

Corollary

Every SJT is computable from a c.e. SJT.

We want to build ċ by studying the witnessing approximation
〈As〉s∈ω. This is not as impossible as it sounds.

Let
〈
〈An

s 〉s∈ω
〉
n∈ω be a listing of all partial computable sequences

of sets. We will build cost functions 〈cn〉n∈ω. cn will be built under
the assumption that 〈An

s 〉s∈ω is total and obeys cn with total cost
at most 2n. Even if this assumption fails, we must meet the
following:

I cn is total;

I (∀x , s)cn(x , s) ≤ 1;

I The 〈cn〉n∈ω are uniformly benign.

Then we set ċ =
∑

2−ncn, and ċ will be a benign cost function.

Suppose A obeys ċ . Then there is some approximation 〈As〉s∈ω to
A with

∑
ċ(As) ≤ 1.

There is some k with
〈
Ak
s

〉
s∈ω = 〈As〉s∈ω.∑

ck(Ak
s) ≤

∑
2k ċ(As) ≤ 2k . So ck is correct about its

assumption.

Now we focus on building ck , but we drop the k . So we have a
partial computable sequence of sets 〈As〉s∈ω and a constant 2k .
We need to build a total benign cost function c which is bounded
by 1. If 〈As〉s∈ω is total and

∑
c(As) ≤ 2k , we need to construct a

B which obeys all cost functions which A obeys.

We need to study all cost functions, and watch if A obeys them.
That means guessing at approximations which might obey them.
Fortunately, we can restrict our attention to a certain kind of
approximation:

Lemma
If d is a cost function, A obeys d , and 〈As〉s∈ω is any computable
approximation to A, then there is a computable, strictly increasing
function g with

〈
Ag(s)

〉
s∈ω obeying d with total cost at most 1.

So let
〈
(d i , g i)

〉
i∈ω be a listing of cost functions paired with

partial strictly increasing functions.

First idea:

Let B be the change set for 〈As〉s∈ω and let 〈Bs〉s∈ω be the natural
approximation. If g i is total and

∑
d i (Ag i (s)) <∞, we will make∑

d i (Bg i (s)) <∞.

At stage s, suppose m is the largest element of the domain of g i

so far, with g i (m) < s. We see As(z) 6= Ag i (m)(z). This change

will be recorded in the change set, and
∑

d i (Bg i (s)) will pay at

most d i (z ,m) for it.

There are two possibilities:

1. If A(z) does not change from s to g i (m + 1), then
Ag i (m+1)(z) 6= Ag i (m)(z), and so

∑
d i (Ag i (s)) must pay

d i (z ,m) for it.

2. If A(z) does change, then for some t ≥ s, At+1(z) 6= At(z),
and so

∑
c(As) must pay at least c(z , s) for it.

Without knowing which of the two possibilities it is, we can set
c(z , s) = d i (z ,m). Then one of the two sums will pay at least
d i (z ,m), and so

∑
d i (Ag i (s)) ≤

∑
d i (Ag i (s)) +

∑
c(As) <∞.

Unfortunately, we need to make c total even if 〈As〉s∈ω is not. So
we can’t wait for As(z) to converge before defining c(z , s).

Second idea:

We will build a function f . If 〈As〉s∈ω is total, f will be total.

Let B be the change set for
〈
Af (s)

〉
s∈ω and let 〈Bs〉s∈ω be the

natural approximation. If g i is total and
∑

d i (Af ◦g i (s)) <∞, we

will make
∑

d i (Bg i (s)) <∞.

At stage s, suppose m is the largest element of the domain of g i

and ` > g i (m) is the largest element of the domain of f . For some
t > f (`), we see At(z) 6= Af ◦g i (m)(z). This change will be recorded

in the change set, and
∑

d i (Bg i (s)) will pay at most d i (z ,m) for it.

We set c(z , s) = d i (z ,m), and it is now safe to define f (`+ 1) ≥ t.

Another problem: our analysis has assumed that g i (m + 1) is large.

In the first idea, we needed g i (m + 1) > s.

In the second idea, we needed g i (m + 1) > `.

g i converges slower than f , so we can’t guarantee that this will
hold.

So we need another speed-up hi .

Third idea:

We will build functions f and hi . If 〈As〉s∈ω is total, f will be
total. If g i is total, hi will be total.

B is again the change set for
〈
Af (s)

〉
s∈ω. If g i is total and∑

d i (Af ◦g i (s)) <∞, we will make
∑

d i (Bg i◦hi (s)) <∞.

At stage s, suppose m is the largest element of the domain of hi

and ` > g ◦ hi (m) is the largest element of the domain of f . For
some t > f (`), we see At(z) 6= Af ◦g i◦hi (m)(z).

We set c(z , s) = d i (z ,m), and it is now safe to define f (`+ 1) ≥ t
and hi (m + 1) such that g i ◦ hi (m + 1) > `.

Another problem: c needs to be benign.

d i need not be benign, so constantly setting c = d i will be a
problem.

Our solution is to drip feed cost increases. Instead of setting
c(z , s) = d i (z ,m), we set c(z , s) = 2−s , and then wait until As(z)
converges at some stage s1 > s. While we wait, we do not define f .

If As(z) = Af ◦g i◦hi (m)(z), z is no longer a problem. We can
continue our definitions ignoring z .

Otherwise, we define c(z , s1) = 2 · c(z , s), and then wait until
As1(z) converges at some stage s2 > s1. If As1(z) = Af ◦g i◦hi (m)(z),
z is no longer a problem. Otherwise, define c(z , s2) = 2 · c(z , s1).

If z remains a problem, we continue with s2 < s3 < s4 . . . until
c(z , sr) ≥ d i (z ,m). Only then are we safe to continue the
definition of f .

To be benign, we must bound the number of times c increases to
2−n.

Except for the very first c(z , s) = 2−s , we never increase c unless∑
cs(As) +

∑
d i (Af ◦g i (s)) has committed to paying at least half

the increase.

We assume that
∑

cs(As) ≤ 2k and
∑

d i (Af ◦g i (s)) ≤ 1. (We stop
increasing c once we see these sums exceed their bounds.)

This lets us get a computable bound on the increases.

Analysis of the construction shows that ċ is 2n
O(1)

-benign.

So the class {X : X obeys all 2n
O(1)

-benign cost functions} is also
a c.e. generated ideal.

It is strictly between SJT and K -trivial.

Recall that A is called a base for Q if there is an X ∈ QA with
A ≤T X .

Theorem (Nies)

If A is a base for Demuth randomness, then A is SJT.

Theorem (Greenberg, T)

There is an SJT which is not a base for Demuth randomness.

There are three places to relativize Demuth randomness.

An A-Demuth test is a sequence 〈Vn〉n∈ω of open sets with
λ(Vn) ≤ 2−n such that:

1. There is an A-computable function f : ω × ω → ω;

2. There is an A-computable function g : ω → ω with
|{s : f (n, s) 6= f (n, s + 1)}| ≤ g(n); and

3. lims f (n, s) is a Σ0
1(A)-index for Vn.

It can be shown that the third relativization gives no additional
power.

Nies’s proof only used the first relativization.

Greenberg & T’s counterexample only used the second.

This leads to the following definition:

Definition
For an oracle A, an A-DemuthBLR test is a sequence 〈Vn〉n∈ω of
open sets with λ(Vn) ≤ 2−n such that there is an A-computable
function f : ω × ω → ω and a computable function g : ω → ω with
|{s : f (n, s) 6= f (n, s + 1)}| ≤ g(n) and lims f (n, s) a Σ0

1-index for
Vn.

∅-DemuthBLR tests are precisely Demuth tests.

Theorem (Bienvenu, Downey, Greenberg, Nies, T)

The SJT are precisely the bases for DemuthBLR randomness.

Definition
For a cost function c , a c-test is an effectively given sequence of
nested Σ0

1-class 〈Vn〉n∈ω with λ(Vn) ≤ lims c(n, s).

Lemma
If X is MLR and fails a c-test, then X computes every c.e. set
which obeys c.

Proof.
Fix a c-test 〈Vn〉 capturing X and a c.e. enumeration of a set A
obeying c. Assume that λ(Vn,s) ≤ c(n, s).
If s ≥ n and n 6∈ As , enumerate n into W Z for every Z ∈ Vn,s .
If s > n and n ∈ As\As−1, enumerate Vn,s−1 into S .

The total measure enumerated into S is bounded by
∑

c(As), so
S is a Solvay test. So X is only enumerated into S finitely many
times, and thus W X enumerates something with only finitely many
differences from the complement of A.

Lemma
Every c-test for a benign c is covered by a weak Demuth test, and
conversely.

Proof.
Given a weak Demuth test 〈Vn〉n∈ω, with corresponding functions
f : ω × ω → ω and g : ω → ω, assume that Vf (n,s),s ⊇ Vf (n+1,s),s

at every stage.
Let Un =

⋃
s≥n Vf (n,s),s . Define c(n, s) = λ(Un,s). c is

g(n + 1)-benign.

Conversely, given a c-test 〈Vn〉n∈ω, let `n0, `
n
1, . . . , `

n
r be from the

definition of benignness. Define Un = V`nr .

So every MLR which is not weak Demuth random computes every
SJT.

Question
Are the weak Demuth randoms precisely the MLR which do not
compute every SJT?

We cannot hope to use the same proof as for K -trivial and OWR.

Theorem (Greenberg, T)

Every SJT is computable from a ∆0
3 Demuth random.

Question
Can this be improved to ∆0

2?

Thank you.

